
AppleShare File Server 3.0 Control

CHAPTER 1-SERVER CONTROL CALLS

This chapter introduces the server control calls available with the
AppleShare File Server 3.0 and describes how server control calls interact
with the main elements of file server software. The chapter presents each
server control call individually and includes a sample code segment for each
call that demonstrates how you might use the call in your own programs.

Server control calls enable applications to monitor and control the major
functions of the AppleShare File Server 3.0. These control calls let your
programs

- get and modify server configuration information

- check a server's status

- start and stop file service

- get information on users, volumes, and shared items

- disconnect users (including the users of a specific volume)

- send messages to users

- set or clear the copy-protect status of files

- use server event handlers

Server control calls, together with server event handling (described in
Chapter 2), make it possible to create any number of services and utilities
for the AppleShare File Server 3.0. Because you can monitor file usage -- who
uses files, which files are saved to or deleted from a server, where files
are copied to, and so on -- you can create file-usage audit trails, generate
server-usage statistics, and perform other types of accounting services. You
can also control file servers remotely. By monitoring the number of active
users, logging off idle users, and controlling log-on access, you can perform
load-balancing services for a group of related servers. Many other services
are possible. AppleShare File Server 3.0 server control calls and event
handling form a complete interface through which your applications and
programs can control and extend the capabilities of the file server software.
This guide refers to such programs and applications as server additions.

Note Macintosh File Sharing supports a subset of the AppleShare File Server
3.0 server control calls. See Appendix A for a list of these calls.

Main elements of file servers and server control calls

This section describes the software components and data files that make up
the AppleShare File Server 3.0 and Macintosh File Sharing. Because the
AppleShare File Server 3.0 and Macintosh File Sharing perform similar
functions, the components for each are similar and both use the same types of
data files.

AppleShare File Server 3.0 software components

The AppleShare File Server 3.0 is composed of a number of files. The File
Server Extension provides the actual functionality of the file server. The
AppleShare File Server and the AppleShare Admin applications provide the user
interface for the server.

This section describes each of AppleShare File Server 3.0 software
components. The section "Data Files," later in this chapter, describes the
Users & Groups Data File and the AppleShare PDS file.

File Server Extension The File Server Extension contains the actual file
server code. It is an extension of the system and resides in the Extensions
folder. The File Server Extension is a launchable file, though its file type
is 'INIT' instead of 'APPL', which prevents users from starting it from the
Finder. (The 'INIT' file type also tells the system to put the file in the
Extensions folder and causes the extension to be opened during system
startup.) When the File Server Extension is launched, it runs as a background
application.

The File Server Extension contains no user interface of its own. The user
interface is provided by the AppleShare File Server and AppleShare Admin
applications (described next). These applications communicate with the File
Server Extension primarily by means of server control calls. Server control
calls are also the primary means of communication between server additions
and the file server. The File Server Extension communicates with remote
AppleShare clients through Apple Filing Protocol (AFP) sessions, and,
locally, with shared volumes and files by means of Macintosh File Manager
routines.

When the File Server Extension is launched, it checks its environment, the
Users & Groups Data File, and the desktop databases and AppleShare PDS files
of appropriate volumes. (The File Server Extension does not attempt to share
remote volumes, or volumes such as floppy disks or volumes that are ejected
and off line during startup.) If an important required condition is not
satisfied, the offending volume will not be prepared for use with the file
server or the file server will not be enabled.

Once started, the File Server Extension takes over the dispatching of all
file system calls -- both local calls and remote requests. Essentially, the
file server acts as a mediator between the network and your local HFS
volumes. The file server imposes access privilege constraints on AFP requests
and implements some calls that are not implemented in HFS -- such as those
that govern byte-range locking, access privileges, and extended file access
permissions.

AppleShare File Server The AppleShare File Server application provides part
of the user interface for the File Server Extension. Users start the file
server by opening the AppleShare File Server application. The AppleShare File
Server application also provides the interface for controlling and monitoring
the file server while it is running. The AppleShare File Server application
displays the Volume Info window, which lists the volumes that are available
on the server, and the Connected Users window, which lists users who are
currently logged on to the server. The Server menu lets you unmount volumes,
disconnect users, send messages to users, and set the greeting message. (See
the AppleShare Server 3.0 Administrator's Guide for more information about
the features of the AppleShare File Server 3.0 user interface.)

The AppleShare Installer initially installs the AppleShare File Server
application in the System Folder, but the file can reside anywhere on the
server volume. The AppleShare File Server application communicates with the
File Server Extension primarily by means of server control calls.

AppleShare Admin The AppleShare Admin application provides the user
interface for defining users and groups for the server. The AppleShare Admin
application also lets you set preferences, set access privileges, and perform
other administrative tasks for the file server. (See the AppleShare Server
3.0 Administrator's Guide for more information about the administrative
features of the AppleShare File Server 3.0.)

Like the AppleShare File Server application, the AppleShare Admin application
is initially installed in the System Folder but can reside anywhere on the
server volume. It communicates with the File Server Extension primarily by
means of server control calls. It also uses the AppleShare PDS file and the
Users & Groups Data File to store and retrieve information about server
volumes and the users and groups defined for the server, respectively.

Network AppleShare clients Network workstations with AppleShare client
software installed can connect to the File Server Extension. AppleShare
clients communicate with the server through AFP sessions.

File Manager The Macintosh File Manager normally handles local requests for
file access. While the file server is running, however, the File Server
Extension intercepts all file access calls from the File Manager.

Server additions Applications, INITs, extensions, and other types of
programs can access the File Server Extension by using server control calls.
A program that uses server control calls is referred to as a server addition.
This guide tells you how to create server additions by using server control
calls in your own programs.

Macintosh File Sharing software components

Like the AppleShare File Server 3.0, Macintosh File Sharing is composed of a
number of parts distributed across several files in the System Folder. The
File Sharing Extension provides the actual functionality of the AFP server.
Five other files -- the Network Extension, three control panels, and the
Finder -- work together to provide the user interface.

The File Sharing Extension handles all requests for access to files residing
on local volumes, including local requests from the Macintosh File Manager
and server additions, and remote requests from AFP clients.

This section describes the software components of Macintosh File Sharing. The
section "Data Files," later in this chapter, describes the Users & Groups
Data File and the AppleShare PDS file.

File Sharing Extension The File Sharing Extension contains the actual file
server code.

It is a system extension that resides in the Extensions folder. The File
Sharing Extension is a launchable file, though its file type is 'INIT'
instead of 'APPL', which prevents users from starting it from the Finder.
(The 'INIT' file type also tells the system to put the file in the Extensions
folder and causes the extension to be opened during system startup.) When the
File Sharing Extension is launched, it runs as a background application.

The File Sharing Extension contains no user interface of its own. The user
interface is provided by the Network Extension, which allows users to start
and to control the File Sharing Extension. The File Sharing Extension
communicates with the Network Extension primarily by means of server control
calls. The File Sharing Extension communicates with the Finder by means of
PPC events, and with a remote AppleShare client through AFP sessions. The
File Sharing Extension also communicates with local volumes and files by
means of Macintosh File Manager routines, and with server additions by means
of server control calls.

When the File Sharing Extension is launched, it checks its environment, the
Users & Groups Data File, and the desktop databases and AppleShare PDS files
of appropriate volumes. (The File Sharing Extension does not attempt to share
remote volumes, or volumes such as floppy disks or volumes that are ejected
and off line during startup.) If an important required condition is not
satisfied, the offending volume will not be prepared for use with the file
server or file sharing will not be enabled.

Once started, the File Sharing Extension takes over the dispatching of all
file system calls -- both local calls and remote requests. Essentially, the
File Sharing Extension acts as a mediator between the network and your local
HFS volumes. The File Sharing Extension imposes access privilege constraints
on AFP requests and implements some calls that are not implemented in HFS --
such as those that govern byte-range locking, access privileges, and extended
file access permissions.

Network Extension The Network Extension provides the user interface for
Macintosh File Sharing. It is an extension of the Finder and resides in the
Extensions folder. The Network Extension is dynamically linked with the
Finder code at startup time and uses the Finder's code to control its user
interface. The user interface includes what appears to users to be the
Sharing Setup, Users & Groups, and File Sharing Monitor control panels. When
a user opens any one of these control panels, the Network Extension code
intercepts the launch command, opens the appropriate window, and controls the
interaction with the user.

Based on user interactions, the Network Extension communicates with the
server primarily by means of server control calls. The File Server Extension
communicates with users through the Network Extension by sending high-level
Apple events to display dialog boxes. The Network Extension relies on the
AppleShare PDS file and the Users & Groups Data File for information about
server volumes and the users and groups defined for the server, respectively.

Finder The Finder provides part of the Macintosh File Sharing services. The
Sharing menu item in the Finder's File menu lets users view and set the
access privileges for disks and folders. In addition, through its extension
mechanism, the Finder provides an environment for running the Network
Extension code. The Finder communicates with the file server by using
augmented Macintosh File Manager routines.

File Sharing Monitor, Sharing Setup, and Users & Groups These control panel
files trigger execution of the appropriate Network Extension code. The
control panel files themselves contain no executable code.

Network AppleShare clients Network workstations with AppleShare client
software installed can connect to the File Sharing Extension. AppleShare
clients communicate with the server by means of AFP packets.

File Manager The Macintosh File Manager normally handles local requests for
file access. When Macintosh File Sharing is turned on, however, the File
Sharing Extension intercepts all file access calls from the File Manager.

Server additions Applications, INITs, extensions, and other types of
programs can access the File Server Extension by using server control calls.
A program that uses server control calls is referred to as a server addition.
This guide tells you how to create server additions by using server control
calls in your own programs.

Data files

Both the AppleShare File Server 3.0 and Macintosh File Sharing use two data
files to store user and directory information: the Users & Groups Data File
and the AppleShare PDS file.

Users & Groups Data File The Users & Groups Data File contains a database of
the users and groups defined on your computer. You define users and groups
for the AppleShare File Server 3.0 by using the AppleShare Admin application.
You define users and groups with Macintosh File Sharing by using the Users &
Groups control panel. The data file is a B-Tree file. With the AppleShare
File Server 3.0, the AppleShare Admin and File Server Extension files use the
Users & Groups Data File. With Macintosh File Sharing, the Network Extension
and File Sharing Extension files use the Users & Groups Data File.

AppleShare PDS The AppleShare PDS file is an invisible file that resides at
the root of every unlocked volume. PDS stands for parallel directory
structure. The AppleShare PDS file contains the access privilege and share-
point information for the volume on which the file resides. The PDS file
determines the access privileges of the volume's users and groups, which are
defined in the Users & Groups Data File. Because the PDS file is created in
conjunction with the Users & Groups Data File, the Users & Groups Data File
must not be removed from the volume. (If the Users & Groups Data File is
lost, the access privilege and share-point information contained in the PDS
file is lost as well.)

The PDS file for CD-ROM drives resides in the File Sharing folder (in the
Preferences folder) for Macintosh File Sharing, and in the File Server folder
(in the Preferences folder) for the AppleShare File Server 3.0.

Using server control calls

This section presents each of the server control calls available with the
AppleShare File Server 3.0. The server control calls are presented in logical
functional groups, more or less in the order in which you would use them in
server additions.

For each server control call, there is a function named MycallName.
Typically, this function shows how to fill in the parameter block, make the
server control call, and retrieve any result values returned by the call.
When necessary, the MycallName functions also include code that makes the
server control calls supported by Macintosh File Sharing behave as much as
possible in the same manner as they behave when used under the AppleShare
File Server 3.0. For example, a MycallName function may return a value that
is normally returned by the AppleShare File Server 3.0 but that is not
supplied by Macintosh File Sharing. In other cases, for example with the
SCGetExpFldr call, the function contains code that makes the call work "as
advertised."

Some of the server control call descriptions are accompanied by a second
segment of sample code that shows a particular use of that call. Each of
these additional code segments performs one of the following tasks:

- gets the server version, status, and setup information and then stores that
information in global variables for later use by other functions

- lists the shared volumes and folders

- lists the installed server event handlers

- lists the users connected to the server

- gets the mount information for a user's mounted volumes or folders

- disconnects a user from the server

- sends a message to all connected users

- disconnects the users of a specified volume

Some of the code samples use global variables to store information that might
be needed by other functions. Here are the global variables used within these
code samples:

- General

- gErr: OSErr

- gHasServerDispatch: Boolean

- Used by SCServerVersion

- gServerExtensionName: Str31

- gServerType: Integer

- gServerVersion: Integer

- Used by SCPollServer

- gServerState: Integer;

- gDisconnectState: Integer;

- gServerError: Integer;

- gSecondsLeft: LongInt;

- Used by SCGetSetupInfo

- gSetupInfoRec: SetupInfoRec;

- gMaxVolumes: Integer

- gMaxExpFolders: Integer

- gCurMaxSessions: Integer

Determining if server control calls are available

Before using any of the other control calls, use the TrapAvailable call to
make sure that the server dispatch trap is available. The following line of
code tests directly for the existence of the server dispatch trap:

gHasServerDispatch := TrapAvailable(ServerDispatch)

The "Compatibility Guidelines" chapter of Inside Macintosh, Volume VI,
contains the source code for the TrapAvailable call.

Calling conventions

After assuring that server control calls are available, issue the
SyncServerDispatch call with the following code:

scErr:=SyncServerDispatch(@scPB);

The actual interface for the SyncServerDispatch call is defined by the server
control call interface file. See Appendix B for a listing of that file. The
SyncServerDispatch call appears in the "Server Control Routine" section of
Appendix B.

Getting and modifying server

configuration information

This section describes the server control calls that you use to get and to
modify server configuration information.

SCServerVersion

The following function calls SCServerVersion to get the name of the file
server extension and the server's type and version.

FUNCTION MySCServerVersion (ExtNamePtr: StringPtr;

VAR ServerType: Integer;

VAR ServerVersion: Integer):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.versionPB.scCode := SCServerVersion;

scPB.versionPB.scExtNamePtr := ExtNamePtr;

MySCServerVersion := SyncServerDispatch(@scPB);

ServerType := scPB.versionPB.scServerType;

ServerVersion := scPB.versionPB.scServerVersion;

END;

The following segment of code gets the server version information and stores
it in global variables for later use. (Global variables and their data types
are listed in "Using Server Control Calls," earlier in this chapter.)

err := MySCServerVersion(@gServerExtensionName,

gServerType, gServerVersion);

SCGetSetupInfo

The following function calls SCGetSetupInfo to get the file server's setup
information. If the server is a Macintosh File Sharing server (type =
MFSType), this function also fills in the fields that aren't returned by the
server control call. Before using this function, you must initialize
gServerType by using the SCServerVersion control call.

FUNCTION MySCGetSetupInfo (SetupPtr: SetupInfoRecPtr;

VAR MaxVolumes: Integer;

VAR MaxExpFolders: Integer;

VAR CurMaxSessions: Integer):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.setupPB.scCode := SCGetSetupInfo;

scPB.setupPB.scSetupPtr := SetupPtr;

MySCGetSetupInfo := SyncServerDispatch(@scPB);

CASE gServerType OF

MFSType:

BEGIN

MaxVolumes := 10;

MaxExpFolders := 10;

CurMaxSessions := SetupPtr^.SIMaxLogins;

END;

OTHERWISE

BEGIN

MaxVolumes := scPB.setupPB.scMaxVolumes;

MaxExpFolders := scPB.setupPB.scMaxExpFolders;

CurMaxSessions := scPB.setupPB.scCurMaxSessions;

END;

END;

END;

The following segment of code gets the server version information and stores
it in global variables for later use. (Global variables and their data types
are listed in "Using Server Control Calls," earlier in this chapter.)

err := MySCGetSetupInfo(@gSetupInfoRec, gMaxVolumes,

gMaxExpFolders, gCurMaxSessions);

SCSetSetupInfo

The following function calls SCSetSetupInfo to set the file server's setup
information.

FUNCTION MySCSetSetupInfo (SetupPtr: SetupInfoRecPtr):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.setupPB.scCode := SCSetSetupInfo;

scPB.setupPB.scSetupPtr := SetupPtr;

MySCSetSetupInfo := SyncServerDispatch(@scPB);

END;

Checking the server's status

This section describes the server control calls that you use to check the
server's status.

SCPollServer

The SCPollServer call returns information about the server's state, its
disconnect state, whether or not there has been an error, and how many
seconds are left before the server shuts down or before it disconnects a
user. The following function calls SCPollServer to get this information.

FUNCTION MySCPollServer (VAR ServerState: Integer;

VAR DisconnectState: Integer;

VAR ServerError: Integer;

VAR SecondsLeft: LongInt): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.pollServerPB.scCode := SCPollServer;

{ Macintosh File Sharing doesn't return scSecondsLeft }

{ so zero it. }

scPB.pollServerPB.scSecondsLeft := 0;

MySCPollServer := SyncServerDispatch(@scPB);

ServerState := scPB.pollServerPB.scServerState;

DisconnectState := scPB.pollServerPB.scDisconnectState;

ServerError := scPB.pollServerPB.scServerError;

SecondsLeft := scPB.pollServerPB.scSecondsLeft;

END;

The following segment of code gets the server state, disconnect state, server
error, and seconds-left information and stores it in global variables for
later use. (Global variables and their data types are listed in "Using Server
Control Calls," earlier in this chapter.)

err := MySCPollServer(gServerState, gDisconnectState,

gServerError, gSecondsLeft);

SCGetServerStatus

The following function calls SCGetServerStatus to get the file server's
current status information, including the server flags, the number of active
sessions, the date of the last modification of the user list, the level of
server activity, and the date of the last modification of the volume list.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCGetServerStatus (NamePtr: StringPtr;

VAR ServerFlags: Integer;

VAR NumSessions: Integer;

VAR UserListModDate: LongInt;

VAR Activity: Integer;

VAR VolListModDate: LongInt):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.statusPB.scCode := SCGetServerStatus;

scPB.statusPB.scNamePtr := NamePtr;

MySCGetServerStatus := SyncServerDispatch(@scPB);

ServerFlags := scPB.statusPB.scServerFlags;

NumSessions := scPB.statusPB.scNumSessions;

UserListModDate := scPB.statusPB.scUserListModDate;

Activity := scPB.statusPB.scActivity;

VolListModDate := scPB.statusPB.scVolListModDate;

END;

Starting and stopping the file service

This section describes the server control calls that you use to start and
stop file servers.

SCStartServer

The following function calls SCStartServer to start the Macintosh File
Sharing server.

!! IMPORTANT The AppleShare File Server 3.0 is normally started by the
AppleShare File Server application. When the AppleShare File Server
application is launched, it checks to see if the file server is running. If
it is, the AppleShare File Server application assumes its role as the file
server's user interface. If the file server is not running, the AppleShare
File Server application starts the server by calling SCStartServer before
assuming its role as user interface.

If a server addition starts the AppleShare File Server 3.0 by calling
SCStartServer, the file service starts up, but the AppleShare File Server
application (the user interface) does not. Unless your program provides the
functionality of the AppleShare File Server application, it should probably
not call SCStartServer to start the AppleShare File Server 3.0. Instead,
start the file server in the usual way -- by launching the AppleShare File
Server application. !!

FUNCTION MySCStartServer: OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.startPB.scCode := SCStartServer;

scPB.startPB.scStartSelect := kCurInstalled;

scPB.startPB.scEventSelect := kFinderExtn;

MySCStartServer := SyncServerDispatch(@scPB);

END;

SCShutDown

The following function calls SCShutDown to shut down the file server.

!! IMPORTANT The AppleShare File Server application automatically quits if
the AppleShare File Server 3.0 is shut down with the SCShutDown call. !!

FUNCTION MySCShutDown (NumMinutes: Integer; Flags: Integer;

MessagePtr: StringPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.disconnectPB.scCode := SCShutDown;

scPB.disconnectPB.scNumMinutes := NumMinutes;

scPB.disconnectPB.scFlags := Flags;

scPB.disconnectPB.scMessagePtr := MessagePtr;

MySCShutDown := SyncServerDispatch(@scPB);

END;

SCCancelShutDown

The following function calls SCCancelShutDown to cancel a shutdown or
disconnect call in progress.

FUNCTION MySCCancelShutDown: OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.disconnectPB.scCode := SCCancelShutDown;

MySCCancelShutDown := SyncServerDispatch(@scPB);

END;

SCSleepServer

The following function calls SCSleepServer to temporarily shut down the file
server ("put it to sleep"). You might want to put a file server to sleep
before switching networks or temporarily turning off AppleTalk.

- Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCSleepServer (NumMinutes: Integer;

Flags: Integer;

MessagePtr: StringPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.disconnectPB.scCode := SCSleepServer;

scPB.disconnectPB.scNumMinutes := NumMinutes;

scPB.disconnectPB.scFlags := Flags;

scPB.disconnectPB.scMessagePtr := MessagePtr;

MySCSleepServer := SyncServerDispatch(@scPB);

END;

SCWakeServer

The following function calls SCWakeServer to reactivate an AppleShare File
Server 3.0 that has been temporarily shut down (that is, a file server that
is "sleeping").

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCWakeServer: OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.startPB.scCode := SCWakeServer;

MySCWakeServer := SyncServerDispatch(@scPB);

END;

Obtaining status information about users, volumes, and shared items

This section describes the server control calls that you use to obtain
information about file server users, volumes, and shared volumes and folders.

SCGetExpFldr

The following function calls SCGetExpFldr to get information from the call's
return parameters about shared volumes and folders at a specified index
position. The return parameters provide information such as a folder's AFP
short name and directory ID, the number of users who have mounted the volume
or folder, and the index of a volume or folder. (See "SCGetExpFldr" in
Chapter 3 for detailed descriptions of the call's return parameters.) Before
using this function, you must initialize gServerType with the value returned
by the SCServerVersion control call.

FUNCTION MySCGetExpFldr (NamePtr: StringPtr;

VAR VRefNum: Integer;

VAR Logins: Integer;

Index: Integer;

VAR DirID: LongInt): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.standardPB.scCode := SCGetExpFldr;

{ Initialize scVRefNum to 0 so we can tell if }

{ SCGetExpFldr returned something when used with }

{ Macintosh File Sharing }

scPB.standardPB.scVRefNum := 0;

IF Index < 0 THEN

BEGIN

{ File Sharing trashes memory if (scIndex < 0) and }

{ (scNamePtr <> NIL), so we'll prevent that from }

{ happening here. }

scPB.standardPB.scNamePtr := NIL;

{ and we'll return an empty string }

IF NamePtr <> NIL THEN

NamePtr^ := '';

END

ELSE

BEGIN

scPB.standardPB.scNamePtr := NamePtr;

END;

scPB.standardPB.scIndex := Index;

MySCGetExpFldr := SyncServerDispatch(@scPB);

CASE gServerType OF

MFSType:

BEGIN

IF scPB.standardPB.scVRefNum <> 0 THEN

BEGIN

VRefNum := scPB.standardPB.scVRefNum;

Logins := 0;

DirID := scPB.standardPB.scDirID;

END

ELSE { there's nothing at this index position }

{ so force the error code to make it act }

{ like AppleShare }

MySCGetExpFldr := fnfErr;

END;

OTHERWISE

BEGIN

VRefNum := scPB.standardPB.scVRefNum;

Logins := scPB.standardPB.scLogins;

DirID := scPB.standardPB.scDirID;

END;

END;

END;

SERVER CONTROL CALLS

The following procedure creates a list of shared volumes and folders. Before
using this procedure, you must initialize gMaxVolumes and gMaxExpFolders with
the values returned by the SCGetGetupInfo control call.

PROCEDURE GetAllExpFldrs;

VAR

Index: Integer;

shortName: Str13;

VRefNum: Integer;

Logins: Integer;

DirID: LongInt;

err: OSErr;

BEGIN

FOR Index := -gMaxVolumes TO gMaxExpFolders DO

IF Index <> 0 THEN { index 0 is undefined }

BEGIN

err := MySCGetExpFldr(@shortName, VRefNum, Logins,

Index, DirID);

IF err = noErr THEN

BEGIN

IF Index < 0 THEN

BEGIN

{ do something with the shared volume }

{ information }

END

ELSE

BEGIN

{ do something with the shared folder }

{ information }

END;

END

ELSE IF err <> fnfErr THEN

{ fnfErr only means there is nothing at this }

{ Index position }

BEGIN

{ handle any unexpected errors }

END;

END;

END;

SCGetUserNameRec

The following function calls SCGetUserNameRec to get information about a user
connected to the file server.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCGetUserNameRec (NamePtr: StringPtr;

VAR Position: LongInt;

VAR UNRecID: LongInt;

VAR UserID: LongInt;

VAR LoginTime: LongInt;

VAR LastUseTime: LongInt;

VAR SocketNum: AddrBlock):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.userInfoPB.scCode := SCGetUserNameRec;

scPB.userInfoPB.scNamePtr := NamePtr;

scPB.userInfoPB.scPosition := Position;

MySCGetUserNameRec := SyncServerDispatch(@scPB);

Position := scPB.userInfoPB.scPosition;

UNRecID := scPB.userInfoPB.scUNRecID;

UserID := scPB.userInfoPB.scUserID;

LoginTime := scPB.userInfoPB.scLoginTime;

LastUseTime := scPB.userInfoPB.scLastUseTime;

SocketNum := scPB.userInfoPB.scSocketNum;

END;

The following procedure creates a list of the users logged on to a file
server.

PROCEDURE GetAllUserNameRecs;

VAR

err: OSErr;

UserName: Str31;

Position: LongInt;

UNRecID: LongInt;

UserID: LongInt;

LoginTime: LongInt;

LastUseTime: LongInt;

SocketNum: AddrBlock;

BEGIN

Position := 0;

REPEAT

err := MySCGetUserNameRec(@UserName, Position, UNRecID,

UserID, LoginTime, LastUseTime, SocketNum);

IF err = noErr THEN

BEGIN

{ do something with the user information returned }

END

ELSE IF err <> fnfErr THEN

{ fnfErr only means there are no more users }

BEGIN

{ handle any unexpected errors }

END;

UNTIL err <> noErr;

END;

SCGetUserMountInfo

The following function calls SCGetUserMountInfo to get information about the
status of a particular volume or shared folder, such as the number of open
files on the volume, the number of files that are open with write access,
whether the volume is mounted, and whether the volume is mounted with owner
privileges (that is, whether the user is a superuser).

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCGetUserMountInfo (VRefNum: Integer;

VAR FilesOpen: Integer;

VAR WriteableFiles: Integer;

UNRecID: LongInt;

VAR Mounted: Boolean;

VAR MountedAsOwner: Boolean):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.volMountedPB.scCode := SCGetUserMountInfo;

scPB.volMountedPB.scVRefNum := VRefNum;

scPB.volMountedPB.scUNRecID := UNRecID;

MySCGetUserMountInfo := SyncServerDispatch(@scPB);

FilesOpen := scPB.volMountedPB.scFilesOpen;

WriteableFiles := scPB.volMountedPB.scWriteableFiles;

Mounted := scPB.volMountedPB.scMounted;

MountedAsOwner := scPB.volMountedPB.scMountedAsOwner;

END;

The following procedure gets the user-mount information for all of the
volumes and shared folders that a user has mounted. Before using this

procedure, you must

initialize gMaxVolumes and gMaxExpFolders with the values returned by

the SCGetGetupInfo control call.

PROCEDURE GetAllUserMountInfo (UNRecID: LongInt);

VAR

err: OSErr;

Index: Integer;

VRefNum: Integer;

FilesOpen: Integer;

WriteableFiles: Integer;

Mounted: Boolean;

MountedAsOwner: Boolean;

BEGIN

FOR Index := -gMaxVolumes TO gMaxExpFolders DO

IF Index <> 0 THEN { index 0 is undefined }

BEGIN

err := MySCGetUserMountInfo(VRefNum, FilesOpen,

WriteableFiles, UNRecID,

Mounted, MountedAsOwner);

IF (err = noErr) AND Mounted THEN

BEGIN

{ do something with the information returned }

END;

END;

END;

Disconnecting users

This section describes the server control calls that you use to disconnect
users from file servers and from file server volumes.

SCDisconnect

The following function calls SCDisconnect to disconnect specified users from

a file server.

Note Although Macintosh File Sharing implements SCDisconnect, there is no
way to use this call with Macintosh File Sharing because Macintosh File
Sharing does not implement the SCGetUserNameRec call. SCGetUserNameRec
retrieves information -- namely user name record IDs (UNRecID) -- that is
necessary for SCDisconnect to work.

FUNCTION MySCDisconnect (DiscArrayPtr: LongIntPtr;

ArrayCount: Integer;

NumMinutes: Integer;

Flags: Integer;

MessagePtr: StringPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.disconnectPB.scDiscArrayPtr := DiscArrayPtr;

scPB.disconnectPB.scArrayCount := ArrayCount;

scPB.disconnectPB.scCode := SCDisconnect;

scPB.disconnectPB.scNumMinutes := NumMinutes;

scPB.disconnectPB.scFlags := Flags;

scPB.disconnectPB.scMessagePtr := MessagePtr;

MySCDisconnect := SyncServerDispatch(@scPB);

END;

The following procedure delivers a disconnect message to and disconnects the
specified user after ten minutes.

PROCEDURE DisconnectUser (UNRecID: LongInt);

VAR

err: OSErr;

ArrayCount: Integer;

NumMinutes: Integer;

Flags: Integer;

Message: tLoginMsg;

BEGIN

ArrayCount := 1; { one user }

NumMinutes := 10;

Flags := UNRFSendMsgMask; { send a message }

Message := 'Goodbye.';

err := MySCDisconnect(@UNRecID, ArrayCount, NumMinutes,

Flags, @Message);

IF err = noErr THEN

{ the disconnect was started }

ELSE

BEGIN

{ handle any errors }

END;

END;

SCDisconnectVolUsers

The following function calls SCDisconnectVolUers to disconnect the users of
specified volumes.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCDisconnectVolUsers (DiscArrayPtr: LongIntPtr;

ArrayCount: Integer;

NumMinutes: Integer;

Flags: Integer;

MessagePtr: StringPtr):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.disconnectPB.scDiscArrayPtr := DiscArrayPtr;

scPB.disconnectPB.scArrayCount := ArrayCount;

scPB.disconnectPB.scCode := SCDisconnectVolUsers;

scPB.disconnectPB.scNumMinutes := NumMinutes;

scPB.disconnectPB.scFlags := Flags;

scPB.disconnectPB.scMessagePtr := MessagePtr;

MySCDisconnectVolUsers := SyncServerDispatch(@scPB);

END;

The following procedure delivers a message to and disconnects the users of
the specified volume after ten minutes.

PROCEDURE DisconnectVolUsers (VRefNum: Integer);

VAR

err: OSErr;

VolToDisconnect: LongInt;

ArrayCount: Integer;

NumMinutes: Integer;

Flags: Integer;

Message: tLoginMsg;

BEGIN

VolToDisconnect := VRefNum; { note: Integer -> LongInt }

ArrayCount := 1;

NumMinutes := 10;

Flags := UNRFSendMsgMask; { send a message }

Message := 'A volume is going away.';

err := MySCDisconnectVolUsers(@VolToDisconnect,

ArrayCount, NumMinutes, Flags, @Message);

IF err = noErr THEN

{ the disconnect was started }

ELSE

BEGIN

{ handle any errors }

END;

END;

Sending messages to users

This section describes the server control call that lets you send messages to
users.

SCSendMessage

The following function calls SCSendMessage to send a message to the users
specified in the array pointed to by DiscArrayPtr.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCSendMessage (DiscArrayPtr: LongIntPtr;

ArrayCount: Integer;

Flags: Integer;

MessagePtr: StringPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.disconnectPB.scDiscArrayPtr := DiscArrayPtr;

scPB.disconnectPB.scArrayCount := ArrayCount;

scPB.disconnectPB.scCode := SCSendMessage;

scPB.disconnectPB.scFlags := Flags;

scPB.disconnectPB.scMessagePtr := MessagePtr;

MySCSendMessage := SyncServerDispatch(@scPB);

END;

The following procedure sends a message to all connected users. Before using
this routine, you must initialize gCurMaxSession by using the SCGetSetupInfo
call.

PROCEDURE SendMessageToAll;

{ This routine depends on gCurMaxSessions being }

{ initialized with SCGetSetupInfo. }

VAR

err: OSErr;

ArrayPosPtr: LongIntPtr;

Position: LongInt;

scPB: SCParamBlockRec;

DiscArrayPtr: LongIntPtr;

ArrayCount: Integer;

Flags: Integer;

Message: tLoginMsg;

BEGIN

{ allocate an array large enough to get all users }

DiscArrayPtr :=

LongIntPtr(NewPtr(sizeof(LongInt) * gCurMaxSessions));

IF DiscArrayPtr <> NIL THEN

BEGIN

Position := 0;

ArrayCount := 0;

ArrayPosPtr := DiscArrayPtr;

REPEAT

{ build list of users with SCGetUserNameRec }

scPB.userInfoPB.scCode := SCGetUserNameRec;

scPB.userInfoPB.scNamePtr := NIL;

scPB.userInfoPB.scPosition := Position;

err := SyncServerDispatch(@scPB);

IF err = noErr THEN

BEGIN { add user to array }

ArrayPosPtr^ := scPB.userInfoPB.scUNRecID;

ArrayPosPtr := LongIntPtr(ORD4(ArrayPosPtr) +

sizeof(LongInt));

ArrayCount := ArrayCount + 1;

END;

UNTIL err <> noErr;

IF ArrayCount > 0 THEN

BEGIN

Flags := UNRFSendMsgMask; { send a message }

Message := 'Moof!';

err := MySCSendMessage(DiscArrayPtr, ArrayCount,

Flags, @Message);

IF err = noErr THEN

{ the message was sent }

ELSE

BEGIN

{ handle any errors from SCSendMessage }

END

END

ELSE { there are no users connected }

; { do nothing }

DisposPtr(Ptr(DiscArrayPtr));

END

ELSE

BEGIN

{ handle memory manager error }

END;

END;

Setting or clearing the copy-protect status of files

This section describes the server control calls that let you set or clear the
copy-protect status of files on a file server.

SCSetCopyProtect

The following function calls SCSetCopyProtect to set the copy-protect status
of a file.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCSetCopyProtect (NamePtr: StringPtr;

VRefNum: Integer;

DirID: LongInt): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.standardPB.scNamePtr := NamePtr;

scPB.standardPB.scVRefNum := VRefNum;

scPB.standardPB.scCode := SCSetCopyProtect;

scPB.standardPB.scDirID := DirID;

MySCSetCopyProtect := SyncServerDispatch(@scPB);

END;

SCClrCopyProtect

The following function calls SCClrCoyProtect to clear the copy-protect status
of a file.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCClrCopyProtect (NamePtr: StringPtr;

VRefNum: Integer;

DirID: LongInt): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.standardPB.scNamePtr := NamePtr;

scPB.standardPB.scVRefNum := VRefNum;

scPB.standardPB.scCode := SCClrCopyProtect;

scPB.standardPB.scDirID := DirID;

MySCClrCopyProtect := SyncServerDispatch(@scPB);

END;

Using server event handlers

This section describes the server control calls that you use with server
event handlers. Server event handlers are discussed in Chapter 2.

SCInstallServerEventProc

The following function calls SCInstallServerEventProc to install a server
event handler.

Note This call is not supported by Macintosh File Sharing.

FUNCTION mySCInstallServerEventProc

(theSEHandler: ProcPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.serverEventPB.scSEQEntryPtr := theSEHandler;

scPB.serverEventPB.scCode := SCInstallServerEventProc;

mySCInstallServerEventProc := SyncServerDispatch(@scPB);

END;

SCRemoveServerEventProc

The following function calls SCRemoveServerEventProc to remove a server event
handler.

Note This call is not supported by Macintosh File Sharing.

FUNCTION mySCRemoveServerEventProc (theSEHandler: ProcPtr):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.serverEventPB.scSEQEntryPtr := theSEHandler;

scPB.serverEventPB.scCode := SCRemoveServerEventProc;

mySCRemoveServerEventProc := SyncServerDispatch(@scPB);

END;

SCGetServerEventProc

The following function calls SCGetServerEventProc to get a pointer to the
head of the server event handler queue.

Note This call is not supported by Macintosh File Sharing.

FUNCTION MySCGetServerEventProc (VAR theSEQHdrPtr:

QHdrPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.serverEventPB.scCode := SCGetServerEventProc;

MySCGetServerEventProc := SyncServerDispatch(@scPB);

theSEQHdrPtr := QHdrPtr(scPB.serverEventPB.scSEQEntryPtr);

END;

CHAPTER 2

SERVER EVENT HANDLING

The chapter explains how your applications can monitor server events and
respond to these events by using server event handlers. A sample handler is
included to show how you might implement server event handlers in your own
server additions.

The AppleShare File Server 3.0 server event mechanism enables programs (and
INITs) to monitor and respond to a file server's activities. This mechanism
allows developers to create programs that work in concert with file servers
to extend the services provided by the servers. For example, server
statistics reporting, audit trailing, and extended security could all be
added to existing file services.

The server event mechanism comprises two parts: the server event handler and
the application program. The server event handler is a server-addition
procedure, installed in the server by the SCInstallServerEventProc server
control call. The server calls the server event handler whenever a server
event occurs. A server event is a condition or operation occurring in the
file server, such as the receipt of an AFP or server control call, the
mounting of a volume by a user, or a client disconnect. When a server
notifies the server event handler of an event, the handler passes information
to the application program so that the program can respond to the event. An
application typically allocates a buffer and passes the buffer's address to
the server event handler when the handler is installed. The server event
handler fills the buffer asynchronously, while the installing program
analyzes the buffer's contents from the application's event loop.

Using server events

To monitor server events from your server addition, you must first install a
server event handler in the file server. You install a server event handler
from your program by issuing the SCInstallServerEventProc server control
call, as described in "Using Server Event Handlers" in Chapter 1. Installing
a server event handler is very similar to the process of installing the
AppleTalk Transition Queue. (For information about installing an entry into
the AppleTalk Transition Queue, see Inside Macintosh, Volume VI.)

Once the server event handler is installed, it gains control whenever one of
the specified server events occurs. When a server event occurs, the server
determines whether any server event handlers are installed. For each
installed handler, the server checks the SEeventFlag in the tSEQEntry record

to see if the handler is interested in the event that just happened. If it
is, the server calls the handler, passing pointers to the tSEQEntry record
and a server event record owned by the server. It is up to the event handler
to copy the server event record into the application's own buffer.

The server event record contains, among other things, the following
information:

- which server event occurred

- the time of the server event (in standard Macintosh date/time form)

- any error associated with the call

- the size of the data in the next buffer

- a buffer containing the AFP packet, SCParamBlockRec, HParamBlockRec, or the
new server name (up to a maximum of 48 bytes)

- the name of the file or directory upon which the operation is being
performed

(if applicable)

- the AFP command

- the user's unique user name record ID (UNRecID)

- the user's user ID (SUserID)

- the user name of the user performing this operation (registered users only)

- the reference number and directory ID of the volume upon which this
operation was performed (if applicable)

- the socket address of this user (provided in the address block (AddrBlock)
format: net number:node ID:socket number)

The server event interface file, listed in Appendix B, contains detailed
comments about each field of the server event record.

Constraints

This section describes constraints that you must observe for the server event
mechamism to work properly. It is the server event handler's responsibility
to copy the desired informa-tion from the server event record into its own
pre-allocated buffers. The server event handler cannot make file system or
Memory Manager calls while inside its thread of control. Furthermore, because
it is really part of a completion routine in the file server's code, the
handler must relinquish control to the server as soon as possible. It is
useful to consider that the server event handler is dynamically linked into
one of the completion routines of the file server and is thus an extension to
it. Therefore, it is as important to minimize the time spent in the server
event handler as it is to minimize the time spent in the completion routines.
Every microsecond spent in the server event handler results in a
corresponding delay in the completion of file server client's call.

Although you can use server events only as notification that a condition has

been satisfied, you can use server events in conjunction with server control
calls to respond to the condition. For example, you can shut the server down,
disconnect a user, or send a message to any or all connected users as a
response to a server event.

Sample server event handler code

This section contains sample code that implements the server event mechanism
in a server addition. The sample includes all of the necessary parts; you
need only plug in your specific code segments to make it work. Comments
within the code explain the purpose of each part. You can copy as much of the
sample code as you want to use in your own server additions.

{ This unit contains the server event handler, the server }

{ event record processor, and related routines. }

UNIT ServerEventHandler;

{==}

INTERFACE

USES

AppleTalk, Processes,

{$IFC UNDEFINED THINK_Pascal}

Errors, Memory, Packages,

{$ENDC}

ServerControlIntf, ServerEventIntf;

CONST

{ This value indicates how many server events can be }

{ queued for ProcessServerEvents to handle later. }

{ If you expect a large number of server events to }

{ come in over a short amount of time, increase this }

{ number. }

kNumberServerEvents = 100;

TYPE

{ Add required queue element fields to a server event }

{ record so we can use it as an OS queue element. }

SERecQElemPtr = ^SERecQElem;

SERecQElem = RECORD

qLink: QElemPtr;

qType: Integer;

theSERec: ServerEventRecord;

END;

{ Extend the tSEQEntry with a few items we need access }

{ to within the server event handler. }

ExtendedSEQEntryPtr = ^ExtendedSEQEntry;

ExtendedSEQEntry = RECORD

theSEQEntry: tSEQEntry; { A server event queue entry. }

freeQ, usedQ: QHdr; { Queue headers for server }

{ event record queues. }

seRecArrayPtr: Ptr; { Pointer to allocated array }

{ of SERecQElem. }

ourPSN: ProcessSerialNumber; { The application's PSN. }

END;

VAR

{ The global extended tSEQEntry record. }

gExtendedSEQEntry: ExtendedSEQEntry;

FUNCTION InstallServerEventHandler: OSErr;

FUNCTION RemoveServerEventHandler: OSErr;

PROCEDURE ProcessServerEvents;

{==}

IMPLEMENTATION

{ This function calls SCInstallServerEventProc to install }

{ a server event handler. }

FUNCTION mySCInstallServerEventProc

(theSEHandler: ProcPtr): OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.serverEventPB.scSEQEntryPtr := theSEHandler;

scPB.serverEventPB.scCode := SCInstallServerEventProc;

mySCInstallServerEventProc := SyncServerDispatch(@scPB);

END;

{ This function calls SCRemoveServerEventProc to remove a }

{ server event handler. }

FUNCTION mySCRemoveServerEventProc (theSEHandler: ProcPtr):

OSErr;

VAR

scPB: SCParamBlockRec;

BEGIN

scPB.serverEventPB.scSEQEntryPtr := theSEHandler;

scPB.serverEventPB.scCode := SCRemoveServerEventProc;

mySCRemoveServerEventProc := SyncServerDispatch(@scPB);

END;

{ TheSrvrEventHandler shows what should be done in a }

{ server event handler and no more: It gets a server }

{ event record from the free queue of application supplied }

{ server event records (or if the freeQ is empty, it gets }

{ the oldest server event record from the usedQ); it }

{ copies AppleShare's server event record (pointed to by }

{ theSERecPtr) into the application's server event record; }

{ it puts the application's server event record into the }

{ used queue where it can be serviced from the }

{ application's event loop; and then calls WakeUpProcess }

{ so the event loop can handle the server event record }

{ in the queue as soon as possible. }

PROCEDURE TheSrvrEventHandler

(theSEQPtr: ExtendedSEQEntryPtr;

theSERecPtr: ServerEventRecordPtr);

VAR

theSERecQElemPtr: SERecQElemPtr;

BEGIN

WITH theSEQPtr^ DO

BEGIN

IF freeQ.qHead <> NIL THEN

BEGIN

{ Get the server event record out of the freeQ. }

theSERecQElemPtr := SERecQElemPtr(freeQ.qHead);

IF Dequeue(QElemPtr(theSERecQElemPtr), @freeQ) <>

noErr THEN

; { Do nothing with errors-- }

{ you'd better not be getting them! }

END

ELSE

BEGIN

{ The freeQ is empty, so get the oldest server }

{ event record out of the usedQ. }

theSERecQElemPtr := SERecQElemPtr(usedQ.qHead);

IF Dequeue(QElemPtr(theSERecQElemPtr), @usedQ) <>

noErr THEN

; { Do nothing with errors-- }

{ you'd better not be getting them! }

END;

{ Copy the server event record into my server }

{ event record, }

theSERecQElemPtr^.theSERec := theSERecPtr^;

{ and enqueue my server event record into }

{ the usedQ. }

Enqueue(QElemPtr(theSERecQElemPtr), @usedQ);

{ Wake up our process so it can handle the server }

{ event record ASAP. }

IF WakeUpProcess(ourPSN) <> noErr THEN

; { Do nothing with errors-- }

{ you'd better not be getting them! }

END;

END;

{ InitSEQEntry initializes the fields of gExtendedSEQEntry }

{ to zero, allocates kNumberServerEvents of SERecQElem and }

{ enqueues them into the free queue of gExtendedSEQEntry, }

{ and gets the applications process serial number and puts }

{ it in gExtendedSEQEntry so the server event handler can }

{ wake up the process. InitSEQEntry returns TRUE if the }

{ array of SERecQElem was allocated. }

FUNCTION InitSEQEntry: Boolean;

VAR

theQElemsPtr: Ptr;

index: Integer;

BEGIN

WITH gExtendedSEQEntry DO

BEGIN

{ Point to server event handler. }

theSEQEntry.SEQentry.CallAddr :=

@TheSrvrEventHandler;

{ Initially clear all SEeventFlags, }

theSEQEntry.SEeventFlag := 0;

{ clear all SEwhichAFPFlags, }

theSEQEntry.SEwhichAFPFlag[0] := 0;

theSEQEntry.SEwhichAFPFlag[1] := 0;

{ and clear all SEwhichSCFlags. }

theSEQEntry.SEwhichSCFlag := 0;

{ Allocate some memory for the server event }

{ records and initialize the buffer queues. }

seRecArrayPtr := NewPtr(kNumberServerEvents *

LongInt(sizeof(SERecQElem)));

IF seRecArrayPtr <> NIL THEN

BEGIN

{ Initialize the usedQ header. }

usedQ.qFlags := 0;

usedQ.qHead := NIL;

usedQ.qTail := NIL;

{ Initialize the freeQ header. }

freeQ.qFlags := 0;

freeQ.qHead := NIL;

freeQ.qTail := NIL;

{ The free queue holds all of our server }

{ event records initially, so add the }

{ SERecQElems to the freeQ. }

theQElemsPtr := seRecArrayPtr;

FOR index := 1 TO kNumberServerEvents DO

BEGIN

Enqueue(QElemPtr(theQElemsPtr), @freeQ);

theQElemsPtr := Ptr(ORD4(theQElemsPtr) +

LongInt(sizeof(SERecQElem)));

END;

InitSEQEntry := TRUE; { Everything is OK. }

END

ELSE

InitSEQEntry := FALSE; { No memory. }

IF GetCurrentProcess(ourPSN) <> noErr THEN

; { Get our process serial number. }

END;

END;

{ SetSEFlags sets the server event flags of }

{ gExtendedSEQEntry to tell AppleShare's server event }

{ mechanism which server events your application's server }

{ event handler are interested in. You can set the }

{ SE flags either before or after your server event }

{ handler is installed. }

{ IMPORTANT NOTES:}

{ � Your server event handler will be called based on the }

{ current settings of SEeventFlag. Make sure }

{ SEeventFlag is either initialized to zero (meaning }

{ your server event handler is not interested in any }

{ server events) or initialized for the specific server }

{ events your application is interested in before you }

{ install your server event handler. }

{ � If you set the bCSEHAFPInDoRequest or }

{ bCSEHAFPInSendResponse bits in SEeventFlag after your }

{ server event handler is installed, make sure you }

{ initialize the SEwhichAFPFlag bits first. }

{ � If you set the bCSEHServerControlCall bit in }

{ SEeventFlag after your server event handler is }

{ installed, make sure you initialize the SEwhichSCFlag }

{ bits first. }

PROCEDURE SetSEFlags;

BEGIN

WITH gExtendedSEQEntry.theSEQEntry DO

BEGIN

{ If the bCSEHAFPInDoRequest or }

{ bCSEHAFPInSendResponse bits in SEeventFlag are }

{ going to be set, then indicate what AFP calls }

{ you're interested in. For example: }

{ BSET(theSEQEntry.SEwhichAFPFlag[1], afpOpenFork); }

{ will cause a server event for the afpOpenFork }

{ AFP call. }

{ � add your code here � }

{ If the bCSEHServerControlCall bit in SEeventFlag }

{ is going to be set, }

{ then indicate what server control calls you're }

{ interested in. For example: }

{ BSET(theSEQEntry.SEwhichSCFlag, SCSetSetupInfo); }

{ will cause a server event for the SCSetSetupInfo }

{ server control call. }

{ � add your code here � }

{ Indicate what server events you'd like to be }

{ notified of by setting bits in the SEeventFlag }

{ longword. For example: }

{ BSET(SEeventFlag, bCSEHVolumePrep); }

{ will cause a server event every time the server }

{ prepares a volume for use with AppleShare. }

{ � add your code here � }

END;

END;

{ ProcessServerEvents should be called every time through }

{ the event loop to see if there are any server event }

{ records to process. If there aren't, then it exits }

{ immediately. If there are, then it processes the server }

{ event records in the used queue until none are left. }

PROCEDURE ProcessServerEvents;

VAR

theSERecQElemPtr: SERecQElemPtr;

BEGIN

WITH gExtendedSEQEntry DO

WHILE usedQ.qHead <> NIL DO

BEGIN

{ Get the server event record out of the usedQ. }

theSERecQElemPtr := SERecQElemPtr(usedQ.qHead);

IF Dequeue(QElemPtr(theSERecQElemPtr), @usedQ) =

noErr THEN

BEGIN

WITH theSERecQElemPtr^.theSERec DO

BEGIN

{ Do something useful with the }

{ server event record. }

{ � add your code here � }

END;

{ We're done with the server event }

{ record, so put it back in the freeQ. }

Enqueue(QElemPtr(theSERecQElemPtr), @freeQ);

END;

END;

END;

{ Your application calls InstallServerEventHandler to }

{ install the server event handler. Change the }

{ InitSEQEntry function where indicated to tell the server }

{ event handler mechanism what server events you're }

{ interested in to begin with. }

FUNCTION InstallServerEventHandler: OSErr;

VAR

err: OSErr;

BEGIN

{ initialize queues and get server event record buffer }

IF InitSEQEntry THEN

BEGIN

{ Set the server event flags in }

{ gExtendedSEQEntry.theSEQEntry. }

SetSEFlags;

{ Install the server event handler. }

err :=

mySCInstallServerEventProc(@gExtendedSEQEntry);

IF err <> noErr THEN { SE handler not installed? }

{ Then get rid of memory. }

DisposPtr(gExtendedSEQEntry.seRecArrayPtr);

{ Return any SCInstallServerEventProc errors. }

InstallServerEventHandler := err;

END

ELSE

{ Return a memory error. }

InstallServerEventHandler := memFullErr;

END;

{ Your application calls RemoveServerEventHandler to }

{ remove the server event handler and dispose of the }

{ memory allocated by InitSEQEntry (which is called by }

{ InstallServerEventHandler). }

FUNCTION RemoveServerEventHandler: OSErr;

BEGIN

{ Remove the server event handler. }

RemoveServerEventHandler :=

mySCRemoveServerEventProc(@gExtendedSEQEntry);

{ Get rid of memory used for the server event records. }

IF gExtendedSEQEntry.seRecArrayPtr <> NIL THEN

DisposPtr(gExtendedSEQEntry.seRecArrayPtr);

END;

END. { ServerEventHandler unit }

Application event loop

The heart of any Macintosh program is the event loop, which causes the
application to wait for an event -- such as a user's attempt to choose a menu
item or open a file. When an event occurs, the application can respond
accordingly.

The following sample code shows an application event loop that processes the
server events announced by a server event handler.

REPEAT

IF WaitNextEvent(everyEvent, event, sleep, cursorRgn) THEN

DoEvent(event); {process toolbox events}

ProcessServerEvents; {process server events}

UNTIL quitFlag;

CHAPTER 3

SERVER CONTROL CALL REFERENCE

This chapter provides detailed information about each of the AppleShare File
Server 3.0 server control calls. This chapter gives a brief description of
each call, shows the structure of the parameter block, describes each field

of the parameter block, and lists the possible result codes. The calls are
presented in alphabetical order.

SCCancelShutDown

SCCancelShutDown cancels the shutdown or disconnect in progress. If a
shutdown was in progress, a shutdown-canceled attention message is sent to
all affected users.

Parameter (uses standardPB variant of SCParamBlockRec)

Block 16 ioResult word

26 scCode word

Fields ioResult Word result value: Result code.

scCode Word input value: The server control code; always SCCancelShutDown
($0003).

Result Codes noErr 0 No error.

paramErr -50 No shutdown or disconnect was in
progress.

SCClrCopyProtect

SCClrCopyProtect is called by the AppleShare Admin application or some other
program executing locally on the server computer when the program wants to
clear the copy-protect status of a file.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses standardPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scNamePtr long

22 scVRefNum word

26 scCode word

30 scDirID long

Fields ioResult Word result value: Result code.

scNamePtr Longword input pointer: Points to the
filename.

scVRefNum Word input value: The volume specification.

scCode Word input value: The server control code;
always SCClrCopyProtect ($0011).

scDirID Longword input value: The parent directory
ID.

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

SCClrCopyProtect may also return errors returned by the PBGetCatInfo and
PBSetCatInfo routines.

SCDisconnect

SCDisconnect disconnects every user whose user name record ID (UNRecID) is
contained in the array pointed to by scDiscArrayPtr and sends a disconnect
attention message to all of these users.

Note Macintosh File Sharing does not support the disconnect attention
message.

Parameter (uses disconnectPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scDiscArrayPtr long

22 scArrayCount word

26 scCode word

28 scNumMinutes word

30 scFlags word

32 scMessagePtr long

Fields ioResult Word result value: Result code.

scDiscArrayPtr Longword input pointer: Points to the array of
user name record IDs (UNRecID).

scArrayCount Word input value: The number of elements in the
array of user name record IDs (UNRecID).

scCode Word input value: The server control code;
always SCDisconnect ($0004).

scNumMinutes Word input value: The number of minutes until
the users are disconnected, in the range 0-
4094.

scFlags Word input value: Shutdown flags, as follows:

bUNRFSendMsg The message pointed to by scMessagePtr should
accompany the disconnect.

Note This feature is not supported by Macintosh File Sharing.

scMessagePtr Longword input value: A pointer to a Str199
containing the message sent to the workstations.

Note This feature is not supported by Macintosh File Sharing.

Result Codes noErr 0 No error.

AlreadyShuttingDown -1 The server is already
shutting down.

AlreadyDisconnecting -2 The server is already
disconnecting.

paramErr -50 The server is not running,
scNumMinutes is out of
range, an unknown bit is
set in scFlags, or a
UNRecID is invalid.

SCDisconnectVolUsers

SCDisconnectVolUsers disconnects any users who have any of the specified
volumes mounted. In addition, this call prevents any new users from mounting
the volumes. Calling SCCancelShutDown cancels the shutdown in progress and
re-enables the mounting of volumes.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses disconnectPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scDiscArrayPtr long

22 scArrayCount word

26 scCode word

28 scNumMinutes word

30 scFlags word

32 scMessagePtr long

Fields ioResult Word result value: Result code.

scDiscArrayPtr Longword input pointer: Points to the array
of longs containing the volume reference numbers

specifying the volumes affected.

scArrayCount Word input value: The number of elements in
the array of volume reference numbers.

scCode Word input value: The server control code;
always SCDisconnectVolUsers ($0012).

scNumMinutes Word input value: The number of minutes until
the users are disconnected.

scFlags Word input value: Shutdown flag, as follows:

bUNRFSendMsg The message pointed to by scMessagePtr should
accompany the disconnect.

scMessagePtr Longword input value: A pointer to a Str199
containing the message sent to the
workstations.

Result Codes noErr 0 No error.

AlreadyShuttingDown -1 The server is already
shutting down.

AlreadyDisconnecting -2 The server is already
disconnecting.

paramErr -50 The server is not running,
scArrayCount is greater than
scMaxVolumes as returned by
SCGetSetupInfo, a volume
reference number is not
valid,scNumMinutes is out of
range,or an unknown bit is
set in scFlags.

SCGetExpFldr

SCGetExpFldr returns information about shared folders and volumes.

Note Macintosh File Sharing does not return fnfErr when there is no shared
volume or folder at a particular index position. Instead, it returns noErr
and takes no other action. To determine if a particular location is in use,
set scVRefNum to zero before calling SCGetExpFldr. If scVRefNum is still zero
after SCGetExpFldr is called, then there is no shared volume or folder at
that particular index position.

!! WARNING SCNamePtr must be NIL when scIndex is negative. Otherwise,
Macintosh File Sharing writes garbage into memory. See the comments in the
sample function code listed under "SCGetExpFldr" in Chapter 1. !!

Parameter (uses standardPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scNamePtr long

22 scVRefNum word

24 scLogins word

26 scCode word

28 scIndex word

30 scDirID long

Fields ioResult Word result value: Result code.

scNamePtr Longword input pointer: Points to a Str13
where the shared folder's AFP short name will be

returned, or must contain NIL. If scIndex is

negative, then an empty Pascal string ('') is
returned.

scVRefNum Word result value: Returns the reference
number (vRefNum) of the shared folder.

scLogins Word result value: Returns the number of
people who have mounted this folder. (For real

volumes, this parameter returns the total
number of people who have mounted either the
whole volume or any of its shared folders.)

Note This value is not returned under Macintosh File Sharing.

scCode Word input value: The server control code;
always SCGetExpFldr ($0006).

scIndex Word input value: The index into the list of
shared folders. Use positive values to get
shared folders (what non-superusers see). Use
negative values to get shared volumes (what
superusers see). Use SCGetSetupInfo to find
the usable range for scIndex. scIndex must be
in the range -MaxVolumes to MaxExpFolder. An
scIndex of 0 is undefined.

scDirID Longword result value: Returns the directory
ID (dirID) of the shared folder.

Result Codes noErr 0 No error.

fnfErr -43 There is no shared
folder at that index
position.

paramErr -50 The server is not
running, or scIndex is
either 0 or out of
range.

afpObjectNotFound -5018 scIndex is either 0 or
out of range under
Macintosh File Sharing.

SCGetServerEventProc

SCGetServerEventProc returns the head of the server event handler queue.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses serverEventPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scSEQEntryPtr long

26 scCode word

Fields ioResult Word result value: Result code.

scSEQEntryPtr Longword result pointer: Returns a
pointer to an operating system queue
header (QHdr) of the server event handler
queue. The first server event handler in
the handler queue, if any, is at
QHdrPtr(scSEQEntryPtr)^.qhead.

scCode Word input value: The server control
code;always SCGetServerEventProc ($000D).

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

SCGetServerStatus

SCGetServerStatus returns server status information.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses statusPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scNamePtr long

26 scCode word

28 scServerFlags word

30 scNumSessions word

32 scUserListModDate long

36 scActivity word

38 scVolListModDate long

!! WARNING Do not assume that scUserListModDate or scVolListModDate will be
in any particular time base. The formats of these parameters are subject to
change. Use them only as an indication that the user list or volume list has
changed. !!

Fields ioResult Word result value: Result code.

scNamePtr Longword input pointer: Points to a Str31
where the current server name (the name
workstations will see) will be returned,
or must contain NIL.

scCode Word input value: The server control
code; always SCGetServerStatus ($000A).

scServerFlags Word result value: Server flag, as
follows:

bJBSEnabled Set if Apple II boot service is enabled.
All other bits are reserved.

scNumSessions Word result value: The number of
currently opened sessions.

scUserListModDate Longword result value: The last date and
time (DateTime) that the user list was
modified. (This value is helpful in
minimizing the amount of updating needed
by a monitoring application that updates
some user list.)

scActivity Word result value: The server activity,
in percent (5%-100%).

scVolListModDate Longword result value: The last time
(TickCount) that the volume list was
modified. (This value is helpful in
minimizing the amount of updating needed
by a monitoring application that updates
some volume list.)

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

SCGetSetupInfo

SCGetSetupInfo returns server setup information. The setup information record
(SetupInfoRec) is defined in the server control calls interface file. (See
Appendix B for a listing of the interface file. SetupInfoRec appears in the
"Server Control Data Types" section.)

Parameter (uses setupPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scSetupPtr long

22 scMaxVolumes word

24 scMaxExpFolders word

26 scCode word

28 scCurMaxSessions word

Fields ioResult Word result value: Result code.

scSetupPtr Longword input pointer: Points to the setup
information record (SetupInfoRec) where the server
setup information will be returned, or must
contain NIL.

scMaxVolumes Word result value: Returns the maximum number of

volumes supported by the server.

Note This value is not returned under Macintosh File Sharing. (The maximum
number of volumes supported under Macintosh File Sharing is 10.)

scMaxExpFolders Word result value: Returns the maximum
number of shared folders supported by the
server.

Note This value is not returned under Macintosh File Sharing. (The maximum
number of folders supported under Macintosh File Sharing is 10.)

scCode Word input value: The server control code;
always SCGetSetupInfo ($0007).

scCurMaxSessions Word result value: Returns the maximum number
of logins currently allowed.

Note This value is not returned under Macintosh File Sharing. Use
SIMaxLogins (equal to 11).

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

SCGetUserMountInfo

SCGetUserMountInfo returns information about how a user is using a particular
volume. For a shared folder (that is, if the value of scVRefNum is positive),
these values are for that shared folder only. For a real volume (that is, if
the value of scVRefNum is negative), these values represent totals for all
shared folders on the volume.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses volMountedPB variant of SCParamBlockRec)

Block 16 ioResult word

22 scVRefNum word

26 scCode word

28 scFilesOpen word

30 scWriteableFiles word

32 scUNRecID long

36 scMounted byte

37 scMountedAsOwner byte

Fields ioResult Word result value: Result code.

scVRefNum Word input value: The volume specification or
shared folder specification.

scCode Word input value: The server control code;
always SCGetUserMountInfo ($0014).

scFilesOpen Word result value: Returns the total number of
files the user has open on the volume or shared
folder.

scWriteableFiles Word result value: Returns the total number of
files the user has open for write access on the
volume or shared folder.

scUNRecID Longword input value: Specifies the user name
record ID (UNRecID).

scMounted Byte result value: Returns TRUE if the user has
this volume mounted.

scMountedAsOwner Byte result value: For real volumes only,
returns TRUE if the user has the whole volume
mounted by virtue of being a superuser.

Result Codes noErr 0 No error.

nsvErr -35 No such volume with this
reference number (scVRefNum).

paramErr -50 The server is not running, the
user name record ID (scUNRecID)
is invalid, or the volume
reference number (scVRefNum) is
out of range.

SCGetUserNameRec

SCGetUserNameRec retrieves statistics on a connected user, and can be used to
enumerate all connected users.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses userInfoPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scNamePtr long

26 scCode word

28 scPosition long

32 scUNRecID long

36 scUserID long

40 scLoginTime long

44 scLastUseTime long

48 scSocketNum long

Fields ioResult Word result value: Result code.

scNamePtr Longword result pointer: Points to a Str31
where the user name will be copied, or must
contain NIL.

scCode Word input value: The server control code;
always SCGetUserNameRec ($0013).

scPosition Longword input/result value: Specifies the
position in the list of users. Set scPosition
to zero to retrieve the first user. Use the
value returned in scPosition to retrieve the
next user.

scUNRecID Longword result value: Returns the user name
record ID (UNRecID).

scUserID Longword result value: Returns the user ID
(UserID).

scLoginTime Longword result value: Returns the time at
which the user logged in.

scLastUseTime Longword result value: Returns the time at
which the user last accessed the server.

scSocketNum Longword result value: Returns the AppleTalk
network address this user is connected from.
The value is returned in an AddrBlock record.

Result Codes noErr 0 No error.

fnfErr -43 There are no more users to
enumerate.

paramErr -50 The server is not running, a
UNRecID is invalid, or scPosition
is out of range.

SERVER CONTROL CALL REFERENCE

SCInstallServerEventProc

SCInstallServerEventProc installs a server event object in the server event
handler queue.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses serverEventPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scSEQEntryPtr long

26 scCode word

Fields ioResult Word result value: Result code.

scSEQEntryPtr Longword input pointer: Points to the tSEQEntry
server event object to be installed in the server
event handler queue.

scCode Word input value: The server control code; always
SCInstallServerEventProc ($000B).

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

afpMiscErr -5014 There are already 15 server event
handlers (the maximum) in the server
event handler queue.

SCPollServer

SCPollServer provides information about the current status of the file
server.

Parameter (uses pollServerPB variant of SCParamBlockRec)

Block 16 ioResult word

26 scCode word

28 scServerState word

30 scDisconnectState word

32 scServerError word

34 scSecondsLeft long

Fields ioResult Word result value: Result code.

scCode Word input value: The server control code; always
SCPollServer ($0005).

scServerState Word result value: The state of the server, as
follows:

$0000 0-29 seconds before shutdown; Network Setup message
says "Less than a minute."

$0001 30-89 seconds before shutdown; Network Setup
message says "About a minute."

$0002-$0FFE (scServerState*60) - 30 to (scServerState*60) + 29
seconds before shutdown; Network Setup message
says "About scServerState minutes."

SCPSRunning Server running normally.

SCPSStartingUp Server is in the process of starting up.

SCPSJustDisabled Server was just disabled and there was no startup
error.

SCPSDisabledwErr Server is disabled and there is an "SE" error in
scServerError.

SCPSSleeping Server is temporarily disabled.

Note This result is not returned by Macintosh File Sharing.

scDisconnectState Word result value: The state of the server
disconnect, as follows:

$0000 0-29 seconds before disconnect; Network Setup
message says "Less than a minute."

$0001 30-89 seconds before disconnect; Network Setup
message says "About a minute."

$0002-$0FFE (scDisconnectState*60) - 30 to
(scDisconnectState*60) + 29 seconds before
disconnect; Network Setup message says "About
scDisconnectState minutes."

SCPDNotDisconnecting Server not disconnecting some user or group of
users.

scServerError Word result value: If scServerState =
SCPSDisabledwErr then scServerError contains one
of the following values:

SENoUGFileOpenErr The Users & Groups Data File could not be opened.

SENoRealVolsErr There are no volumes for the file server to use.

SEInsuffMFMemErr There was not enough memory available to start the
file server.

SECantRegNameErr The file server's name could not be registered on
the AppleTalk network.

SECantFindExtnFolder The file server could not be started because the
Extensions folder could not be found.

SEUnExATalkErr An unexpected AppleTalk error occurred.

SENoMachineName A machine name is required.

SECantFindFSExtn The file server could not be started because the
File Server Extension or File Sharing Extension
could not be found.

SEATalkOffErr AppleTalk is turned off.

SEAppleTalkErr AppleTalk could not be activated.

SENoInitRunErr The File Server Extension or File Sharing
Extension is not installed in the Server Folder.

SESysTooOldErr The System file is too old for AppleShare File
Server 3.0.

SEInsuffAppMemErr There was not enough memory for the file server to
startup.

SEBadConfigErr The file server encountered a problem with the
current configuration.

SENoDTOnStartupErr The desktop database on the startup volume could
not be opened.

SEDupNameErr Duplicate-name error occurred when server was
registering. Please choose another name.

21-29 Reserved by Apple.

scSecondsLeft Longword result value: Returns the number of
seconds left before the shutdown or disconnect.
Zero is returned if no shutdown or disconnect in
in progress. This value is undefined if the server
is disabled (not running).

Note This feature is not implemented under Macintosh File Sharing.

Result Codes noErr 0 No error.

SCRemoveServerEventProc

SCRemoveServerEventProc removes a server event object from the server event
handler queue.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses serverEventPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scSEQEntryPtr long

26 scCode word

Fields ioResult Word result value: Result code.

scSEQEntryPtr Longword input pointer: Points to the tSEQEntry
server event object to be removed from the server
event handler queue.

scCode Word input value: The server control code; always
SCRemoveServerEventProc ($000C).

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

afpMiscErr -5014 There are no server event objects,
or this server event object is not
the server event handler queue.

SCSendMessage

SCSendMessage sends a server message to every user whose user name record ID
(UNRecID) is contained in the array pointed to by scDiscArrayPtr.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses disconnectPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scDiscArrayPtr long

22 scArrayCount word

26 scCode word

30 scFlags word

32 scMessagePtr long

Fields ioResult Word result value: Result code.

scDiscArrayPtr Longword input pointer: Points to the
array of user name record IDs (UNRecID).

scArrayCount Word input value: The number of elements
in the array of user name record IDs
(UNRecID).

scCode Word input value: The server control
code; always SCSendMessage ($0009).

scFlags Word input value: The following bit
must be set:

bUNRFSendMsg There is a message pointed to by
scMessagePtr.

scMessagePtr Longword input value: A pointer to a
Str199 containing the message sent to
the workstations.

Result Codes noErr 0 No error.

AlreadyShuttingDown -1 The server is already
shutting down.

AlreadyDisconnecting -2 The server is already
disconnecting.

paramErr -50 The server is not
running or a UNRecID
is invalid.

SCServerVersion

SCServerVersion returns the server version information.

!! WARNING Macintosh File Sharing does not return a valid value for
scServerVersion if the server is not running. !!

Parameter (uses versionPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scExtNamePtr long

26 scCode word

28 scServerType word

30 scServerVersion word

Fields ioResult Word result value: Result code.

scExtNamePtr Longword result pointer: Points to a Str31 where the
server application name (the name of the activeINIT)
will be returned, or must contain NIL.

scCode Word input value: The server control code; always
SCServerVersion ($000E).

scServerType Word result value: Returns the server type, as
follows:

$0000 Macintosh File Sharing

$0001 AppleShare File Server

scServerVersion Word result value: Returns the server version, as
follows:

$0030 File Sharing Extension, version 7.0.2

Result Codes noErr 0 No error.

SCSetCopyProtect

SCSetCopyProtect is called by the AppleShare Admin application or some other
program executing locally on the server computer when the program wants to
set the copy-protect status of a file.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses standardPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scNamePtr long

22 scVRefNum word

26 scCode word

30 scDirID long

Fields ioResult Word result value: Result code.

scNamePtr Longword input pointer: Points to the filename.

scVRefNum Word input value: The volume specification.

scCode Word input value: The server control code; always
SCSetCopyProtect ($0010).

scDirID Longword input value: The parent directory ID.

Result Codes noErr 0 No error.

paramErr -50 The server is not running.

SCSetCopyProtect may also return errors returned by the PBGetCatInfo and
PBSetCatInfo routines.

SCSetSetupInfo

SCSetSetupInfo sets the server setup information. All changes take effect
immediately except those affecting the Volume Info window and the Connected
Users window. Specifically, changes to the following four fields of the setup
information record (SetupInfoRec) do not take effect until the next time the
AppleShare File Server application starts up:

- SIVolInfoLocation: Point; { location of Volume Info window }

- SIVolInfoVisible: Boolean; { is Volume Info window visible? }

- SIUserInfoLocation: Point; { location of Connected Users window }

- SIUserInfoVisible: Boolean; { is Connected Users window visible? }

The setup information record (SetupInfoRec) is defined in the server control
calls interface file. (Appendix B contains a listing of the interface file.
SetupInfoRec appears in the "Server Control Data Types" section.)

Parameter (uses setupPB variant of SCParamBlockRec)

Block 16 ioResult word

18 scSetupPtr long

26 scCode word

Fields ioResult Word result value: Result code.

scSetupPtr Longword input pointer: Points to a valid
pre-allocated server setup information
record (SetupInfoRec).

scCode Word input value: The server control
code; always SCSetSetupInfo ($0008).

Result Codes noErr 0 No error.

paramErr -50 The server is not running,

scSetupPtr is NIL, or SetupInfoRec
contains a value that is out
of range.

SCShutDown

SCShutDown shuts down the file server and sends a shutdown attention message
to all connected users.

Note Macintosh File Sharing does not support the shutdown attention message.

!! IMPORTANT The AppleShare File Server application automatically quits if
the AppleShare File Server 3.0 is shut down by the SCShutDown call. !!

Parameter (uses disconnectPB variant of SCParamBlockRec)

Block 16 ioResult word

26 scCode word

28 scNumMinutes word

30 scFlags word

32 scMessagePtr long

Fields ioResult Word result value: Result code.

scCode Word: input value: The server control
code, always be SCShutDown ($0002).

scNumMinutes Word input value: The number of minutes
4094.

scFlags Word input value: Shutdown flag, as
follows:

bUNRFSendMsg The message pointed to by scMessagePtr
should accompany the disconnect.

Note This feature is not supported by Macintosh File Sharing.

scMessagePtr Longword input value: A pointer to a
Str199 containing the message sent to the
workstations.

Note This feature is not supported by Macintosh File Sharing.

Result Codes noErr 0 No error.

AlreadyShuttingDown -1 The server is already
shutting down.

AlreadyDisconnecting -2 The server is already
disconnecting.

paramErr -50 The server is not running,
scNumMinutes is out of

range, or an unknown bit is
set in scFlags.

SCSleepServer

SCSleepServer shuts down the file server temporarily. This call has the same
parameters as SCShutDown except that once the server has shut down, the
AppleShare File Server application does not quit, and the server can be
restarted by means of the SCWakeServer call (assuming that no SCShutdown call
is made while the server is asleep). SCSleepServer fails if the server is
starting up.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses disconnectPB variant of SCParamBlockRec)

Block 16 ioResult word

26 scCode word

28 scNumMinutes word

30 scFlags word

32 scMessagePtr long

Fields ioResult Word result value: Result code.

scCode Word input value: The server control
code; always SCSleepServer ($0016).

scNumMinutes Word input value: The number of minutes
until server shutdown, in the range 0-
4094.

scFlags Word input value: Shutdown flag, as
follows:

bUNRFSendMsg The message pointed to by scMessagePtr
should accompany the disconnect.

scMessagePtr Longword input value: A pointer to a
Str199 containing the message sent to the
workstations.

Result Codes noErr 0 No error.

AlreadyShuttingDown -1 The server is already
shutting down.

AlreadyDisconnecting -2 The server is already
disconnecting.

paramErr -50 The server is not
running,scNumMinutes is
out of range, or an
unknown bit is set in
scFlags.

SCStartServer

SCStartServer starts the file server.

!! IMPORTANT The AppleShare File Server 3.0 is normally started by the
AppleShare File Server application. When the AppleShare File Server
application is launched, it checks to see if the file server is running. If
it is, the AppleShare File Server application assumes its role as the file
server's user interface. If the file server is not running, the AppleShare
File Server application starts the server by calling SCStartServer before
assuming its role as user interface.

If a server addition starts the AppleShare File Server 3.0 by calling
SCStartServer, the file service starts up, but the AppleShare File Server
application (the user interface) does not. Unless it provides the
functionality of the AppleShare File Server application, your program should
probably not call SCStartServer to start the AppleShare File Server 3.0.
Instead, start the file server in the usual way -- by launching the
AppleShare File Server application. !!

Parameter (uses startPB variant of SCParamBlockRec)

Block 16 ioResult word

26 scCode word

28 scStartSelect word

30 scEventSelect word

Fields ioResult Word result value: Result code.

scCode Word input value: The server control code, which
must always be SCStartServer ($0000).

scStartSelect Word input value: Determines the server to start,
as follows:

kCurInstalled Use this value to start up the currently installed
server, either an AppleShare File Server 3.0 or
Macintosh File Sharing.

scEventSelect Word input value: Always kFinderExtn

Result Codes noErr 0 No error.

paramErr -50 The server is already running.

Other errors from the launching of the server -- such as fnfErr and
memFullErr -- may also be returned.

SCWakeServer

SCWakeServer reactivates a server that has been "put to sleep" (temporarily
shut down with the SCSleepServer call). SCWakeServer will only start a server
that has been put to sleep; it will not start a server that has been shut
down by the SCShutdown call. No parameters are needed, since this call uses
the parameters passed in by the original StartServer trap.

Note This call is not supported by Macintosh File Sharing.

Parameter (uses standardPB variant of SCParamBlockRec)

Block 16 ioResult word

26 scCode word

Fields ioResult Word result value: Result code.

scCode Word input value: The server control code; always
SCWakeServer ($0015).

Result Codes noErr 0 No error.

paramErr -50 The server is not sleeping.

Other errors from the launching of the server -- such as fnfErr and
memFullErr -- may also be returned.

APPENDIX A

MACINTOSH FILE SHARING SERVER CONTROL CALLS

Macintosh File Sharing supports a subset of the AppleShare File Server 3.0
server control calls. This appendix lists the calls available with Macintosh
File Sharing and discusses the differences between using server control calls
with the AppleShare File Server 3.0 and using them with Macintosh File
Sharing.

Macintosh File Sharing supports the following server control calls:

- SCCancelShutDown

- SCDisconnect

- SCGetExpFldr

- SCGetSetupInfo

- SCPollServer

- SCServerVersion

- SCSetSetupInfo

- SCShutDown

- SCStartServer

Of the server control calls that are supported, some of these calls behave
differently under Macintosh File Sharing than they do under the AppleShare
File Server 3.0. The sections that follow explain those differences.

SCDisconnect

The SCDisconnect call does not send disconnect attention messages under
Macintosh File Sharing.

SCGetExpFldr

With Macintosh File Sharing, your program should call SCGetExpFldr as shown
in the sample function in the section "SCGetExpFldr" in Chapter 1.

SCNamePtr must be NIL when scIndex is negative. Otherwise, Macintosh File
Sharing writes garbage into memory. See the comments in the sample function
code listed in the section "SCGetExpFldr" in Chapter 1.

Macintosh File Sharing does not return fnfErr when there is no shared volume
or folder at a particular index position. Instead, it returns noErr and takes
no other action. To determine if a particular location is in use, set
scVRefNum to zero before calling SCGetExpFldr. If scVRefNum is still zero
after SCGetExpFldr is called, then there is no shared volume or folder at
that particular index position.

The SCGetExpFldr call does not return scLogins under Macintosh File Sharing.

SCGetSetupInfo

The SCGetSetupInfo call does not return the following results under Macintosh
File Sharing:

- scMaxVolumes (Use the value 10.)

- scMaxExpFolders (Use the value 10.)

- scCurMaxSession (Use SIMaxLogins, which is equal to 11.)

The SCGetSetupInfo call also does not use the following fields of the setup
information record (SetupInfoRec):

- SIVolInfoVisible

- SIUserInfoLocation

- SIUserInfoVisible

- SIShutDownMins

- SISpare

- SILoginMsg

SCPollServer

The SCPollServer call does not return the following values under Macintosh
File Sharing:

- the SCPSSleeping value of the scServerState result

- scSecondsLeft

SCServerVersion

Macintosh File Sharing does not return a valid value for SCServerVersion if
the server is not running.

SCSetSetupInfo

The SCSetSetupInfo call does not use the following fields of the setup
information record (SetupInfoRec):

- SIVolInfoVisible

- SIUserInfoLocation

- SIUserInfoVisible

- SIShutDownMins

- SISpare

- SILoginMsg

SCShutdown

The SCShutdown call does not send shutdown attention messages under Macintosh
File Sharing.

APPENDIX B

INTERFACE FILES

This appendix lists the server control and server event interface files.

Server control interface file

The ServerControlINTF file contains all of the definitions for the server
control calls used to control Macintosh File Sharing and the AppleShare File
Server 3.0.

Server control constants

CONST

ServerDispatch = $A094; {server control dispatch trap}

{scCode values}

SCStartServer = 0;

SCShutDown = 2;

SCCancelShutDown = 3;

SCDisconnect = 4;

SCPollServer = 5;

SCGetExpFldr = 6;

SCGetSetupInfo = 7;

SCSetSetupInfo = 8;

SCSendMessage = 9;

SCGetServerStatus = 10;

SCInstallServerEventProc = 11;

SCRemoveServerEventProc = 12;

SCGetServerEventProc = 13;

SCServerVersion = 14;

SCSetCopyProtect = 16;

SCClrCopyProtect = 17;

SCDisconnectVolUsers = 18;

SCGetUserNameRec = 19;

SCGetUserMountInfo = 20;

SCWakeServer = 21;

SCSleepServer = 22;

{scFlags bits and masks for disconnectPB}

bUNRFSendMsg = 13; {send a message}

UNRFSendMsgMask = $2000; {send a message}

{error codes returned from an SCDisconnect trap}

AlreadyShuttingDown = -1; {the server is already }

{ shutting down}

AlreadyDisconnecting = -2; {the server is already }

{ disconnecting}

{the server types returned in scServerType}

MFSType = $0000; {Macintosh File Sharing}

AFSType = $0001; {AppleShare File Server}

{the server versions returned in scServerVersion}

{ $0030 = File Sharing Extension, versions 7.0}

{ and 7.0.1}

{ $0031 = File Server Extension, version 3.0}

{ $0032 = File Sharing Extension, version 7.0.2}

{some random constants for SCStartServer}

kCurInstalled = 0; {use currently installed server}

kFinderExtn = 0; {use the Finder extension}

{scServerFlags bits returned by SCGetServerStatus}

bJBSEnabled = 12; {Apple II boot service is enabled}

{"SCPS" integers returned by SCPollServer in }

{ scServerState}

{0 means: 0 <= seconds left < 30}

{1 means: 30 <= seconds left < 90}

{2 thru 4094 mean: x*60-30 <= seconds left < x*60+30}

SCPSRunning = -1; {Server running normally}

SCPSStartingUp = -2; {Server starting up}

SCPSJustDisabled = -3; {Server disabled and there was }

{ no startup error}

SCPSDisabledwErr = -4; {Server disabled and there is }

{ a Server Error (SE) error in }

{ scServerError}

SCPSSleeping = -5; {Server temporarily disabled}

{"SCPD" integers returned by SCPollServer in }

{ scDisconnectState}

{0 means: 0 <= seconds left < 30}

{1 means: 30 <= seconds left < 90}

{2 thru 4094: x*60-30 <= seconds left < x*60+30}

SCPDNotDisconnecting = -1; {Server is not }

{ disconnecting any users}

{Server Errors ("SE") error codes returned by }

{ SCPollServer in scServerError}

SENoUGFileOpenErr = 1; {The Users & Groups Data }

{ File could not be opened}

SENoRealVolsErr = 2; {There are no volumes for }

{ the file server to use}

SEInsuffMFMemErr = 4; {There was not enough }

{ memory available to start }

{ the file server}

SECantRegNameErr = 5; {The file server's name }

{ could not be registered }

{ on the AppleTalk Network}

SECantFindExtnFolder = 6; {The file server could not }

{ be started because the }

{ Extensions folder could }

{ not be found}

SEUnExATalkErr = 7; {An unexpected AppleTalk }

{ error occurred}

SENoMachineName = 8; {You must have a machine }

{ name}

SECantFindFSExtn = 9; {The file server could not }

{ be started because the }

{ File Server Extension or }

{ File Sharing Extension }

{ could not be found}

SEATalkOffErr = 10; {Appletalk is turned off}

SEAppleTalkErr = 11; {AppleTalk could not be }

{ activated}

SENoInitRunErr = 12; {The file server could not }

{ be started because the }

{ File Server Extension or }

{ File Sharing Extension }

{ could not be found}

SESysTooOldErr = 13; {The System File is too old }

{ for AppleShare (v3.0)}

SEInsuffAppMemErr = 14; {There was not enough }

{ memory for the file server }

{ to startup}

SEBadConfigErr = 15; {The file server encountered }

{ a problem with the current }

{ configuration}

SENoDTOnStartupErr = 16; {The Desktop database on }

{ volume the startup volume }

{ could not be opened}

SEDupNameErr = 17; {Duplicate name error when }

{ registering}

Server control data types

TYPE

{string used for server messages}

tLoginMsg = STRING[199];

{The SetupInfoRec used by the SCGetSetupInfo }

{ and SCSetSetupInfo calls.}

SetupInfoRecPtr = ^SetupInfoRec;

SetupInfoRec =

RECORD

SIVersion: Integer; {SetupInfoRec version}

{ 1 for File Sharing }

{ and AppleShare 3.0}

SIFlags: Integer; {0 for File Sharing }

{ and AppleShare 3.0}

SIMaxLogins: Integer; {1..11 for File }

{ Sharing; 1..121 }

{ for AppleShare 3.0}

SISrvrUsageLimit: Integer; {10 to 100 (percent)}

{All remaining fields in record are only used by the }

{ AppleShare 3.0 file server}

SIVolInfoLocation: Point; {location of Volume }

{ Info window}

SIVolInfoVisible: Boolean; {is Volume Info }

{ window visible?}

SIUserInfoLocation: Point; {location of }

{ Connected Users }

{ window}

SIUserInfoVisible: Boolean; {is Connected Users }

{ window visible?}

SIShutDownMins: Integer; {default minutes }

{ until shutdown}

SISpare: ARRAY[1..17] OF Integer;

{reserved}

SILoginMsg: tLoginMsg; {the current Login }

{ message}

END;

startParam =

RECORD

reserved: LongInt;

reserved2: Integer;

reserved3: Integer;

scCode: Integer;

scStartSelect: Integer;

scEventSelect: Integer;

reserved4: ARRAY[1..4] OF LongInt;

END;

disconnectParam =

RECORD

scDiscArrayPtr: LongIntPtr;

scArrayCount: Integer;

reserved: Integer;

scCode: Integer;

scNumMinutes: Integer;

scFlags: Integer;

scMessagePtr: StringPtr;

END;

pollServerParam =

RECORD

reserved: LongInt;

reserved2: Integer;

reserved3: Integer;

scCode: Integer;

scServerState: Integer;

scDisconnectState: Integer;

scServerError: Integer;

scSecondsLeft: LongInt;

END;

standardParam =

RECORD

scNamePtr: StringPtr;

scVRefNum: Integer;

scLogins: Integer;

scCode: Integer;

scIndex: Integer;

scDirID: LongInt;

END;

setupParam =

RECORD

scSetupPtr: SetupInfoRecPtr;

scMaxVolumes: Integer;

scMaxExpFolders: Integer;

scCode: Integer;

scCurMaxSessions: Integer;

END;

statusParam =

RECORD

scNamePtr: StringPtr;

reserved2: Integer;

reserved3: Integer;

scCode: Integer;

scServerFlags: Integer;

scNumSessions: Integer;

scUserListModDate: LongInt;

scActivity: Integer;

scVolListModDate: LongInt;

END;

serverEventParam =

RECORD

scSEQEntryPtr: Ptr;

reserved2: Integer;

reserved3: Integer;

scCode: Integer;

END;

versionParam =

RECORD

scExtNamePtr: StringPtr;

reserved2: Integer;

reserved3: Integer;

scCode: Integer;

scServerType: Integer;

scServerVersion: Integer;

END;

userInfoParam =

RECORD

scNamePtr: StringPtr;

reserved2: Integer;

reserved3: Integer;

scCode: Integer;

scPosition: LongInt;

scUNRecID: LongInt;

scUserID: LongInt;

scLoginTime: LongInt;

scLastUseTime: LongInt;

scSocketNum: AddrBlock;

END;

volMountedParam =

RECORD

reserved: Ptr;

scVRefNum: Integer;

reserved3: Integer;

scCode: Integer;

scFilesOpen: Integer;

scWriteableFiles: Integer;

scUNRecID: LongInt;

scMounted: Boolean;

scMountedAsOwner: Boolean;

END;

SCParamBlockPtr = ^SCParamBlockRec;

SCParamBlockRec =

RECORD

qLink: QElemPtr;

qType: INTEGER;

ioTrap: INTEGER;

ioCmdAddr: Ptr;

ioCompletion: ProcPtr;

ioResult: OSErr;

CASE Integer OF

1: (startPB: startParam);

2: (disconnectPB: disconnectParam);

3: (pollServerPB: pollServerParam);

4: (standardPB: standardParam);

5: (setupPB: setupParam);

6: (statusPB: statusParam);

7: (serverEventPB: serverEventParam);

8: (versionPB: versionParam);

9: (userInfoPB: userInfoParam);

10: (volMountedPB: volMountedParam);

END;

Server control routine

FUNCTION SyncServerDispatch (pb: SCParamBlockPtr): OSErr;

Server event interface file

The ServerEventINTF file contains all of the definitions for the server event
mechanism.

Server event constants

CONST

{Constants used in the tSEQEntry}

{The SEeventFlag bits in tSEQEntry specify when the }

{ server event handler would like to be called}

{SEeventFlag bits}

bCSEHAFPInDoRequest = 0;

{An AFP call is starting up }

{ (in DoRequest, about to be dispatched)}

bCSEHAFPInSendResponse = 1;

{An AFP call has completed}

{ (in SendResponse, about to send out the response)}

bCSEHServerBusy = 2;

{A new session is being denied because the server }

{ is busy (socket starvation event)}

bCSEHServerShutdown = 3;

{The server just shut down}

bCSEHServerControlCall = 4;

{A server control call has just been completed}

{ NOTE: The following server control calls do not }

{ cause a bCSEHServerControlCall server event: }

{ SCStartServer, SCInstallServerEventProc, }

{ SCRemoveServerEventProc, SCGetServerEventProc, }

{ SCServerVersion, and SCWakeServer}

{ You can use the bCSEHServerStartup server event }

{ to detect server starts and wakeups}

bCSEHShare = 5;

{An HFS Share trap has just been completed}

bCSEHUnShare = 6;

{An HFS UnShare trap has just been completed}

bCSEHSetDirAccess = 7;

{An HFS SetDirAccess trap has just been completed}

bCSEHServerNameChange = 8;

{An attempt was made to change the server name }

{ (the attempt may or may not have been successful)}

bCSEHVolumePrep = 9;

{A new volume was just prepared for use with }

{ AppleShare}

bCSEHVolumeUnmount = 10;

{A volume unmount was attempted on an AppleShare }

{ volume }

bCSEHServerStartup = 11;

{The server just successfully started up}

bCSEHSessionTornDown = 12;

{A user's session was torn down because any one of }

{ a number of reasons, including a disconnect, }

{ server shutdown, timeout, or workstation initiated }

{ close session}

bCSEHOutOfSequence = 13;

{A packet was received out of sequence; the session }

{ may be a zombie}

bCSEHWksClosedSession = 14;

{A workstation closed its ASP session }

{ (i.e., it logged out)}

bCSEHSessionTimedOut = 15;

{A workstation's session timed out}

bCSEHSrvrClosedSession = 16;

{The server has closed a workstation's session}

{When SEeventFlag bits bCSEHAFPInDoRequest or }

{ bCSEHAFPInSendResponse are set, the bits in }

{ SEwhichAFPFlag determine which AFP calls will cause }

{ the server event handler to be called. }

{SEwhichAFPFlag bits}

{ bit 0 of SEwhichAFPFlag[1] - AFPCommand = 192 }

{ (afpAddIcon) }

{ bit 1 of SEwhichAFPFlag[1] - AFPCommand = 1 }

{ bit 2 of SEwhichAFPFlag[1] - AFPCommand = 2 }

{ ... }

{ bit 31 of SEwhichAFPFlag[1] - AFPCommand = 31 }

{ bit 0 of SEwhichAFPFlag[0] - AFPCommand = 32 }

{ ... }

{ bit 63 of SEwhichAFPFlag[0] - AFPCommand = 63 }

{When SEeventFlag bit bCSEHServerControlCall is set, }

{ the bits in SEwhichSCFlag determine which server }

{ control calls will cause the server event handler to }

{ be called.}

{SEwhichSCFlag bits}

{ bit 0 of SEwhichSCFlag - scCode = 0 }

{ ... }

{ bit 31 of SEwhichSCFlag - scCode = 31 }

{The maximum size of theBuffer in the ServerEventRecord}

BufferMax = 48;

Server event data types

TYPE

ServerEventRecordPtr = ^ServerEventRecord;

ServerEventRecord =

RECORD

theEventNumber: LongInt;

{the server event that's occuring; see the }

{ SEeventFlag definitions above}

theServerTime: LongInt;

{ the server time (in Macintosh DateTime form)}

theResult: Integer;

{the result of the operation }

{ if theEventNumber = bCSEHAFPInSendResponse: }

{ the AFP Error code to be returned }

{ if theEventNumber = bCSEHServerControlCall: }

{ the result of the server control call }

{ if theEventNumber = bCSEHShare, }

{ bCSEHUnShare, or bCSEHSetDirAccess: }

{ the result of the HFS call }

{ if theEventNumber = bCSEHServerNameChange: }

{ the result of a PRegisterName call, }

{ SECantRegNameErr, or SEDupNameErr }

{ if theEventNumber = bCSEHVolumeUnmount: }

{ noErr or fBsyErr (if volume is being used }

{ by a remote user) }

{ all other values of theEventNumber return noErr}

theBufSize: Integer;

{the number of bytes used in theBuffer}

theBuffer: PACKED ARRAY[1..BufferMax] OF Byte;

{ if theEventNumber = bCSEHAFPInDoRequest or }

{ bCSEHAFPInSendResponse: the first }

{ BufferMax bytes of the AFP packet }

{ if theEventNumber = bCSEHServerControlCall: }

{ the first BufferMax bytes of the }

{ SCParamBlockRec }

{ if theEventNumber = bCSEHShare, }

{ bCSEHUnShare, bCSEHSetDirAccess, }

{ bCSEHVolumePrep, or bCSEHVolumeUnmount: }

{ the first BufferMax bytes of the }

{ HParamBlockRec }

{ if theEventNumber = bCSEHServerNameChange: }

{ the new server name (in a Pascal string) }

{ all other values of theEventNumber return a }

{ zero length buffer }

theNameStr: Str31;

{the name of the file, if any; not always }

{ defined }

theAFPCommand: Integer;

{ if theEventNumber = bCSEHAFPInDoRequest or }

{ bCSEHAFPInSendResponse, the AFP call}

{Note: If theEventNumber is bCSEHAFPInDoRequest, }

{ bCSEHAFPInSendResponse, bCSEHSessionTornDown, }

{ bCSEHOutOfSequence, bCSEHWksClosedSession, }

{ bCSEHSessionTimedOut, or bCSEHSrvrClosedSession,}

{ then theUNRecID theUNSUserID, theUserName, and }

{ theSocketAddress of the user that made the call }

{ are returned.}

theUNRecID: LongInt;

{the UNRecID of the user that made the call}

theUNSUserID: LongInt;

{the UserID of the user that made the call}

theUserName: Str31;

{the name of the user that made the call}

{Note: If theEventNumber is bCSEHAFPInDoRequest }

{ or bCSEHAFPInSendResponse, then theVRefNum and }

{ theDirID will be returned if applicable to the }

{ AFP call}

theVRefNum: Integer;

{the VRefNum of the volume upon which this }

{ operation was performed (not always applicable)}

theDirID: LongInt;

{the DirID of the directory upon/within which this}

{ operation was performed (not always applicable)}

theSocketAddress: AddrBlock;

{the network address of the user's workstation in }

{ AddrBlock format}

END;

tSEQEntryPtr = ^tSEQEntry;

tSEQEntry =

RECORD

SEQentry: ATQEntry;

{a regular AppleTalk Transition Queue entry}

SEeventFlag: LongInt;

{specifies when the Server Event Handler would }

{ like to be called}

SEwhichAFPFlag: ARRAY[0..1] OF LongInt;

{specifies which AFP calls will cause the Server }

{ Event Handler to be called}

SEwhichSCFlag: LongInt;

{specifies which Server Control calls will cause }

{ the Server Event Handler to be called}

END;

Application-defined routine

PROCEDURE MyServerEventHandler (theSEQEntryPtr: tSEQEntryPtr;

theSERecPtr: ServerEventRecordPtr);

