GETTING STARTED
WITH WEBOBJECTS

Apple, NeXT, and the publishers have tried to make the information contained in this manual as accurate and reliable
as possible, but assume no responsibility for errors or omissions. They disclaim any warranty of any kind, whether
express or implied, as to any matter whatsoever relating to this manual, including without limitation the
merchantability or fitness for any particular purpose. In no event shall they be liable for any indirect, special,
incidental, or consequential damages arising out of purchase or use of this manual or the information contained
herein. NeXT or Apple will from time to time revise the software described in this manual and reserves the right to
make such changes without obligation to notify the purchaser.

Copyright OO 1997 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.
[7010.01]

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher or copyright owner. Printed in the United States of America. Published simultaneously in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects Framework, Objective-C, WEBSCRIPT, and
WEBOBJECTS are trademarks of NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe Systems, Incorporated. Windows NT
is a trademark of Microsoft Corporation. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. ORACLE is a registered trademark of Oracle Corporation, Inc.
SYBASE is a registered trademark of Sybase, Inc. All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObjects 3.5.

Writing: Ron Karr and Kelly Toshach

Editing: Laurel Rezeau and Jeanne Woodward

With help from: Andy Belk, Craig Federighi, John Graziano, Ben Haller, Kenny Leung, Charles Lloyd, Jean Ostrem,
Becky Willrich, Greg Wilson

Graphic Design: Karin Stroud

Production: Gerri Gray

Contents

Table of Contents
Contents iii

Preface 7

About WebObjects 9
About This Book 9
Where to Go From Here 10

Creating a Simple WebObjects Application 11

Creating a WebObjects Application Project 14
Choosing the Programming Language 16
Examining Your Project 17
Launching WebObjects Builder 18
Creating the Page’s Content 20
Entering Static Text 21
Using the Inspector 22
Creating Form-Based Dynamic HTML Elements 23
Resizing the Form Elements 25
Binding Elements 27
Creating Variables 27
Binding the Input Elements 29
Implementing an Action Method 30
Creating the Application’s Output 32
Building and Running Your Application 35

Enhancing Your Application 37

Duplicating Your Project 39
Creating a Custom Guest Class 41

Binding the Class’s Instance Variables to the Form Elements 42

Creating a Table to Display the Output 43
Adding Dynamic Elements to Table Cells 45
Binding the Dynamic Elements in the Table 45
Creating the Guest Object 46

Keeping Track of Multiple Guests 47
Creating a Guest List 48
Adding Guests to the Guest List 50
Adding a Second Component 51
Using a Repetition 53
Adding the Finishing Touches 56
Clearing the Guest List 56
Adding a Dynamic Hyperlink 57

Creating a WebObjects
Database Application 59

The Movies Application 62
Enterprise Objects and Relationships 63
Designing the Main Page 65
Starting the WebObjects Application Wizard 65
Specifying a Model File 66
Choosing an Adaptor 67
Choosing What to Include in Your Model 68
Choosing the Tables to Include 71
Specifying Primary Keys 71
Specifying Referential Integrity Rules 72
Choosing an Entity 74
Choosing a Layout 75
Choosing Attributes to Display 76
Choosing an Attribute to Display as a Hyperlink 77
Choosing Attributes to Query On 77
Running Movies 78
Examining Your Project 79
Examining the Variables 80
Examining the Bindings 81
Refining Main.wo 85
Specifying a Sort Order 86
Specifying Default Values for New Enterprise Objects 87
Setting a Date Format 88
Setting a Number Format 89
Optional Exercise 90

Adding the MovieDetails Page 92

Creating the MovieDetails Component 93
Storing the Selected Movie 93

Navigating from Main to MovieDetails 94
Designing MovieDetails’ User Interface 95
Adding Date and Number Formats 96
Navigating from MovieDetails to Main 96
Running Movies 97

Refining Your Model 97

Opening Your Model 97

Removing Primary and Foreign Keys as Class Properties 98
Adding Relationships to Your Model 99

Using the Advanced Relationship Inspector 102

Where Do Primary Keys Come From? 103

Setting Up a Master-Detail Configuration 104

Creating a Detail Display Group 105
Adding a Repetition 108
Configuring a Repetition 109
Running Movies 110

Updating Objects in the Detail Display Group 111

Managing a DisplayGroup’s Selection 112
Adding a Form 113

Adding a Talent Display Group 113
Configuring the Browser 114

Adding Insert, Save, and Delete Buttons 116

Adding Behavior to Your Enterprise Objects 117

vi

Specifying Custom Enterprise Object Classes 117
Generating Custom Enterprise Object Classes 118
Adding Custom Behavior to Talent 119

Providing Default Values in MovieRole 119
Running Movies 120

About WehObjects

About This Book

WebObjects is an object-oriented environment for developing and
deploying World Wide Web applications. A WebObjects application runs on
aserver machine and receives requests from a user’s web browser on a client
machine. It dynamically generates HI'ML pages in response to the user’s
requests. WebObjects provides a suite of tools for rapid application
development, as well as prebuilt application components and a web
application server.

WebObjects is flexible enough to suit the needs of any web programmer.
You can write code using one of three programming languages: Java,
Objective-C, or WebScript. You can write simple WebObjects applications
in a matter of minutes. For more complex projects, WebObjects makes it
easy by performing common web application tasks automatically and by
allowing you to reuse objects you’ve written for other applications.

"This book contains three tutorials that help you learn what WebObjects is
and how to use it:

e Chapter 1, “Creating a Simple WebObjects Application” (page 11),
teaches you the basic concepts and steps involved in creating a
WebObjects project, using the applications Project Builder and
WebObjects Builder. You’ll create a simple application that takes input
from a user and displays it.

e Chapter 2, “Enhancing Your Application” (page 37), extends the
capabilities of your application and shows you additional techniques
you use when working with WebObjects.

e Chapter 3, “Creating a WebObjects Database Application” (page 59),
teaches you how to create a more complex application, one that
accesses a database.

WebObjects can run on several platforms. Screen shots in this book are for
Windows N'T systems; if you are running on a different platform, the look
of your windows may vary slightly.

Preface

Where to Go From Here

After you have worked through the tutorials in this book, you should have a
good working knowledge of WebObjects. For more in-depth information about
how WebObjects works, read the WebObjects Developer’s Guide.

Other valuable information about WebObject is available online. You can access
all online information through the WebObjects Home Page. It is located in your
server’s document root, and you can access it at this URL:

http://1 ocal host/ WbQbj ect s/ Docunent ati on/ WoHonePage. ht m

In particular, the WebObjects HomePage gives you access to some books that
are available only online:

o WebObjects Tools and Techniques is a more comprehensive guide to using
Project Builder and WebObjects Builder to develop WebObjects
applications.

o Serving WebObjects describes how to administer and deploy WebObjects
applications after you’ve written them.

o 'The Dynamic Elements Reference documents the dynamic elements provided
with WebObjects and provides examples of how to use them.

o 'The Client-Side Components Reference describes what client-side components
are available for use in your program and the Java classes used to create
them.

o 'The WebObjecrs Class Reference provides a complete reference to the classes
in the WebObjects framework. Reference material is provided for both the
Java and Objective-C languages.

Additionally, for more information on Enterprise Objects Framework, read the
Enterprise Objects Framework Developer’s Guide. 'This book provides in-depth
information about how Enterprise Objects Framework works and about
techniques for developing database applications with it.

Chaprer 1 Creating a Simple WehObjects Application

"This chapter introduces you to the basic concepts and procedures of
developing WebObjects applications. You’ll develop, in stages, a simple
application for the World Wide Web. The application you’ll write is called
GuestBook.

When you’ve finished the steps in this chapter, your application will have
a single web page containing a form that allows users to enter their names,
e-mail addresses, and comments. When the form is submitted, the
application redraws the page with the user’s information at the bottom.

I__l_ | |=|2|a(]®

(0 Mol g D™ b b b Wi

w Ftendan whinside

Jnite snjoysbls web xite,

In Chapter 2, “Enhancing Your Application” (page 37), you will add
features to the application, including a second page, a table that displays
information from multiple users, and hyperlinks.

"This application illustrates the basic techniques you use to create a
WebObjects application. You’ll use two primary tools, Project Builder
and WebObjects Builder.

13

Chapter 1

Creating a Simple WebObjects Application

Project Builder is an integrated software-development application. It contains
a project browser, a code editor, build and debugging support, and many other
features needed to develop an application. In this tutorial, you’ll learn to use
Project Builder to:

e (reate a new WebObjects application project.
e Wirite scripts or compiled code to provide behavior in your application.
e Build and launch your application.

WebObjects Builder is an application that provides graphical tools for creating
dynamic web pages. You'll learn to use WebObjects Builder to:

¢ (Cireate static content for your pages.
¢ Add dynamic elements to your pages.
¢ Bind the dynamic elements to variables and methods in your code.

Creating a WehObjects Application Project

A WebObjects application project contains all the files needed to build and
maintain your application. You use Project Builder to create a new project.

1. Launch Project Builder.

On Windows NT; you can launch Project Builder from the WebObjects
program group in the Start menu. On other platforms, you can launch the
application by navigating to the directory NeX7_ROQTINextDeveloper/Apps/ and
launching ProjectBuilder.app. NeX7T ROOT is an environment variable defined
when you installed WebObjects. On Windows N'T" systems, it is C:\NeXT by
default. On Mach systems, it is the root directory/.

2. Choose Project» New.

MowPropoct
P Ty psd / Set project type here.
We O Weckappicaog” | Q¥

o |
Projesci Paih _Cancal |

B

= (lick to choose directory in which to
create your project.

3. In the New Project panel, select WebObjectsApplication from the Project
"Iype pop-up list.

Creating a WebObjects Application Project

4. Click Browse.

Fooms Posjart

Sevei | ' Wabllbucn —_-j—g—gdﬁ Choose WehObjects under the

server's document root.

D curarison
Evargless
Frarmwwarkz
B

nia

Ly / Type project name here.

Flopwes [Gueabook 4 | o ﬂ—— Click when finished.
By b e |AlFian =) =] _..;.E'.'.'E._J

5. In the Save panel, navigate to the DocumentRoor/WehObjects directory.

DocumentRoot is your HT'TP server’s document root, which you
specified when you installed WebObjects.

6. 'TIype the name of the project you want to create (Guest Book).

7. Click Save.

The New Project panel shows the path you specified.
8. Click OK.

The WebObjects Application Wizard starts.

)s.‘ Choose type of assistanae and prssary languagpe.
= R Choose level of
I Ciractin Wab ot 2 R Snatuand’ Speale o ey o adiize: assistance.
BrCaRs
T Wirard Lot 8 BN M DOSpemant Wil
Sarmbmes BOCArE,
7 None (e = DS REDSCAINED (W o Wt
Ak AECEER) IR A SN AR
Prinnary Lidigiiags:]
clea % Choose programming
I ‘WebScAp language.
I Cupcie-C
Cancai T e | Finh ——— Click to proceed.

Chapter 1

Creating a Simple WebObjects Application

9. For Available Assistance, choose None.

If you are developing an application that accesses a database, you may wish
to use one of the levels of assistance that WebObjects provides. For more
information on these options, see Chapter 3, “Creating a WebObjects
Database Application” (page 59).

Choosing the Programming Language

WebObjects supports three languages:

e Java
¢ Objective-C
e WebScript

Java and Objective-C are compiled languages. They require you to build your

application before running it. WebScript, which is based on Objective-C, is a

scripted language. It allows you to make changes to your application while it is
running,.

When you create a new project, Project Builder provides you with acomponent
called Main. In WebObjects terminology, a component represents a page in your
application (or possibly part of a page).

In the Wizard, you specify the language you’ll use to program your Main
component, as well as the application and session code files (which will be
described later).

1. For the primary language, select Java.

Later, you’ll create an additional component for your application and write
its code in WebScript.

2. Click Finish.

Project Builder creates a new application directory called GuestBook. This
directory contains the files you work with in both Project Builder and
WebObjects Builder.

Examining Your Project

Examining Your Project

Project Builder displays a browser showing the contents of your project.
"The first column lists several categories of files that your project may
contain. This section describes some of the most important files you’ll use.

. Bl ok UM g] e |, s ha N T

Eroject Fln Edé Formst Jookr ‘Window Seracar Huip

Your project’s components.

m':\
Chsses

H iy

e Sources

s & DA TE S

Weh Savar Rasmas
a1 D o B
sypporting Files

F sl ile

Librares
o Prajct Fikas

[

Q0|3 2] s B

2 Ell[rdainapi — Files in the selected

Mein hinl component.
Fdginnad

T T T TTTTT T

Categories (“suitcases”)
of project resources.

1. Select Web Components.

"The next column displays a list with one element, Main.wo, which is a
directory containing the first component in your application. Every
application starts with a component called Main.

2. Select Main.wo.

"The files you see displayed in the next column are some of the files
you work with when developing your component:

® Main.api is used for components that are going to be reused by other
components; you won’t use it in this tutorial. See WebObyects Tools and
Techniques for more information on creating reusable components.

e Main.html is the HTML template for your page. It can include tags for
dynamic WebObjects elements as well as regular HT'ML. "Typically, you do
not edit this file directly; you create your page’s elements graphically using
WebObjects Builder.

e Main.wod is the declarations file that specifies bindings between the dynamic
elements and variables or methods in your scripts. Normally, you don’t edit
this file directly; you use WebObjects Builder to generate the bindings for
you.

Chapter 1 Creating a Simple WebObjects Application

3. Select Classes in the first column of the browser.

" GuestBook -- C:\MetscapetServerdocs\WebObjects

Project File Edit Fomat Tools 'Window Services Help

NAU S T &

Inclexing project GuestBook .

[=1 3

hain.java @

Weh Components >;| Application java

| Y ET

Sessionjava I

Headers
Other Sources

el

3
3
Resources »
Web Server Resources b
Subprojects 3
Suppaorting Files »
Frameworks 3
Libraries 3
Mon Project Files ’Ll

K|
Main java 3

2

=]
n

#¢ Generated by the Weblbjects Wizard Thu Sep 11 15:13:57 PDT 1997
import mext util *;
import mext.wo ¥

import next.eo.*;

public class Main extends next.wo.Component {

IC |£ILIL

You'll see three files listed in the second column:

Your application’s
Java classes.

The Main component’s
code goes here.

® Mainjava is a file that allows you to specify behavior associated with the
component. You do this by writing code in Java (since you specified Java as the
language when you created the project). You use Project Builder to edit this

file.

® Application.java and Session.java are other Java files that you may want to work with. In
Chapter 2, you’ll add code to Applicationjava and learn about application and

session variables.

Launching WehObjects Builder

Now that you’ve created your project, you’ll edit the Main component with

WebObjects Builder.

1. Select Web Components in the first column of the browser.

Launching WebObjects Builder

2. Double-click Main.wo in the second column.
"The application WebObjects Builder launches and displays a window

entitled Main.wo. This represents your application’s Main component.

These buttons change properties
of selected elements.

Pop-up list switches Click to inspect
editing modes selected element.

26| B|7|u| | | mm] o] &
Qﬁ- q]i=]=]—| 0] o]] Click one of these

buttons to create a

\ H specific element.

Elements pop-up list
switches buttons
displayed to its right.

p——=This window displays

your component’s
. elements graphically.
) =
o - - .
:‘-i["i:'l-:u o -l = Object browser shows

variables and methods
in your application’s
= | code.
e | Pull-down menu lets
you add variables,
methods, and actions
to your source code.

Eil bain jova =

You create your component graphically in the upper pane of the
component window. The browser at the bottom of the window (known
as the object browser) is used to display variables and methods your
component uses. Note that there are two variables already defined,
application and session. You’ll create others later.

The toolbar at the top of the window contains several buttons that
allow you to create the content of your component. WebObjects
Builder also has menu commands corresponding to these buttons.

Note: Depending on the width of the window, the toolbar may appear in
tWO rOws Or one.

3. From the ﬂ pop-up list at the left of the toolbar, choose 2]

Chapter 1

Creating a Simple WebObjects Application

"This pop-up list allows you to switch between graphical editing mode and
source editing mode. When you choose source editing mode, the text of
your HT'ML template (Main.html) appears. It is a skeleton at this point, since
the page is empty. As you add elements graphically, their corresponding
HTML tags appear in this file.

“HWanwn ~ GOl aseSeive deosieebll hincii\Genaisok. [E3

[a Edd Foral Ekwaris Joodr Palstier Wndes Serecer Hale
Gole BlIUlT| .| -] =
2 ===l
aHTHL> ;J
AL
ATITLE Paga Tiklas/TITLE: The HTML source for your
A PHEN: component.
AT
= PRI
2 HTHL ;I
"
[| , .
Information about bindings
is displayed here.
El

The bottom pane shows your declarations (Main.wod) file. Later, when you
bind variables to your dynamic elements, this file stores the information.
Normally, you never edit this file directly.

4. Switch back to graphical editing mode. For the rest of the tutorial, you’ll
work in this mode.

Creating the Page’s Content

20

A web page consists of elements. In addition to the standard static HTML
clements found in all web pages, WebObjects allows you to create dynamic
elements, whose look and behavior are determined at run time.

"To create elements, you use the buttons on the bottom row of the toolbar (or at

the right of the toolbar if your window is large). The EEJ button is a pop-up list
that lets you switch the group of buttons that are displayed to its right. There are
four groups of buttons:

Creating the Page’s Content

Structures % Use these buttons to create paragraphs, lists, images, and
other static HI'ML elements. This setting is the default.

Tables ﬂ Use these buttons to create and manipulate HTML table
elements.

Dynamic form elements £-]. Use these buttons to create form elements in
which users enter information. WebObjects gives your application
access to the data entered by users by allowing you to associate, ordind,
these elements to variables in your application.

Other WehObjects ﬂ Use these buttons to create other dynamic elements,
which you can bind to variables and methods in your program to control
how they are displayed. Some of these (such as hyperlinks) have direct
HTML equivalents. Others are abstract dynamic elements, such as
repetitions and conditionals, which determine how many times an
element is displayed or whether it is displayed at all.

Entering Static Text

The simplest way to add text to a page is to type it directly into the
component’s window. To demonstrate this, add a title for the GuestBook’s

page.

1.

Type My Guest Book and press Enter.

The text is displayed at the insertion point, in this case at the
beginning of the page.

Select the text you just typed.

Click the | = button in the toolbar. This converts the text to a heading
element and displays it in bold.

From the 5' pop-up list in the toolbar, choose center justification.

"The toolbar also has buttons that allow you to apply text styles such as
bold, underline, and italics.

H'TML provides several levels of headings. "Typically, a document’s main
title should be displayed as an <H1> heading. To change the level, you use
the Inspector window. You'll use this window frequently throughout these
tutorials.

2

Chapter 1

Creating a Simple WebObjects Application

22

You use the Inspector window to set properties of the elements in your
component. The Inspector’s title and contents reflect the element you’ve
selected in the component window.

1. Click .

A window titled Heading Inspector appears. It allows you to set the level of
the heading.

D = The element path. Click to inspect
o S | different elements in the hierarchy.
Pk Dmanie | i |

Click here to set the heading level.
Hmmyé

|1/23-al-

2. Click “1”.

The text is now part of an <H1> tag, and it is displayed in a larger font.

3. Click the [icon at the top of the window.

The top of the window shows the element path to the selected element. Any
element can be contained in a hierarchy of several levels of elements and
can in turn contain other elements. Here, the element path shows that the
heading element is contained in the page element, which is the top level of
the hierarchy. By clicking the icons in the element path, you can easily
choose different elements in the hierarchy.

Creating the Page’s Content

Each element has its own Inspector that allows you to set properties
appropriate for the element. The Page Attributes Inspector allows you
to set properties such as the page’s title and its text color.

Fage ditibanes [
L] [

Pika Dymenie | i i |

I Tillie b O P ©

Tl [k Gusst Bapk —— Eter page’s title here.

Full dacum i i
B kgraamad
paset | comn. | Temine |
Ted -l Pressad links -l
Linis -l Wigied ks [|

4. Enter a title (such as My Guest Book, or something else of your
choosing) in the Title text field. This is the title of the window that
appears in your web browser when you run the application.

5. Close the Inspector window.
6. Choose File » Save to save the Main component.

Note: Version 3.5 of WebObjects Builder doesn’t allow you to undo
actions you take when editing your component. Therefore, it is a good
idea to save frequently. That way, if you make a mistake, you can
revert to your previously saved version.

Creating Form-Based Dynamic HTML Elements

In this section, you’ll create a form with several elements to capture input
from a guest. These elements look and act like HT'ML form elements but
are actually dynamic WebObjects elements, which enable your code to
receive and manipulate the data entered by the user.

23

Chapter 1

Creating a Simple WebObjects Application

24

10.

11.

12.

13.

"To display the dynamic form elements buttons in the toolbar, choose ﬂ
from the Elements pop-up list.

Place the cursor on the line after the “My Guest Book” text and press Enter.
Click .

WebObjects Builder adds a form element to your component. The triangle
at the upper-left corner indicates that it is a dynamic form, as opposed to a
static form. T'he gray border indicates the extent of the form. You can
increase its size by adding additional elements inside it.

"Type the text “Name: ” and press Enter.
"This text replaces the word “Form” that was displayed by default.
Type “E-mai | : 7 and press Enter twice
Type “Comment s: ” followed by Enter.

You have just entered three lines (and a blank line) of static text inside the
form. Now you’ll enter some dynamic elements to receive input from the
user: two text fields and a multi-line text area.

Place the cursor to the right of the text “Name: ”.

Click j to create a dynamic text field element (WO TextField).

Repeat steps 7 and 8 for “E-mail: .

Use the [ITd] button to create a multi-line text area below the “Comments: ”
line.

Press Enter twice to create two blank lines.

Click ﬂ to create a Submit button, which is used to send the data in the
form to the server.

Click ﬂ to create a Reset button, which is used to clear the data in the
form.

Creating the Page’s Content

The window should now look like this:

sivpei gl s b b Wmpe @0k

Edin'-Ej-i:lerEd-lhr!ﬁHunimﬂ.-h

Z0|o| B|r|u|T| <] m| Z] 5]

= [a1 1) 2 5

My Guest Book

Fhawg -

| =

12001 i T

- H
| =

sttt N

|4

application - |
 lirici Do

Eifil Wi javia L K]

L=flE

Resizing the Form Elements

Dynamic form
elements buttons.

Dynamic text field
elements.

Dynamic text area
element.

Rectangle indicates
extent of form.

The text fields and text area are a bit small, so you’ll resize them using the

Inspector window.

"To inspect an element, you must first select it. Some elements (such as text
fields and text areas) can be selected simply by clicking them; they appear

with a gray line underneath.

el]

You select text elements as you would in most text-editing applications (by
dragging, or by double-clicking words, or by triple-clicking lines); they

appear with gray shading.

25

Chapter 1 Creating a Simple WebObjects Application

1. Inspect the Name text field (that is, select the text field and open the
Inspector window).

Fenl fus ot |
B == I

| [

pfake Bigic | m—— Choose Static Inspector from
famic inspaciod this pop-up list.
NIIH:I
atra

MRl OF C DU e | e [nter rows and columns here.

MUET OF Ak |_

Coamhant

- |

2. Change the setting of the pop-up list at the upper right of the window from
Dynamic Inspector to Static Inspector.

All WebObjects elements have a dynamic inspector, that is, one that allows
you to set bindings (you’ll work with bindings in the next section). In
addition, many WebObjects elements (those with direct counterparts in
static HTML) also have a szatic inspector. 'This inspector allows you to set
the standard HTML attributes for that type of element.

In this window, you can set various attributes of the static counterpart of a
WOTextField, which is an HI'ML <I NPUT TYPE=TEXT> element.

3. In the Size field, type 20 and press Enter to set the width of the text field
to 20 characters.

Note: Be sure to press Enter after typing the values; otherwise, they won’t
<« M ”»
stick.

4. Repeat steps 1 through 3 for the E-mail field.

26

Binding Elements

Binding Elements

5. Inspect the multi-line text area.

In Text Area Inspector, you can set various attributes corresponding to
those of a <TEXTAREA> clement.

6. Increase the size of the element by specifying the number of columns
and number of rows to, say, 30 and 6.

7. Save the Main component.

When a user enters information in GuestBook’s form elements, your
application needs a way of accessing that information. This is done by
binding the form elements to variables in your application. When the user
submits the form, WebObjects puts the data into the variables you’ve
specified.

"Then, your application typically processes the data and returns a new page
(or the same page) displaying information that makes sense based on the
user’s input. The information displayed is usually represented by other
dynamic elements that are bound to variables and methods in your code.

"This process of receiving a request (triggered by actions such as submitting
a form or clicking a hyperlink) and responding by returning a page is known
as the request-response loop. This loop is at the heart of WebObjects
programming.

In this tutorial, you’ll have WebObjects return the same page, with the
information you received from the user displayed, in a slightly different
format, at the bottom. In the second chapter, you’ll add an additional page
to your application.

Creating Variables

In this section, you’ll declare individual variables in your code file (Main.java)
to hold the name, e-mail address, and comments entered by a single guest.
Later on, you’ll structure this information differently in order to work with
data from multiple users.

21

Chapter 1 Creating a Simple WebObjects Application

WebObjects Builder allows you to declare variables without having to edit your
source file directly. At the bottom of the window there is a pull-down menu
called Edit Main.java. It has three items:

® AddVariable/Method allows you to add a ey to your source file. A key can be either
an instance variable or a method that returns a value.

® Add Action allows you to add the template for an action method, which is a
method that takes no parameters and returns a component (the next page
to be displayed).

® View Source File opens the source file in a Project Builder window.
1. Choose Add Variable/Method from the pull-down menu.

The Add Variable/Method panel opens.

rame |quecHane Type variable name here.

Typal = (ke an gien]
i~ Puray of.
T Kuahle mray of
BT St (Cho0SE Variable’s type from
this pop-up menu.

EE T T T e Rl TR T

F An nelance variable
" A methad rehming his vals
™ & methoad seting Hee walus

L

2. 'lype guest Nane in the Name field.

3. 'To specify the variable’s type, select String from the pop-up menu (or you
can type St ri ng directly in the box.

4. Click Add.

You have just created a variable called guestName of type String. It appears in
the first column of the object browser. A declaration for guestName also
appears in Mainjava, which you’ll edit later.

5. Create the variables email and comments in the same way (they are also of
type String.)

28

Binding Elements

Each dynamic element contains several a#tributes. These attributes
determine what happens when the element is displayed or when a form
element is submitted. When you bind an element, you actually bind one or
more of its attributes.

For example, a WOText element (which represents a multi-line text area)
is defined as having two attributes:

® value specifies the string the user enters in the text area.
e name specifies a unique identifier for the text area.

In this tutorial, the only attribute you are concerned with isvalue, which
represents the string entered by the user in the comments field. You’ll bind
this to the comments variable. You don’t need to bind the name attribute in this
application. In a later example, you’ll bind more than one attribute of an
element.

1. Inthe object browser, click the comments variable and drag the cursor into
the Comments text area. Then release the mouse button.

Sigis s - O\ Reinnaps! Sevologe VW ebDigecisboes llosk
Fls Eci Fowsd Ewranir Joch Palstier irdow Sercm Help
Z16|®| Bl7|U|T|) = o &
Efr S il = = | E]
wiTon Batisns]
My Gu
YEURECE
2| [|
Flama: piabe Blafc | Diynaek Irspecir o |
E-imall 1
| Aatrtvse | Braen 1]
= Binding
| | [ak -] appears
=1l M & here when
complete.
bt et
o B RO
5 gmrnn
[T
fistMaw | (lick here
to complete
[it wan [wvi | KT binding
id
= |
B| _ addamibike | [Conmit Vo]
Click variable name and drag to

element to begin binding.

29

Chapter 1

Creating a Simple WebObjects Application

30

3.

4.

The Inspector window comes to the front, displaying the bindings for the
text area. 'The value attribute is automatically selected (since that is the one
that is most commonly used in bindings). If you wanted to choose a
different ateribute to bind (you don’t at this time), you would simply select
the binding of your choice.

Click Connect Variable.

comments appears in the Binding column next to the value attribute of the text
area, indicating that the binding has been made. Also, the textcoment s
appears in the text field to show that it has been bound.

Note: you can also bind a variable by typing its name directly in the Binding
column for the desired attribute.

In the same way, bind the guestName and email variables to the two text fields.

Save the Main component.

Implementing an Action Method

When the user clicks the Submit button, your application will respond by
redisplaying the page with the submitted information shown at the bottom. To
make this happen, you implement an aczion method and bind that method to the
action attribute of the WOSubmitButton.

1.

From the Edit Main.java menu at the bottom of the object browser, choose
Add Action.

Heme [sunmi =t Enter action name here.

Fage el [=T Select response page name from
pop-up menu (use null to return
same page).

canced | man | pag

Enter submi t as the name of your action method.

Binding Elements

From the “Page returned” pop-up menu, selectnull.

"The value returned by an action method represents the next page
(component) to be displayed. When you return null (or nil if using
WebScript), the current page is redrawn. In a later task, you’ll see how
to return a new component.

Click Add.

"The submit action appears below a horizontal line in the first column
of the object browser.

Click submit in the object browser and drag the cursor to the submit
button.

The Inspector opens with the button’s action attribute selected.
Click Connect Variable.

You just bound the submit method you created to the action attribute of
the WOSubmitButton. You don’t need to write any additional code, so
your application is now ready to run. However, you may want to look at
your source file.

From the pull-down menu at the bottom of the window, choose View
Source File.

Project Builder becomes active and displays the code for your
component (in Mainjava). You’ll notice that this file contains declarations
for the variables you created earlier, as well as a declaration for the
submit action method.

3

Chapter 1

Creating a Simple WebObjects Application

Ewgect Fim Edé Fommst Jodr ‘Window Gsracar Hulp

<Q|o|5)] 2

Bussibosk L WM et e s Bt i e e bl b e

Wiain v @

Wl 17 D o PR S o A plic adian jasa 5| =]'
SEron e

Hi-dikiis L}
s S R L}
T L]
‘Weh SaverFasoces B
551 D 1 W
Suppoeting Fle: B
Frasrasi i L
Liranes b
M Prajact Fikis ll;l ;I ;I
[Tl
L i ot TN
Lepeart et stil ®;
Lewirt Pl i
Lepart renrt s ®;
witi L1 55 MLA svtemeds moit, s, ComporErt |

[FETL) (st

[Firieg emyll;

[1 FErieg oommsvis:

ALY ol Sl

1

=l

Creating the Application’s Output

32

Variable definitions.

submit action method.

So far, you have a way for the guest to enter information and a way for the

application to store that information. Now, the application needs to do

something with the information.

For now, you’ll have the application simply display the same information the
user entered, in a slightly different format. This allows you to verify that you
have correctly received the data. To do this, you’ll add dynamic string elements
(WOStrings) to the main page and bind them. In the next chapter, you’ll use

more complex forms of output.

1. In WebObjects Builder, place the cursor at the end of the document,
making sure that it is ouzside the gray rectangle that represents the form,

and press Enter.

Creating the Application’s Output

2. Choose % from the Elements pop-up list to display the Structures
buttons.

3. Click j to create a horizontal line (an <HR> element).

4. Press Enter to add a blank line.

5. Select ﬂ from the Elements pop-up list to display the Other
WebObjects buttons.

6. Add a WOString element by clicking ﬂ.

A WOString is a dynamic element whose value is determined at
run time. It is shown as a small rectangle surrounded by two icons.

2 8

7. In the object browser, click the guestName variable and drag the cursor to
the center rectangle of the WOString.

Notice that the name guestName appears inside the WOString, and
the Inspector window doesn’t come to the front. The message
“Connected guestName to value” appears in the upper-right corner
of the window.

WebObjects provides this shortcut for binding to the value attribute of
WOStrings, because it is the attribute you most often want to bind.
"The value attribute signifies the string that will be displayed when the
page is drawn. If you want to bind a different attribute, you drag-
connect to the left or right icon, and the Inspector appears as usual.

8. Click to the right of the WOString and press Enter.

9. Create two more WOStrings and bind them to email and comments,
respectively.

Note that it isn’t necessary to resize the WOStrings as you did with
the text fields. They expand at run time to display the value of the
variables to which they are bound.

Chapter 1

Creating a Simple WebObjects Application

34

10. Save your component. It should now look like this:

il hpeg g e

Eﬂﬁﬂh]ﬂ:fﬁr%iﬂﬂ#

Zole| Bls|ulT| 8 | g =)
o (o e I e o e Y

My Guest Book -
Finre m 2k Heas
E-mai: 17%841
C
tamneni: j
H
Subent| et

[3 gt | BT

LR
(| commants ..'l =l
" =i

el g g) ;j

sErHDn

L] e BT

ik Choose

swiawii = & | View Source File
E il bt [w4 | from this menu.

In summary, when the user clicks the Submit button, a new request-response
cycle begins. WebObjects stores the data entered in the dynamic form elements
in the variables they are bound to (guestName contains the value in the Name field,
email contains the value in the E-mail field, and comments contains the value in the
Comments field). It then triggers the action method bound to theaction attribute
of the WOSubmitButton. The action method returns a page (which, in this
example, is the same page). When the page is redrawn, the dynamic strings at
the bottom show the values entered by the user.

Now you are ready to test your application.

Building and Running Your Application

Building and Running Your Application

1. Make Project Builder active. A quick way to do this from WebObjects
Builder is to choose View Source File from the pull-down menu at the
bottom of the window.

"To build and launch your application, you use buttons in Project
Builder’s toolbar.

‘&| C]‘~.| ﬂ | EJ-— Click here to open the Launch panel.
I

Click here to open the Project Build panel.

2. Click "{\‘ in the toolbar to open the Project Build panel.

3. Click "{\‘ in the Project Build panel.

GuestBook - Project Build

NV

Target: woapp with args **
Status: GuestBook - Build succeeded

Click here to build
your application.

R

-DJdava_OPEMSTEP_EMABLED -DJAWA_OPEMNSTEP -OhjC -c-0 LI
Ci/MetscapesServer/docs/WehOhjects/GuestBook/objects-
optimized/NSFrameworkForceload_GuestBook.o
C/MetscapesServerfdocs/WebObjects/GuestBoaok/derived_sro/MNEFramewarkForceload_Gue
Eook.m

Linking ...

CiMexT/MextDeveloper/Executables/gcc -arch i386-nextpdo-winnt3.5
-LC/MNetscapesServer/docs/MebObjects/GuestBook/abjects-aptimized -arch i386-nextpdo.
winnt3 5 -0 C/MetscapesServer/docs/WebObjects/GuestBook/GuestBook woa/GuestBook exe
Ci/MetscapesServer/docs/WehOhjects/GuestBook/objects-optimized/GuestBook_main.o
Ci/Metscapesserver/docs/WebOhjects/GuestBook/objects-
aptimized/MNSFrameworkFaorceload_GuestBook.o -framewark WehOhjects -framewark
WOE=tensions -framework EOAccess -framework EOControl -framework Foundation

The Project Build panel displays the commands that are being
executed to build your project. If all goes well, it displays the status
message “Build succeeded.”

4. Close the panel.

5. Click EJ in the toolbar to open the Launch panel.

35

Chapter 1

Creating a Simple WebObjects Application

36

6. Click EJ in the Launch panel to launch your application.

The Launch Panel displays a series of messages. If all goes well, you
should see messages such as the following, which mean that your
application is running successfully.

Gutstbon - Lowneh - Tososaes© ||
T L s [=l)

Firrem Tasi
- Task "UussiHGok’ STATUS] on LF-E-10 i e — Bl
S 19 904300 GusstBook[184] Praject fousdi Using soripisd oosponsvis
Frvs Do bl ALTSsThary) NP ages VRryesT W00 Ve pets Vs ik

S 19 89090 8L GusytBook [131] Moaliogile Path

07 Wy s A i PRSI e s RO

Sl 19 99040 AL (usytBaok[194] PasIlng ST OWPLRUTAELE FToE

1 - el T St doray S Usdsrbons WCioe PLgumnaLon eicsereson g . plist

S 19 B30 AL GusatBook [184] Dooumesvi Boot: 0 WMebeoaes Ve Winos

S 19 G900 8L GusstBook [194] Mnlioatlon G5 URL SRS jsots A ribok
S 19 9904981 GusstBook [1594] Anliotion Mees: syt

S 19 9949 AL GusstBook [134] Mot oawesgiad T Ao ar

W Lo 10 Ciesstiak |

g 15 oFa e GussaiBhook [19H] Opeving spnlication's B in Brosssr

et of ¢ Loscs Lt Ao~ Sekeulin s Vs vk ncik

S 19 9904082 GusyiBook 1] walting for PRyt

]
il

Your web browser (such as Netscape Navigator or Internet Explorer)
should launch automatically and load the correct URL for your application.
If it doesn’t, do the next step; otherwise, proceed to step 8.

Launch your web browser and load a URL with the following form:
ht t p: /| web_server_hostl cgi-bin_directoryl adaptor! application_directory

Your application directory is GuestBook, which was created by Project Builder
under the Web0bjects subdirectory of your server’s document root when you
first created the project. The default adaptor name is WebObjects (see Serving
WebObjects for more information about WebObjects adaptors). So if, for
example, your web server is named gandhi and its cgi-bin directory is named
cgi-hin, you would use this URL:

htt p: // gandhi/ cgi - bi n/ WebObj ect s/ Guest Book

"Test your application by entering information and submitting the form.

If all goes well, your page should look like the one shown at the beginning
of this chapter (page 11).

Chapter 2 Enhancing Your Application

Duplicating Your Project

In the previous tutorial, you learned how to create a web component that
has input and output elements and how to bind these elements to variables
and methods in your code.

Now you’ll add some additional features to your project that move it a bit
more in the direction of being a real-world web application. The application
will:

e Use a custom Java class to represent the data for a guest, rather than
using three separate variables.

e Maintain a guest list, which keeps track of all guest data (whether
entered by you or multiple users of your application), rather than just
the current guest.

¢ Have a second component, so that the guest list is displayed in a new
page rather than the same page. You’ll use WebScript rather than Java
to implement this component’s behavior.

e Make use of additional interface elements (such as HT'ML tables).

Duplicating Your Project

Before proceeding, you’ll create a new project by copying the old one and
renaming it. This way, you can make changes and still retain your previous
version.

1. In WebObjects Builder, close the component window.
2. In Project Builder, close GuestBook’s project window.
If there are any unsaved files, you are prompted to save them.

3. Inyour machine’s file system, navigate to the directory where your
project is located (the WebObjects directory under your server’s
document root).

39

Chapter 2 Enhancing Your Application

Fla Ecd Yww Hul

| i wiebtech I [=TT AL
1 3O @3 .

Decamristi . Eewwlst Fyessxls [EREREES

-

Eorz nio dwwvm

P p——

4. Duplicate the GuestBook folder.

On Windows NT; you can do this by selecting the folder, choosing
Edit » Copy, then Edit » Paste.

5. Open the new folder (Copy of GuestBook) and double-click the project file
PB.project.

Project Builder opens a new browser window for this project.
(Alternatively, you could have opened the project from within Project
Builder by choosing Project » Open, then navigating to the project folder
and selecting PB.project.)

6. Click "{\‘ from the toolbar to bring up the Project Build panel.

7. Click %&‘ in the Project Build panel.

This command deletes all the files that were generated when you built the
project previously.

8. Click 'ﬂ" to open the Project Inspector.

9. Choose Project Attributes from the pop-up list at the top of the window.
10. In the Name field, enter Guest BookPl us and press Enter.

11. Respond Yes to the prompt that asks if you want to rename the folder.

You now have a new project called GuestBookPlus.

40

Creating a Custom Guest Class

Creating a Custom Guest Class

In the first chapter, you created individual variables to store a guest’s name,
e-mail address, and comments. When keeping track of multiple guests, it’s
more useful to encapsulate all the data for a guest as a single entity. You’ll
do this by creating a Java class that contains the data for a single guest.

1. In Project Builder’s browser, select Classes in the first column.

2. Choose File » New in Project.

Hﬁ O @ C

Suppoiing

Ry O o O T E Enrgmm

Ire B g kP e
rhaes: | EEREVERE =r—i
I™ Crasie hamder Cancel |

3. 'Iype Guest . ava as the name of the file.

4. Click OK.

Type name of class here.

The newly created file contains a skeleton for a class called Guest.

1] Gemsd jan.

Enter the following code to complete the definition of the Guest class.

“ JE

WOt et ukil 4
AR{Ort reat to.
BOOET o .

[DIAD Tless Famal sfenas ekoslbeor |
protanhed BLEIng pReal ok

[~

[ATEECEE] BOEInG ehil Add your class’s
COEacked BEring oosssnts. instance variables.
Bamard] |

R bt

AL Add constructor for

ComTLE = Guest class.

b
e

A class stores information in its zzstance variables (also referred to as
data members). Here you’re declaring three instance variables for Guest:
name, email, and comments. Note that these declarations are the same as
those that appeared in the code for Mainjava when you added the three
variables using WebObjects Builder. In WebObjects, a component is

4|

Chapter 2

Enhancing Your Application

42

also a class, specifically a subclass of the class next.wo.Component (called
WOComponent in WebScript or Objective-C).

Java classes require a constructor to initialize an instance (or odyect) of a
particular class whenever one is created. A constructor has the same name
as the class and returns no value.

Whenever your application creates a new Guest class, its instance variables
are initialized with empty strings, which is the default value if the user
enters no data. (If you prefer, you can use different strings for these initial
values.)

6. Save Guest.java.

Saving the file lets WebObjects Builder know about your newly created
Guest class.

Binding the Class’s Instance Variables to the Form Elements

In the first chapter, you bound the input elements to variables in Main’s code.
Now you’ll modify the bindings to use the class you just created.

1. Select Web Components in the first column of the browser.

2. Double-click Main in the second column of the browser to open the
component in WebObjects Builder.

3. Using the Add Variable/Method panel, add a variable called currentGuest to
your component and specify its type as Guest. (Note that you can now
choose Guest from the Type pop-up menu.)

“wo”»

An entry for currentGuest appears in the object browser. Notice the “>
symbol to the right of its name. This means that there is additional data to
be displayed in the second column.

4. Select currentGuest in the object browser.

The second column displays the three fields of currentGuest, as determined
by the definition of its class, Guest.

5. Click guestName in the second column of the object browser next to currentGuest
and drag the cursor to the Name text field.

This time, when the Inspector opens, there is already a binding for thevalue
attribute (guestName), because you bound it in the first tutorial.

Creating a Custom Guest Class

Double-click the row containing the value binding.

"This removes the binding for guestName you made previously and binds
currentGuest.guestName to the value attribute.

Bind the other two input elements to currentGuest.email and
currentGuest.comments.

Creating a Table to Display the Output

In the first chapter, you created three WOString elements to display the
information the guest entered. In this task, you’ll create a different type of
element, an HTML table, to display the information. In later tasks, you’ll
display data for multiple users in the table.

1.

Delete the WOStrings below the horizontal line in the Main
component, because you’ll be replacing them with a table.

Choose ﬂ from the Elements pop-up list to display table elements.

Click the EJ button.

A table with two rows and two columns appears.

1 _al

£ | Cuill
Double-click to enter (a:(ljlgkah(?orrutmon
Click here to add a row. content-editing mode. :

Click the E icon at the upper right of the table.
A third column appears, and the columns are equally spaced.
Select the upper-left cell of the table by clicking it.

There are two modes for table editing: content-editing mode, which lets
you change the text in a cell and add other elements to it; and st7ucture-
editing mode, which lets you perform operations on a cell such as
splitting it in two. The cell you just selected is now in structure-editing
mode.

43

Chapter 2

Enhancing Your Application

4

6. Double-click the upper-left cell.

You can now edit the contents of the cell. If you want to resume structure

editing, click EJ in the toolbar, which allows you to toggle between
modes. (Alternatively, you can hold down the Control key and click in a
different cell to enter structure-editing mode.)

7. Change the text in the cell to Nane.
8. Open the Inspector.

The Inspector presents a number of modifiable settings that apply to the
table cell you’ve selected. Note also that the top row of the Inspector
window shows the element path, which includes the cell, the row it is
contained in, and the table itself. Selecting any of those allows you to set
specific properties of the elements.

B R
| | Click here to inspect table row.
PAka Dok | Hirh i

Click here to inspect table.

I} Hasetor Cat TeRTE
Lo Check this box to make the
Horzomal Algn s = piezis cell a header.
.
ik ik I | - Enter table width here.
rLen
- Cemat Hidghi
r Fighl F LUnepaciliesd
I | pl=plz
LT LIPS e
17 Lo pei cifl e
rTop Barkgrourd
e & Unipaciisd

I~ Bl I |7|
I Basedne

9. Click the Header Cell checkbox.

The text in the cell becomes bold and centered. (However, you don’t see
the changes until you begin editing another cell.)

10. In the Width box, enter 150 in the field marked “pixels” and press Enter.

The width of the column is set to 150 pixels.

Creating a Custom Guest Class

11.

12.

Click in the component window, then press "Tab.

Pressing "Tab when editing a table causes the contents of the next cell
to the right to be selected (or the first cell of the next row if in the
rightmost column). Pressing Shift-Tab moves in the opposite direction
through the table.

Repeat steps 7 through 11 for the second and third cells of the top row.
Label the middle column E- mai | and set its width to 150 pixels. L.abel
the third column Conmrent s and leave its width unset. (T’he comments
field takes up the remainder of the width of the table.)

Note: It isn’t necessary to adjust the height of the columns, since they
expand at run time to accommodate the size of the text being
displayed.

Adding Dynamic Elements to Table Cells

"Tables and cells are static HI'ML elements, so you can’t bind them to
variables or methods. 'To display dynamic information in cells, you add
dynamic elements, such as WOStrings, to the cells.

1.

Select the contents of the first cell in the second row of the table by
clicking in the cell, then double-clicking the text.

Choose ﬂ from the Elements pop-up list.

Click ﬂto add a WOString to the cell.
Press the Tab key.
The contents of the next cell to the right are selected.

Repeat steps 3 and 4 for the other two cells in the second row.

Binding the Dynamic Elements in the Table

1.

Select currentGuest.guestName in the object browser and drag the cursor to
the center of the WOString in the first column to bind itsvalue attribute.

Similarly, bind currentGuest.email and currentGuest.comments to the second and
third WOStrings.

45

Chapter 2

Enhancing Your Application

46

The table should now look like this:

Hume I ol Crmmmienles
B =
surraTizuast . guariisss .\:. Crrert Gt i B[cirrerkCimat cossarks |8
&

3. Save the Main component.

Creating the Guest Object

Earlier in this chapter, you created a Java class of type Guest and wrote a
constructor for it. You also added a variable of that class, currentGuest, to the Main
component. However, adding a variable in this way doesn’t actually create a new
Guest object; you need to create one explicitly at some point in your code.

You’ll create the Guest object in the constructor method for your component.
"T'his method is called when the component is first created; that is, the first time
the user accesses the component.

Note: In WebScript or Objective-C, you use a method called init for this purpose.

1.

Choose View Source File from the pull-down menu at the bottom of the
window.

Project Builder becomes active and displays the code for Main.java. Notice
the following declaration that was added to your code when you added the
currentGuest variable:

protected Guest current Guest;

Delete the declarations of guestName, email and comments, since you aren’t using
them anymore.

Add the constructor method inside the Main class definition:

Main() {
super () ;
current Guest = new Quest();

}

The first statement calls the constructor of Main’s superclass (which is
next.wo.Component). The second statement allocates a new empty Guest
object and calls Guest’s constructor to initialize its instance variables.

Keeping Track of Multiple Guests

4. Save Main.java.
5. Build and run your application.

"The application should work similarly to the first chapter, except that
the guest’s data is displayed in a table at the bottom of the page instead
of as plain text.

cwiwesd in liberty mred

dicwted to the propowition

At this point, your application still handles information from a single guest
only; in the next section, you'll keep track of multiple guests.

Keeping Track of Multiple Guests

You’ve been using the variable currentGuest in the Main component to hold
the information entered by the user. You’ll need another variable (an array)
to store the list of all the guests who have registered.

47

Chapter 2

Enhancing Your Application

48

Before doing this, it is important to understand the scope and life span of
variables in WebObjects:

o Component variables, such as currentGuest, exist for the lifetime of the
component. These variables are defined in the component (in this case,
Main.java) and are accessible only by its methods. Each user that uses a
component gets a separate instance of the variable.

o Session variables exist for the lifetime of one user’s session and are accessible
by all code in the session. They are defined inSession.java. An instance of each
session variable is created for each user.

o Application variables live as long as the application does and are accessible by
all code in the application. They are defined in Application.java. A single
instance of an application variable is shared by all users of the application.

Creating a Guest List

"To store the information from all guests that have accessed the application,
you'’ll create an application variable called allGuests, which exists for the life of the
application.

1. In Project Builder, select Classes in the first column of the Browser. Then
select Application.java from the second column.

"The application’s code appears in the window. The following figure shows
the code generated by the Wizard, along with code you will add.

Keeping Track of Multiple Guests

BussiBosh L WM ot s Bt v s e bill basg by

Ewgect Fim Ecé Fommst Jodr ‘Window Geracar Hulp

a6l 2 .- |

‘W s 1 D ol NS [~ |
Eaggkn java
H e B L] Pl i il
b r R UG e » Guse] v
P TR s L]
Al rkh K Enrrairene ..:j .:.j ﬂ
_.| Ppbrasm s “ 4B X
cararabed i -
impart rect.util ¥
impart ract.wa.®
pablic clexs Application sctarsds ract. s, Sebipplicetian |
pratecisd Huishlalsciar allCussis You add this line.
pablic Applicwtiani)
I
i .
allCussts = res Mubshlabactar(} You add this line.

Svrbem. out printin Salosss ta " + thos.nmsaiy + ~ 175
—
pablic wmd sddGuast (Guast st}

allGusrin. wddt Lamant [wGuast

You add these
public vatd clasrGeestai two methods.
: allCusris. resrsabLLE Lasarrba|

Note that there is one method already defined: Application, which is
the constructor for the application object. The first line calls the
constructor for Application’s superclass (which is the class
WebApplication). The second line prints a message, which you see
in the Launch panel when you launch your application.

After the call to super, enter this code:
al | Guests = new Mut abl eVector();

"This statement initializes allGuests to be a new object of class
MutableVector. This class is the Java equivalent of the Objective-C
class NSMutableArray, which provides an interface that allows you to
add, change and delete objects from an array.

49

Chapter 2

Enhancing Your Application

50

3.

At the top of the Application class definition, enter this declaration:
protected Mitabl eVector all Guests;

"This declares allGuests to be of type MutableVector. Declaring it

pr ot ect ed means that it is accessible only from this class or one of its
subclasses. It is standard object-oriented practice for a class to prevent

other classes from directly manipulating its instance variables. Instead,
you provide accessor methods that other objects use to read or modify the
instance variables.

Add the accessor methods addGuest and clearGuests, as shown in the figure.

The addGuest method adds an object of class Guest to the end of the allGuests
array, using the MutableVector method addElement (its Objective-C
equivalent is addObject).

"T'he clearGuests method removes all the objects from the array using the
MutableVector method removeAllElements (its Objective-C equivalent is
removeAllObjects).

Save Application.java.

Adding Guests to the Guest List

Now, when the user submits the form, you’ll add the information to the allGuests
array rather than displaying it directly.

1.

2.

Switch to the code for Main.java.

In the submit method, add the following code before ther et ur n statement:

((Application)application()).addGuest (currentGQuest);
current Guest = new Quest();

This code calls the application’s addGuest method, which adds an object (in
this case, currentbuest) to the end of the array. Then it creates a new Guest
object to hold the next guest’s data.

Note: T'he addGuest method is defined in the class Application, which is a
subclass of WebApplication. The component’s application method (called in
the above statement) returns an object of type WebApplication, so you
must cast it to Application in order to access its addGuest method.

Your next step is to create a new component to display the list of guests that
allGuests stores.

Adding a Second Component

Adding a Second Component

In this section, you’ll create a new component. Instead of Java, you’ll
implement its code using WebScript.

1.

2.

In Project Builder’s browser, click Web Components in the first column.

Choose File» New in Project.

Note that the Web Components suitcase is selected.

Type Quest Li st as the name of the new component. Then click OK.

The WebObjects Component Wizard appears.

Choose None for Available Assistance and WebScript for Component
Language.

Click Finish.
In the second column of the browser, click GuestList.wo.

Note that there is an additional file you didn’t have with your Java
component. Guestlistwos is your script file, the WebScript equivalent of
Main.java in the Main component. For WebScript components, the script
files are stored under the component, rather than in the Classes
bucket. You’ll add code to your script file in a later step.

Double-click GuestListwo to bring up the component window in
WebObjects Builder.

Create a heading for this page, as you did for the Main component. Call
it “Guest List” (or something else of your choosing). Then press Enter
twice.

Add a WOString below the heading. Then type the text “ guest s
have signed this guestbook.”

You’re going to bind this WOString so that it reflects the number of
guests who have submitted this form.

51

Chapter 2 Enhancing Your Application

10. In the object browser, click application.

There is an entry in the second column for the allGuests application variable
you created. This entry appears in the Main component as well, since
application variables are accessible from anywhere in the code.

If you click allGuests, you’ll see in the third column an entry for count. This is
a standard method that returns the number of objects in the array.

11. Click count and drag to the center rectangle to bind it to the WOString’s
value attribute.

" Gl I wo — WM o e T e s i 0 L O L o i

[la Eci Fgwal Epwenkc Joo: Palstber Sindow Jerecar Help

Zio|@| B|r|u|T| -] .| 5] E]

o e e) o s Y

Guest List |

iiD-{ s have sigred it gu esthapk|

SEmsiion

claanbmeis

.1 El =l
[Edi Gusibiviwas =] 0|

allGuests. count represents the number
of objects in the array. Drag to bind it to the
WOString.

12. Save the GuestList component.

You need to do one more thing so that the GuestList page now displays
when the user submits the form.

13. Go back to Project Builder and view the source code forMainjava. Replace the
r et ur n statement in the submit method with the following code:

return application().pageWthNane("CGuestList");

52

Using a Repetition

Using a Repetition

pageWithName is a standard WebObjects method (defined in the
WebApplication class) that allows you to specify a new page to display.

At this point, the code for Mainjava looks like this:

'_Im.pn. LR X
T near. Uil -
A a
t ek g

pai s PAOR Batends neal w0 Cheporent. |
probehed Gest purrentiamal

[omponent. sspsity |
|
Shdpplination)application 1) sddasat cirrent fasak)
CirTenLiaEal = rew FaBabd)
BTy BDLADAEI0NG | el il fasan sl)
I

P |
1
Lo}
CTentiiEar = rév REand)

14. Save Main.java.
15. Build and run your application.

Each time you submit the form, the number of guests displayed in the
WOString should increase.

"To return to the Main page, you’ll have to use your browser’s backtrack
button. Later in the tutorial, you’ll add a hyperlink to return to the
Main page.

You have demonstrated the use of a second component. Now you’ll create
a table to display the entire list of guests in the GuestList component. To
do so, you’ll use a dynamic element called a rgperition (WORepetition).
Repetitions are one of the most important elements in WebObjects, since
it is quite common for applications to display repeated data (often from
databases) when the amount of data to be displayed isn’t known until

run time. 'Typically, a repetition is used to generate items in a list or a
browser, multiple rows in a table, or multiple tables.

A repetition can contain any other elements, either static HI'ML or
dynamic WebObjects elements. In the GuestList component, you’ll create
a repetition that contains a table row.

53

Chapter 2

Enhancing Your Application

94

You’ll bind the allGuests array to the WORepetition’s list attribute. This tells
WebObjects to generate the elements in the repetition once for each item in the
array. Each time WebObjects iterates through the array, it sets the repetition’s
item atcribute to the current array object. You bind item to the variable currentGuest
and use currentGuest’s fields to bind the elements inside the repetition (such as
WOStrings). At run time, the table will consist of one row (displaying name,
e-mail address, and comments) for each guest.

1. In WebObjects Builder, make the Main component window active.

2. Select the table at the bottom of the page by clicking outside it and dragging
across it.

3. Choose Edit» Copy.
4. Make the Guestlist component active.
5. Place the cursor at the bottom of the page and choose Edit» Paste.

You have just copied the table from Main into GuestList. It has all the
same properties, including the bindings. The WOStrings in the table are
still bound to instance variables of currentGuest. Since currentGuest is a
component variable defined in Main, it isn’t accessible from GuestList.
Therefore, you need to declare it here.

6. From the pull-down menu at the bottom of the window, choose Add
Variable/Method. Enter cur r ent Guest as the name of the variable and
Quest as its type.

7. Choose ﬂ from the Elements pop-up list to display the Tables buttons.

8. Click somewhere in the table, then click @ in the toolbar to enter
structure-editing mode. (Alternatively, Control-click on the table.)

9. Click one of the triangles in the second row to select the entire row.

10. Choose ﬂ to display Other WebObjects in the toolbar and clickﬂ

When you wrap a repetition around a table row in this way, the

WORepetition symbol ﬂ doesn’t appear in the table. Instead, a blue
border appears around the row. For additional examples of using
repetitions, see Chapter 3, “Creating a WebObjects Database Application”
(page 59).

Using a Repetition

11. In the object browser, select application in the first column.

12. In the second column, click allGuests and drag the cursor to anywhere
inside the row (but 7oz inside one of the WOStrings).

"The Inspector window opens showing the repetition’s bindings. The
list atcribute is selected by default.

Select table row , then click here

Element path shows that WORepetition is
to create repetition around row.

contained by table and contains a table row.

WY] gy e i Pl (O] =]

SERLE

1 G 1 = e S e

Guest Ll =
hie i | Dynaic maeci) o
|I q:i:l.l.-:ll.m. allCoania -a-c;l\.l';l.'ﬁ meets havee sigread hi
- Airtete [Bnetng |
i Ll j—
e
Adm

8 kit D

runeEniGus

clEarGuEer

E
[Eoi Cuwilinfear *] ﬂ mumunhl
|

Blue border and background Drag variable to table row Click here to bind
means row is in a repetition. to bind to repetition. allGuests to the

repetition’s list attribute.

13. Click Connect Variable to bind application.allGuests to the list attribute.

14. Bind currentGuest to the repetition’s item attribute.

"To do this, you can select the row foritem, then double-click in the
Binding column and type cur r ent Guest .

55

Chapter 2

Enhancing Your Application

By using the name currentGuest for the item attribute, you are taking advantage
of the fact that the strings in your table are already bound to the fields of
currentGuest.

You now have finished implementing the repetition. When the table is
generated, it will have one row for each item in the allGuests array.

15. Save the GuestList component.
16. Delete the table from Main, since you no longer need it.
17. Build and launch your application.

18. Test your application by entering data for multiple guests and verifying that
each guest appears in the table.

Adding the Finishing Touches

56

There are a few additional things you’ll do to make your application a bit more
user friendly:

¢ Add a button that, when clicked, clears the guest list.
¢ Add a hyperlink to the Guestl.ist page that allows users to return to the
Main page.

Clearing the Guest List

While developing your application, you may find it useful to be able to remove
all guests from the list. (Typically, you wouldn’t allow users to remove all guests
from the list.)

1. In WebObjects Builder, make the GuestList component window active.

2. Choose Add Action from the pull-down menu at the bottom of the window.
In the panel, entercl ear Guest Li st as the name of the action and set the
page returned to ni | .

3. Choose View Source File from the pull-down menu.

Project Builder displays the code for GuestListwos. You’ll notice that there is a
skeleton of the clearGuestList action method, using WebScript syntax, as well
as the declaration for currentGuest that you created previously.

Adding the Finishing Touches

4. Enter the following code before the return statement in clearGuestList:
[[sel f application] clearCuests];

"This code calls the application’s clearGuests method, which removes all
the Guest objects from the array.

5. Save GuestList.wos.
6. Go back to WebObjects Builder.

7. Place the cursor below the table and press Enter.

8. Choose ﬂ from the Elements pop-up list and click ﬂ

"This creates a submit button that the user will click to clear the guest
list.

9. Using the Inspector, bind the submit button’s value attribute to
(including the quotes) " G ear Guest List".

"This changes the title of the button. Note that the quotes are
necessary to indicate that you’re binding a string, not a variable.

10. Bind the action attribute to clearGuestList.

When the user clicks the button, the clearGuestList action method is
called, which causes the guest list to be cleared and the page to be
redrawn.

Adding a Dynamic Hyperlink
Now you’ll create a hyperlink that returns the user to the Main page.

1. Place the cursor below the submit button (outside the rectangle of its
containing form).

2. Choose ﬂ from the Elements pop-up list and click ﬂ

3. Double-click the text “Hyperlink” and typeReturn to Sign-in
Page.

4. Inspect the hyperlink.

91

Chapter 2

Enhancing Your Application

58

5. Select the pageName attribute, then double-click in the Binding column and
type (including the quotes) " Mai n".

Note: You must specifically type the quotation marks in “Mai n”, because you
are specifying a string representing the name of the page to be returned. If
you left off the quotes, you would be specifying a variable or method called
Main.

6. Save the Guestl.ist component.
7. 'Test your application.

Note: In this case, you don’t have to rebuild and relaunch your application in
order to test it. Building is only required when you have made changes to
Java or Objective-C code. If you modify a component or WebScript code
only, the changes take effect even if the application is already running.

The GuestList page should now look like this:

w4 Netzcape - [Page Title]

Chapter 3 Creating a WehObjects
Database Application

One of the most powerful features of WebObjects is its ability to provide
access to databases. To do so, it uses a framework called the Enterprise
Objects Framework. This chapter introduces you to the Enterprise Objects
Framework by showing you how to create a simple database application.
The steps you take in creating this application demonstrate the principles
you’ll use in every other application you develop with the WebObjects and
Enterprise Objects Framework.

"The application you’ll create in this tutorial is called Movies. It makes use
of a sample database, the Movies database, that contains information about
movies. Before you do this tutorial, you need to set up the Movies database
as described in the Post-Installation Instructions. In addition, if you aren’t
familiar with Project Builder and WebObjects Builder, read the first
tutorials in this book, “Creating a Simple WebObjects Application”

(page 11) and “Enhancing Your Application” (page 37), which introduce
basic concepts and procedures you should know before you go on.

In this tutorial, you will:

e Use the WebObjects Application Wizard to create a fully functional
Main component that reads and writes from the Movies database.

e Create and configure display groups for interacting with a database in
terms of objects.

e (Create bindings between display groups and a user interface.
e Write code to manipulate display groups’ selected objects.

e Set up display groups in a master-detail configuration.

¢ Use EOModeler to maintain a model file.

e (reate custom enterprise object classes.

Along the way, you’ll learn basic Enterprise Objects Framework concepts
you can use to design your own database applications.

61

Chapter 3 Creating a WebObjects Database Application

The Movies Application

The Movies application has two pages, each of which allows you to access
information from the database in different ways:

® MovieSearch (the main page) lets you search for movies that match user-
specified criteria. For example, you can search for all comedies starting with
the letter “T™ that have an R rating. Once you find the movie you’re looking
for, you can make changes to its data or delete it. You can also use this page
to insert new movies into the database.

® MovieDetails displays the actors who star in a selected movie and the roles
those actors play. You can add new roles, change the name of a role, and
assign a different actor to a role.

Search for Movies Movie Details
After Hawars

Categery: Comedy

Ratlng: E

Trage Heleayesd: 23 Tap 1963
Ravewss: § 2,300,000.00

Etarwisg

Ten o as hide

Linda Pioremimo o Fo
Feosanna Arcetts mr Marcy

F Ansmone =
Title fiwr Houre R :|
Cat F ey Yamprs

i = kamem Ao -labbar
Finting F iznbeie Adiani |
Ciate Releasnd: P35 Seop 1968 Flale Naswe: |-uiie .
Ferems FE L0 A0 3_-_-=L w."] Eﬂi

et || B [t

l'-.:-.‘._f.':l Ej [ﬁ AEhE i

Iroari s Swaric Cubiin
-E_‘hlll

Mo Sxaith

62

The Movies Application

Enterprise Objects and the Movies Database

Enterprise Objects Framework manages the interaction between the
database and objects in the Movies application. Its primary responsibility is
to fetch data from relational databases into enzerprise objects. An enterprise
object, like any other object, couples data with methods for operating on
that data. In addition, an enterprise object has properties that map to stored
data. Enterprise object classes typically correspond to database tables An
enterprise object instance corresponds to a single row or record in a database
table.

The Movies application centers around three kinds of enterprise objects:
Movies, MovieRoles, and Talents. A movie has many roles, and talents (or
actors) play those roles.

The Movie, MovieRole, and Talent enterprise objects in the Movies
application correspond to tables in a relational database. For example,
the Talent enterprise object corresponds to the TALENT table in the
database, which has LAST _NAME and FIRST_NAME columns. The
"Talent enterprise object class in turn has lastName and firstName instance
variables. In an application, Talent objects are instantiated using the data
from a corresponding database row, as shown in the following figure:

lastName "Federighi”
firstName “Craig"

S

TALENT
1028 ! Federighi Cralg

1132 Corey

Feldman

Enterprise Objects and Relationships

Relational databases model not just individual entities, but entities’
relationships to one another. For example, a movie has zero, one, or more
roles. This is modeled in the database by both the MOVIE table and

63

Chapter 3

Creating a WebObjects Database Application

64

MOVIE_ROLE table having a MOVIE_ID column. In the MOVIE table,
MOVIE_ID is a primary #ey, while in MOVIE_ROLE it’s a foreign fey.

A primary key is a column or combination of columns whose values are
guaranteed to uniquely identify each row in that table. For example, each row
in the MOVIE table has a different value in the MOVIE_ID column, which
uniquely identifies that row. Two movies could have the same name but still be
distinguished from each other by their MOVIE_IDs.

A foreign key matches the value of a primary key in another table. The purpose
of a foreign key is to identify a relationship from a source table to a destination
table. In the following diagram, notice that the value in the MOVIE_ID column
for both MOVIE_ROLE rows is 501. This matches the value in the
MOVIE_ID column of the “Alien” MOVIE row. In other words, “Ripley”
and “Ash” are both roles in the movie “Alien.”

MOVIE ro| g

Ripley

Suppose you fetch a Movie object. Enterprise Objects Framework takes the
value for the movie’s MOVIE_ID attribute and looks up movie roles with the
corresponding MOVIE_ID foreign key. The framework then assembles a
network of enterprise objects that connects a Movie object with its MovieRole
objects. As shown below, a Movie object has a vector of its MovieRoles, and the
MovieRoles each have a Movie.

Designing the Main Page

movieRoles

MutableVector

MovieRoI

Designing the Main Page

Every WebObjects application has at least one component—usually named
Main—that represents the first page the application displays. In Movies,
the Main component represents the MovieSearch page.

"To design the Main component, you’ll use the WebObjects Application
Wizard. The wizard performs all the setup that’s necessary to fetch database
records and display them in a web page. Specifying different wizard options
yields different pages: The MovieSearch page is an example of one of the
many different layouts you can generate with the wizard.

Starting the WehObjects Application Wizard

1.

2.

In Project Builder, choose Project » New.

In the New Project panel, select WebObjects Application from the
Project Type pop-up list.

Click Browse.

In the Open panel, navigate to a directory under
DocumentRoorWehObjects, where you want to create your new project.

65

Chapter 3

Creating a WebObjects Database Application

5. 'Iype Movi es in the “File name” field.
6. Click Save.
7. In the New Project panel, click OK.
This starts the WebObjects Application Wizard.
8. Choose Wizard under Available Assistance.

With this option, the wizard guides you through the creation of a Main

component for your application. When you finish, you can immediately
build and run your application without performing any additional steps
and without adding any code.

9. Choose Java as the primary language.

10. Click Next.

Specifying a Model File

A model associates database columns with instance variables of objects. It also
specifies relationships between objects in terms of database join criteria. You
typically create model files using the EOModeler application, but the wizard
can create a first cut at a model as a starting point. Later on, you’ll use
EOModeler to modify the model created by the wizard.

WebObjects Application Wizard

;. Specify a model that defines your database-to-objects mapping.
%f ! / Select this option.
(-4&5&9 new madel

¢~ Open existing model file Browse. |

Model File:

Cancel | <Back | Mesxt> i Finish

1. Choose “Create new model.”

2. Click Next.

Designing the Main Page

Choosing an Adaptor

An adaptor is a mechanism that connects your application to a particular
database server. For each type of server you use, you need a separate
adaptor. WebObjects provides adaptors for Informix, Oracle, and Sybase
servers. If you’re working on a Windows platform, WebObjects also
provides an ODBC adaptor for use with ODBC-compliant database
sources.

1. In the wizard panel, choose the adaptor for your database.
2. Click Next.

A login panel for the selected adaptor opens. Different databases
require different login information, so each database’s login panel
looks different. Shown below are the login panels for the ODBC and
Oracle adaptors, for use with ODBC-compliant database servers (such
as Microsoft Access) and Oracle database servers, respectively.

FleCusmGrancs W isohing Catm 5 piaos |

[5 ot e | Mg Dwsiosplion
(M oz | [
Feantak Situm

h-.l

A Machrss Dsla Sowcs napecc b far reschne, and cannol be thased.
W'mmﬂﬁlﬁmhnw Dfthe rashnd, " Tasted” ety
sxncez canbe uoed by sl uon an s eschrm. or by s ovderevsds oeves

. N

=————————— |
ORACLE' jisius

Sarver 0| CACL
User flame Ih-'l-:h'.ms
Password |

67

Chapter 3

Creating a WebObjects Database Application

68

3. Complete the login panel.

Specify the connection information you provided when you created and

populated the Movies database. Post-Installation Instructions provides more
information.

4. Click OK.

When you use the wizard to create a model file, the wizard uses the adaptor you
specify to connect to your database. With the information you specified in

the adaptor’s login panel, the adaptor logs in, reads the database’s schema
information, and creates a model. The wizard uses your answers to the questions
in the next several pages to configure that model.

Choosing What to Include in Your Model

In this next wizard page, you can specify the degree to which the wizard
configures your model.

WehObjects Application Wizard
A f Choose what to include in your model.

A primany Rey 15 8 columi G Combitalion or colims Whose
to all entities Vaiies are gliarahleed o uniguely idenlily each row i 2
aatabase tnbie.

[V &5k about relationships Aliows yow io specilly reicrential infegiily fiies 1oy

FELENGISIES.
v &sk ahout stored Aliows you lo choose stored procedires defined in Hhe
procedures database ([{Fany) o fnchide i powrnode!.
¥ Use custom enterprize Mags customn entenpise object classes 1o entifies iy i imoael.
ohjects Tive WiZard assumes iral the custon classes have e saime
fiine 25 Melrentities. (Vou have o cresfe the ciasses
Voirseif)

Cancel | < Back Mext = | Finish |

The basic model the wizard creates contains exzities, attributes, and relationships.
An enrity is the part of the database-to-object mapping that associates a database
table with an enterprise object class. For example, the Movie entity maps rows
from the MOVIE table to Movie objects. Similarly, an a#tribute associates a

database column with an instance variable. For example, thetitle attribute in the

Movie entity maps the TTTLE column of the MOVIE table to thetitle instance
variable of Movie objects.

Designing the Main Page

A relationship 1s a link between two entities that’s based on attributes of the
entities. For example, the Movie entity has a relationship to the MovieRole
entity based on the entities’ movield attributes (although the attributes in this
example have the same name in both entities, they don’t have to). This
relationship makes it possible to find all of a Movie’s MovieRoles.

How complete the basic model is depends on how completely the schema
information is inside your database server. For example, the wizard includes
relationships in your model only if the server’s schema information specifies
foreign key definitions.

Using the options in this page, you can supplement the basic model with
additional information. (Note that the wizard doesn’t modify the
underlying database.)

1. Check the “Assign primary keys to all entities” box.

[+ Annign prirony Eegn A DYOTATY I ST NI X R W
0 al anitieg AR N U Je WU SR S0k AW &
Faradmne S

Enterprise Objects Framework uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row.
T'herefore, you must assign a primary key to each entity you use in
your application. The wizard automatically assigns primary keys to the
model if it finds primary key information in the database’s schema
information.

Checking this box causes the wizard to prompt you to choose primary
keys that aren’t defined in the database’s schema information. If your
database doesn’t define them, the wizard later prompts you to choose
primary keys.

2. Check the “Ask about relationships” box.

F Ak il iedabionehipn AR 00 B0 SRRc MEiar STy e o
PR

If there are foreign key definitions in the database’s schema
information, the wizard includes the corresponding relationships in the
basic model. However, a definition in the schema information doesn’t
provide enough information for the wizard to set all of a relationship’s
options. Checking this box causes the wizard to prompt you to provide
the additional information it needs to complete the relationship
configurations.

69

Chapter 3

Creating a WebObjects Database Application

10

3.

Uncheck the “Ask about stored procedures” box.

1™ dsil b shora d Alpn oo i Gl Sy v aades Ay e
oG edurag b [S| E AR W G o'

Checking this box causes the wizard to read stored procedures from the
database’s schema information, display them, and allow you to choose
which to include in your model. Because the Movies application doesn’t
require the use of any stored procedures, don’t check this box.

Uncheck the “Use custom enterprise objects” box.

[sk Cuskamn ekipHie S SLGR e O e 0 eI (0 e !
ohiaciz Tha W aszumes V! e cunniom Sgses ey 2 e
Vo - i, b B i et M cladies

FRNTOH]

An entity maps a table to enterprise objects by storing the name of a
database table (MOVIE, for example) and the name of the corresponding
enterprise object class (a Java class, Movie, for example). When deciding
what class to map a table to, you have two choices: GenericRecord or a
custom class. GenericRecord is a class whose instances store key-value
pairs that correspond to an entity’s properties and the data associated with
each property.

If you don’t check the “Use custom enterprise objects” box, the wizard
maps all your database tables to GenericRecord. If you do check this box,
the wizard maps all your database tables to custom classes. T'he wizard
assumes that each entity is to be represented by a custom class with the
same name. For example, a table named MOVIE has an entity named
Movie, whose corresponding custom class is also named Movie.

Use a custom enterprise object class only when you need to add business
logic; otherwise use GenericRecord. The Movies application uses
GenericRecord for the Movie entity and custom classes for the Talent and
MovieRole entities. Later on, you’ll use EOModeler to specify the custom
classes.

Click Next.

Designing the Main Page

Choosing the Tables to Incdude

1. Inthe wizard panel, select MOVIE, MOVIE_ROLE, and TALENT in
the Tables browser.

Wazllsjectc Applicatns Wieand

’sf Choose the tables to malude incopos model

/ Shift-click to select
more than one table.

ﬂ-j—— Click to select all the tables.
 Bolect et et (Click to deselect all

the tables.

4]

Canisl = Bk | L=l > | T |

The wizard creates entities only for the tables you select. Since

the Movies application doesn’t interact with any of the other

tables (DIRECTOR, PLOT_SUMMARY, STUDIO, and
TALENT_PHOTO), you don’t need to include them in the model.

2. Click Next.

(] (] L]
Specifying Primary Keys
If you are using a database that stores primary key information in its
database server’s schema information, the wizard skips this step. The
wizard has already successfully read primary key information from the
schema information and assigned primary keys to your model.

However, if primary key information isn’t specified in your database server’s
schema information (as with Microsoft Access), the wizard now asks you to
specify a primary key for each entity.

n

Chapter 3 Creating a WebObjects Database Application

WebObjects Application Wizard

A f Choose the primary key for Movie.

GHITGIES | Yiou Ca SHRO0SE more Harn
category 2l one atmpute irtve pitman fey
dateReleased 8 compoiing.
language
moviald Shift-click to select more
rating than one attribute.

revenue
studiold
title

H

Cancel | < Back | MNext = I Finish

1. Select movield as the primary key for the Movie entity.
2. Click Next.
3. Select both movield and talentld as the primary key for the MovieRole entity.

MovieRole’s primary key is compound, that is, it’s composed of more than
one attribute. Use a compound primary key when any single attribute isn’t
sufficient to uniquely identify a row. For MovieRole, the combination of
the movield and talentld attributes is guaranteed to uniquely identify a row.

4. Click Next.
5. Select talentld as the primary key for the Talent entity.

6. Click Next.

Specifying Referential Integrity Rules

If you’re using a database that stores foreign key definitions in its database
server’s schema information, the wizard reads them and creates corresponding
relationships in your model. For example, Movie has a to-many relationship to
MovieRole (that is, a Movie has a vector of MovieRoles), and Talent has a
to-many relationship to MovieRole. The wizard now asks you to provide
additional information about the relationships so it can further configure them.

12

Designing the Main Page

/ Spealty referential integrity nies for Movie's movieRoleArmmy et |y this example, the relationship
k refationship. name is movieRoleArray, but
the name is dependent on the
adaptor you're using.

F+ Fdoee i mene He (5 ol e R e B e B
P rrskaRDiG Dpacis. RN AR AYOY TR, St AR KR D
Sarmimry
Wl v i i,

T Sk MG e T A B0 ol

i Emcain Edicki & G vt B (iU Siods Gbvectd

r Oy o et et o o e ot 0 e ey
TR Efed

Canisl = Bk | L=l >] T |

If foreign key definitions aren’t specified in your database server’s schema
information (as with Microsoft Access), the wizard hasn’t created any
relationships at all, and it skips this step. You’ll add relationships to your
model using EOModeler later in this tutorial.

In the first relationship configuration page, the wizard asks you about
Movie’s relationship to MovieRole. The name of the relationship is
dependent on the adaptor you’re using.

1. Check the “Movie owns its MovieRole objects” box.

- Floeis oens s o T o e
FFET ST, R AR s i

Sarskans

"This option specifies that a MovieRole can’t exist without its Movie.
Consequently, when a MovieRole is removed from its Movie’s vector
of MovicRoles, the MovieRole is deleted—deleted in memory and
deleted in the database.

13

Chapter 3

Creating a WebObjects Database Application

14

2.

6.

Choose Cascade.

Wi Mavi: b5 S tod.
F~ rs i e R s Mo Ko
rF Carcaia] it & G (WO VB0 T
 Deny v pevel o i b a0 A any

RGBT

This option specifies what to do when the source object (the Movie) is
deleted. The cascade delete rule specifies that when a source object

is deleted, the source’s destination objects should also be deleted—again,
deleted in memory and correspondingly in the database.

Click Next.

Now the wizard asks you about Talent’s relationship to MovieRole.
Check the “Talent owns its MovieRole objects” box.

Choose Deny.

The deny delete rule specifies that if the relationship source (a Talent) has
any destination objects (MovieRoles), then the source object can’t be
deleted.

Click Next.

You’re done with the model configuration part of the wizard. The rest of the
wizard pages are to help you configure your application’s user interface.

Choosing an Entity

In this page, the wizard asks you to choose the entity around which the
Main component will be centered. Your Main component centers around
the Movie entity.

1.

2.

Select the Movie entity.

Click Next.

Designing the Main Page

Choosing a Layout

The wizard provides several page layout options for formatting objects

fetched from the database.

1.

Choose Selected Record.

2. Choose Matching Records.

)sj Choose alayo

Tide

Fad 1]

Fd 2]
0L —

& Bl il i ord
I~ Table

7 [Aspiery A Facgm:

r Wskchim Bacons |
 Pegnated [parFam

A preview of the page is an
approximation of what the
finished page will look like
given your choices. (The
number of fields and items
isn't necessarily the exact
number that will be in the
finished page.)

The wizard generates atitle
based on your chosen
entity.

Specifies that the page will
have a way to select a
record from a list and a
way to edit that selected
record.

Specifies that the page will
have a way to specify
search criteria.

Based on your specifications, the wizard shows you a preview of the
page it will generate. To see how the wizard’s preview corresponds
with the actual page the wizard will create, the finished page is shown

below.

15

Chapter 3

Creating a WebObjects Database Application

16

Search for Movies

S cify which Mowes t= dsplay bslow

fifle: 1
cabagery: |
rating |

etz |

Chek o bak 1o select that fosmes

tile [Apocnbpes How

category |Cireme

ratng [F

dateBFeleased |01 00,97

reveTIE [0
= = HSH
raari e | | Swario Calsin

b

This is the query part, where users
type search criteria. Clicking Match
fetches movies that meet the criteria
and displays their titles in the
repetition part in the middle of

the page.

This is the repetition part. Clicking
a movie title selects the movie and
displays it in the editing part at

the bottom of the page.

This is the editing part, which
displays information about the
selected movie. You can use this part
to edit or delete the selected movie,
to create a new movie, and to save
your work.

There are three parts to this page: the query part (at the top of the page),
which contains fields into which users provide search criteria; the repetition
part (in the middle of the page), which contains a list of matching records
fetched from the database; and the editing part (at the bottom of the page),

which allows you to make changes to the selected record.

3. In the wizard panel, click Next.

Choosing Attributes to Display

The next step is to choose which of the Movie entity’s attributes to display in

the editing part at the bottom of the page.

1. Move attributes from the Don’t Include list to the Include list.

Designing the Main Page

Wasllsjectc Applicatns Wieand

’sf Choose attribistes to display.

Double-click an attribute to

move it to the Include list.
[% i isries (T
T Firibarian OR
[T - [=| e =
M cakagny Select an attribute...
kil ratng

Breuage i dakafel eased

L
IS

...and click here to move it.

| |
L] &l £

Canisl | = Bk L=l > |

The order in which you add the attributes determines the order in

which they appear on the page, so add them in the following order:title,
category, rating, dateReleased, and revenue.

Don’t add any of the remaining attributes (language, movield, and studiold).

They don’t have meaning to users, and should not be displayed in
the page.

2. Click Next.

Choosing an Attribute to Display as a Hyperlink

You now need to specify the attribute used in the repetition part of the page
to identify each record. This attribute will be displayed as a hyperlink.

Clicking the hyperlink displays the corresponding record in the detail
part of the page.

1. Add the title attribute to the Include browser.

2. Click Next.

Choosing Attributes to Query On

Specify the attributes to display in the query part of the page. The wizard
creates search criteria fields for each of the attributes you choose.

1. Add the title, category, and rating attributes to the Include browser.

2. Click Finish.

11

Chapter 3

Creating a WebObjects Database Application

18

When the wizard finishes, your new project is displayed in Project Builder. The
wizard has produced all the files and resources for a fully functional, one-page
application. All you need to do before running your Movies application is

build it.

Running Movies

Build and run the application.

tHe
category

ratng

TEERTE

Search for Movies

Sperify which Mowes te Saplay bslow

fifle: 1
cabegery: |
ratrg |

e

Chick o bk to select that fosms

[apocnbpee How

[Cirmm

[F

dabeBFeleased |0 AH097

EECTI4 y,

I’ / - = /
=S| 51

Type matching criteria. A database string
matches if it begins with the string in the text
field. For example, strings match “The” if they
start with the string “The”.

Click here to fetch and return matching
movies.

Click a movie to select it and display its
information below.

Use these text fields to edit the information
about a movie.

Click here to create a new, empty movie.

Click here to delete the selected movie.

Click here to save your work in the database
(add the new movies you inserted, remove the
movies you deleted, and save changes you
made to existing movies).

Experiment with the application by entering different search criteria. Insert,
update, and delete movies. Ity entering dates with different formats, such as:

* 6/7/97

e June 7, 1997

¢ today

Examining Your Project

Examining Your Project

Whenever you create a new project, Project Builder populates the project
with ready-made files and directories. What it includes depends on the
choices you make in the wizard, so this project has a set of files different
from those of the GuestBook project.

Like GuestBook, the Movies project contains a Main component (Main.wo)
and classes (Application.java, Session.java, and Main.java). It also includes some files
that the GuestBook doesn’t have: a model file and images used by the Main
component.

In Project Builder, navigate to the Movie project’s Resources category. This
is where the model, named Movies.eomodeld, is located. Later in this tutorial
you’ll use EOModeler to open the model and enhance it.

<Aoo 2 3
— CrF o pe W be'v ol nd

‘Weh o ranis O - =]

Clasies B

Headars [

O 1 S0 L2 i]

el ST P S T8

subproiecl: U

S ppodting F il L]

Frameesite aT ;I ;I

L =

Navigate to the Web Server Resources category. This is where your
project’s images are located: DBWizardinsert.gif, DBWizardUpdate.gif, and
DBWizardDelete.gif, for the “Insert/New,” “Save to database,” and “Delete”
buttons, respectively.

The biggest difference between the GuestBook and Movies projects are
their Main components. Whereas the Main component you created for the
GuestBook project was empty, the Main component for the Movies project
contains a fully functional user interface. Also, the Main.java class already
contains code that supplies the component with behavior. In the next
sections, you’ll examine Movies’ Main.wo component and its Main.java class.

19

Chapter 3

Creating a WebObjects Database Application

Examining the Variables

1.

Double-click Main.wo in Project Builder’s WebObjects Components category
to open the Main component in WebObjects Builder.

There are four variables in the object browser: the application and session
variables that are available in all components and two others, movie and
movieDisplayGroup.

"T'he movie variable is an enterprise object that represents a row fetched from
the MOVIE table. movieDisplayGroup is a display group—an object that interacts
with a database, indirectly through classes in the Enterprise Objects
Framework. Display groups are used to fetch, insert, update, and delete
enterprise objects that are associated with a single entity. movieDisplayGroup’s
entity is Movie, which you specified in the wizard’s “Choose an entity”

page.
In Project Builder, look at the class file Mainjava to see how movie is declared.

The movie declaration (shown below) declares movie to be an
EnterpriseObject—a Java interface that describes the general behavior that
all enterprise objects must have.

/** @ypelnfo Movie */ protected EnterpriseObject novie;

At run time, movie is a GenericRecord object. Recall that GenericRecord
is used to represent enterprise objects unless you specify a custom class.
Since you didn’t check the “Use custom enterprise objects” box in the
wizard’s “Choose what to include in your model” page, your application
defaults to using GenericRecord for all its entities.

The comment (/ ** @ypel nfo Mvie */)isused by WebObjects
Builder to identify movie’s entity (Movie). Knowing the entity allows
WebObjects Builder to display movie’s attributes (category, dateReleased, and
so on). You can see movie’s attributes if you select the movie variable in the
WebObjects Builder’s object browser.

In Project Builder, examine movieDisplayGroup’s declaration in Main.java.

The declaration (shown below) declares movieDisplayGroup to be a
DisplayGroup.

protected D splayG oup novi eD spl ayG oup;

Examining Your Project

Also note the comment explaining how movieDisplayGroup is initialized.
"The Mainjava class doesn’t have any code to create and initialize the
display group. Instead, it’s instantiated from an archive file, Main.woo,
that’s stored in the Mainwo component. You shouldn’t editwoo files by
hand; they’re maintained by WebObjects Builder. The woo file
archiving mechanism is described in more detail later in “Specifying a

Sort Order” (page 86).

Examining the Bindings

Now examine the bindings of your Main component in WebObjects

Builder.

Eﬂrdi for Movies

S i e A e B ki BT

|

—

g [l mLadinne, qurmaton Hily

calenany iml.-l:ll.ml.l'\.i.'.r\a.p quardintch. cabsgary

raire:

i sl es FETaD uetyhetoh. Eeking

[Fdaich®|

R DL T 8l o B D

[l Lo dlaplresEn pts | = wrvs|
|:|I ll:ln-ul kiklm I'ﬁ

[iml.-l:ll.ml.rﬂ.'.m.p o Lo bedh jact. title

L Epi iml.-l:ll.ml.rﬂ.'.m.p malacteddh jact . oonbegary

aling iml.-l:ll.ml.rﬂ.'.m.p o L bedh jact. rating

el F i =i 8 e iml.-l:ll.ml.rﬂ.'.m.p o Lo bedh jact . deteRalanssd

T4 G Lk [Sreialimlrron. slecbeddh jct . T

=5 = &
Frmrifdrs Zxmin Cudifn
Auskan

E

Everything within this gray
box is in a form.

The gray “shadow” on
this text field indicates that
it's selected.

This is a repetition.

Everything within this gray
box is in the repetition.

This gray box identifies
another form.

This is a table with five rows
and two columns.

This text field is in a
table cell.

This is a WOImageButton.

Remember that you can use WebObjects Builder’s Inspector to see the
bindings for an element’s attributes. Simply select the element to inspect,

and click the ﬂ| button to open the Inspector.

81

Chapter 3

Creating a WebObjects Database Application

82

Bindings in the Query Part

In the query part of the component, movieDisplayGroup.queryMatch.title is bound to the
Title text field. There are similar bindings to the Category and Rating text
fields. The queryMatch bindings allow users to specify search criteria to use when
movieDisplayGroup next fetches movies. The Match button is bound to
movieDisplayGroup.qualifyDataSource, which actually performs the fetch.

For example, to display only R-rated comedies, a user types “Comedy” in the
Category text field, types “R” in the Rating text field, and clicks the Match
button. movieDisplayGroup then refetches, selecting only movies whose category
values are set to Comedy and whose rating values are set to R.

Sreacthy which Movias o depl sy el ey

™ el apd mylr oo uar st chi bkl
oty et e Len B D et R O, Dok £y

rang iml.-l?ll.q:l.n-:r\-m.p qardinbch. rating

ki |

Bindings in the Repetition Part

In the repetition part of the component where matching movies are listed,
movieDisplayGroup.displayedObjects is bound to a repetition. More specifically,
displayedObjects is bound to the repetition’s list attribute, providing a vector

of movies for the repetition to iterate over.

"T'he movie variable is bound to the repetition’s item attribute to hold each movie
in turn, and movietitle is bound to the string element inside the repetition. These
bindings produce a list of movie titles.

T T T A e Displays the binding for the
/ repetition’s list attribute.
PO L 0 LR 0 LS Bt |] | Displays the binding for the
[[ncvim. Ear1n [B9 \ repetition’s item attribute.
5 Displays the binding for the

string’s value attribute.

The repetition’s string element is enclosed in a hyperlink. By clicking a movie
title, the user selects the corresponding movie.

Examining Your Project

1. Inspect the hyperlink.

Its action attribute is bound to the action method selectObject.

e T T - |
Beq- @2

| ¥
ake B || Diymasic Irspechar i |
pinirste [Emteg]
o1 SERECh =

ra ik

LI T Hear] (T Bt
il

ST HBTRE |

AL L]

L

2. Look in the Main.java class to see how selectObject is implemented.

The method (shown below) simply sets movieDisplayGroup’s selected
object to the movie the user clicked.

public void sel ectject() {
novi eDi spl ayG oup. sel ect Obj ect (novi e) ;

}

Bindings in the Editing Part

The text fields in the editing part are all bound to attributes of the
movieDisplayGroup’s selectedObject—the movie on which the user clicked.

"Typing new values into these fields updates the Movie enterprise object.
"To actually save the updated values to the database, the user must click the
“Save to database” button.

1 [iml.-l:u.ml.n-ir\-m s Lleciwdlh ject. titla
i gy |m|.-l:-|.ml.n-ir\-m|: salactbeddh ject . cutegars
Tl iml.-l:u.ml.n-ir\-m ma Lec twdh ject . rating
phaba A el g nd |m|.-l:-|.ml.n-ir\-m|: wa Lect=dlh ject . dulafalanssd
T i L iml.-l:u.ml.n-ir\-m ma Lec twdh ject . rareamus
— - —
E ’ - -
-—
roarifirs Exailn Culih
dubdam

83

Chapter 3

Creating a WebObjects Database Application

84

1.

Inspect the middle image button.
Its action attribute is bound to the action method saveChanges.
Look in the Main.java class to see how saveChanges is implemented.

The method (shown below with comments omitted) simply saves any
changes that have been made to movieDisplayGroup’s objects to the database.

public void saveChanges() throws Exception {

try {
thi s.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {
Systemerr.println("Cannot save changes ");
t hrow excepti on;

}

this.session() returns a Session object that represents a connection to the
application by a single user. A Session object provides access to an
EditingContext object. The expression

thi s.session().defaultEditingContext().saveChanges();

sends a saveChanges message to the Session’s defaultEditingContext. This default
EditingContext object manages graphs of objects fetched from the
database, and all changes to the database are saved through it. For more
information, see the EditingContext class specification in the Enterprise
Obyjects Framework Reference.

An EditingContext’s saveChanges method uses other Enterprise Objects
Framework objects to analyze its network of enterprise objects (Movie
objects referenced by the application) for changes and then to perform a set
of corresponding operations in the database. If an error occurs during this
process, saveChanges throws an exception. Main.java’s saveChanges method simply
raises the exception, having the effect of returning a diagnostic page. You
could return an error page that explains the reason for the save failure
instead, but the application in this tutorial uses the default behavior.

Inspect the first and third image buttons to see what theiraction attributes are
bound to.

They are bound to movieDisplayGroup.insert and movieDisplayGroup.delete,
respectively. The DisplayGroup insert method creates a new enterprise
object, then inserts it into the display group’s list of objects just past the
current selection. The DisplayGroup delete method deletes the display

Refining Main.wo

group’s selected object. These changes happen only in memory—not
in the database. To actually insert a new row in the database (or delete
a row), the user must click the “Save to database” button, invoking
saveChanges on the session’s EditingContext. The editing context
analyzes the enterprise objects in memory; determines if any objects
have been added, updated, or deleted; and then executes database
operations to sync the database with the application.

You may have noticed that your application doesn’t list fetched movies in
any particular order. Also, when you insert a new movie, it appears in the list
of movies as a blank line.

A newly inserted movie doesn’t have
a title set, so it appears in the list
of movies as a blank line.

11 3

I
Cabegery |
ko I

I
I

arePeleimed

PRV

i i | | Swein Lol

In this section you’ll tidy up the user interface to fix these things and a few
others. Specifically, you'll:

e Configure movieDisplayGroup to sort the movies it displays.
e Assign default values to new Movie objects.
e Change the way that dates and numbers are displayed.

You can also put the query part of the page in a table and capitalize
Main.wo’s text field labels—for example, use “Title” instead of “title”
and “Date Released” instead of “dateReleased.”

85

Chapter 3

Creating a WebObjects Database Application

86

Specifying a Sort Order

You can change your application to sort movies alphabetically without writing
any code. Display groups manage sorting behavior, and WebObjects Builder
provides a Display Group Options panel for configuring this and other
characteristics of display groups.

1. Double-click the movieDisplayGroup variable in the object browser.

The Display Group Options panel opens for configuring movieDisplayGroup.

[reaplap Gioresp (O ples=a

Eriity: |l-\.1c|l\.1g- j
Wi gk o Tsatad

" Hae derfall ddabs pours

| |

| |

Butng P Choose an attribute to sort on.
ErdTha§ i I:-.'l.l:rrl-:l 1] H
1% S0 G H) =t Select this option to sort from ‘A'to ‘2.
n “m Hm At L]
e # J " [mgramding

[Feichae an lasd ™ bl BiEad

Paved | cance | ok |

2. Select the title attribute in the Sorting pop-up list.
3. Select Ascending.
4. Click OK.

WebObjects Builder stores your settings in an archive that specifies how to
create and configure movieDisplayGroup at run time. T'he archive is stored inside your
Main component in a file named Main.woo. You can'’t see the file from Project
Builder because you’re not meant to edit it directly, but WebObjects Builder’s
object browser shows you which of your component’s variables are initialized
from the archive (or woo file) so you don’t have to view its contents directly.

Refining Main.wo

An image in this column means that the variable can be initialized

/ ; "
e = from the component’s archive.
l_:::"' A ¥ means that initialization parameters are already set. The variable
o mED kRl is created and initialized from the archive as a part of the component's
initialization.
8 BT P i L
seleciohiert A= means that no initialization parameters have been set, and so

the variable isn't automatically created. Double-click the variable to

configure it and add it to the archive.

Specifying Default Values for New Enterprise Objects

When new enterprise objects are created in your application, it’s common
to assign default values to some of their properties. For example, in your
Movies application it makes sense to assign a default value for thetitle
attribute so a new movie won’t be displayed in the list of movies as a blank
line.

You could write an action method for the Insert/New button instead of
binding it directly to the display group insert action method. In the custom
action, you would create a new Movie object, assign default values to it, and
then insert the new object into the display group. However, there are two
additional ways to specify default values for new enterprise objects, without
making explicit assignments:

e Assign default values in the enterprise object class.
e Specify default values using a display group.

For a particular situation, one of the approaches is usually better than the
other. If the default values are intrinsic to the enterprise object, assign them
in the enterprise object class. For example, consider a Member class with a
memberSince property. It’s likely that you would automatically assign the
current date to memberSince instead of forcing a user to supply a value. You'll
see how to use this technique in “Adding Behavior to Your Enterprise
Objects” (page 117).

On the other hand, if the default values are specific to an application or to a
particular user interface, explicitly initialize the object in code or specify the
default values using a display group. In the Movies application, the need for
default values is motivated by Main’s user interface: you need to provide a
default value so users can tell when a newly inserted record is selected. In
another situation, you might not want a new movie to have a default title;
you might instead want a new movie’s title to be blank.

87

Chapter 3

Creating a WebObjects Database Application

The Movies application specifies default values for newly created Movie
objects using the display group, movieDisplayGroup.

1.

Open Main java in Project Builder.

2. Add the following constructor:

public Main() {
super () ;
Mut abl eHasht abl e def aul t Val ues = new Mt abl eHasht abl e() ;
def aul t Val ues. put ("title", "New Mowvie Title");
nmovi eDi spl ayGr oup. set | nsert edoj ect Def aul t Val ues(def aul t Val ues) ;

}

This method assigns the value “New Movie Title” as the default value for
a new movie’s title accribute. When movieDisplayGroup inserts 2 new movie (as it
does when a user clicks the Insert button), it creates a new movie and
assigns this default value to that movie.

Setting a Date Format

"To change the way that dates are displayed, you assign a date format to the
element that displays the dates.

1.

Inspect the dateReleased text field, which is near the bottom of the Main
component window.

Notice that the text field has a dateformat attribute that is bound to the string
“%m/%d/%y”. This binding tells the text field that it’s displaying dates
and describes how to format them. The %m conversion specifier stands for
month as a decimal number, %d stands for day of the month, and %y
stands for year without century.

Change the dateformat value to the string (including the quotes)" % %b %" .

"This date format displays dates such as 3 Sep 1997. The %b conversion
specifier stands for abbreviated month name, and %Y stands for year with
century. You can create your own date formats with any of the conversion
specifiers defined for dates. For more information, see the CalendarDate
class specification in the Foundation Framework Reference.

Refining Main.wo

Jl0|@| B
Elp [l = 5]]
-
e e (=OTo e Dt B
Coaki pldaplsyireuy . anlackeclb ek | cxbegery
= e o B T
Hﬂng sicsasldapl s lr oy anlactadht mck rakirg ;I -
Dl o b et I-H-'ﬂll:ﬂlp\lwu‘- sulackecDb fack ot ePs]lesyed
F & i L Imﬂ:u:p\llﬂrup :l]l:':l;b:l:': CENVEFLE i ' Dlﬂhhlr@h‘:‘hril
AT 8 o Altriimte
= =5 & CTCTvi—E
rmrifirr Sxal Cuiin i
Hsina = Ll e
v alzi F T A F TR T T o
r
wppliGation = |IELETEEE
il ol W2 ol 00 s
mvie 3 [o Ty
T | .o s
displaged Objecis
S B P s e Wi g kB s
seleciOhjact - merskiakch
|- | e
[Ewimamjivg]|
|

@ adavibn | Discamea |

Setting a Number Format

In addition to a dateformat attribute, text field elements also have anumberformat
attribute.

1. Inspect the revenue text field.

"The revenue text field’s numberformat attribute is bound to the string
“###.##”. This binding tells the text field that it’s displaying a number
and describes how to format it.

2. Change the text field’s numberformat binding value to the string (including
thequotes): " $ #, ##0. 00" .

Using this number format, the Movies application formats the number
1750000 as $ 1,750,000. For more information on creating number
formats, see the NumberFormatter class specification in the
Foundation Framework Reference.

89

Chapter 3

Creating a WebObjects Database Application

90

Optional Exercise

You can tidy up the user interface even further by putting the query part of the
page in a table to match the editing part of the page. Also, you should consider

capitalizing Main.wo’s text field labels.

"To put the query part of the page in a table, follow these steps:

1. Put the cursor inside the form element before the “title” text field.

2. In the Tables toolbar, click the E button to add a table.

A table with two rows and two columns appears. Initially the table spans
the entire width of the page. You'll resize it later.

When the table is first added, it’s in structure-editing mode. You can tell it’s
in structure-editing mode because it has Z buttons for adding rows and

columns and because it has F and ﬂ icons around each of the table’s

TOWS.

3. Inspect the new table.

* W W I Faar e ol

Click to add a table at

Fla Edi Fowal Elrart: Jo: ————
Z10|8] B[1| %] - =] o] 2]
ﬂPI = Hi

the insertion point.

Click to toggle the table

Search for Movies

3

between structure-editing
and content-editing modes.

/ SpEcEywhich Kavies i display bekrw

Gl
= 2T] =)

e [Frvidinladiron. qarmaton tiils

dersialim LedGroun . quardfintch. catagary

_'mbqr:bgrﬁbﬁ

caepony |
rating i sl e
o i adian |
L]
walwii Piba Opmianiz |
|__mvicbiphacmup]
BB harg e
sderiCipack
EBi Wi [stia i £

SR
Boeder:]
spanirg|
T

Bactgraund
1= Urepecned

|

Wit

Click to add a new row
of cells to the table.

e ik t0 inspect the
table itself.

= Type 0 to make the
table borderless.

= Unsp
s pi=sly
e lm =

Height
| F Unspactied

e LI pi=nis

™ He: Caplian

Select to make the
table resize to fit its
contents.

Refining Main.wo

9.

In the Table Inspector, choose Unspecified for the table width.

The table resizes to just fit its contents. When you change the cell
contents later, the table will resize again to accommodate the new
values.

Also in the Table Inspector, set the border to 0 to remove the
appearance of a border.

Click the @ button in the lower left of the table to add a new row to
the table.

Iype the labels Ti t | e: , Cat egory: ,and Rat i ng: in the cells in the
first column.

Recall that to put the table into content-editing mode, click the EJ
button or double-click in one of the table’s cells.

"The table doesn’t resize to accommodate new cell content until you're
done typing; that is, until you move the cursor out of the edited cell.

Cut and paste the query text fields into their corresponding table cells.

Just click on a text field to select it. When a text field is selected, it
displays with a gray “shadow.”

Delete the old query field labels.

When you’re done, the query part should look like this:

Tl Jineiafdspd s bavap . eryisboh title

Cajagary: jRovdedasplesfroan. etyhialoh pakegory

Astng jeovdeddspdesfroup. gerptishoh rating

hdaiche]

Now edit the text labels in the editing part of the page and put any other
finishing touches on the page that you want. The finished component
might look something like this:

91

Chapter 3

Creating a WebObjects Database Application

Search for Movies |

THE (R el dspl e B TaD . GEryston Tikle

Caigany [Swield S0l TrD . ety ietoh . oakegory

Aing [eeieldsples oD peryieton reting

I pstzhe|

=il . Al Lo pets] Rl e
Hﬂml Eiklm]'ﬂ

5

Tillic) rup . andactedhb ack Eitls

Cakag) g anlactadit mct . cabagoey

R adin g % tup . andack st ack . reking

Daka Fﬁnmiul,ml
F & i Ll) . =T :lJl:tld-:lb;l:t CEYETAE

roarifire Cxain Cuhih
dubaba

Adding the MovieDetuails Page

92

The MovieDetails page shows you the detailed information about a movie
you select in the Main page. For this to work, the Main page has to tell the
MovieDetails page which movie the user selected. The MovieDetails page
keeps track of the selected movie in its own instance variable. In this section,
you’ll:

¢ Create a new component whose interface you’ll create yourself.
* Assign Main’s selected movie to a variable in the MovieDetails page.
e (Create a way to navigate from Main to MovieDetails and back.

In the sections following this one, you'll extend the MovieDetails page to
display movie roles and the starring actors.

Adding the MovieDetails Page

Creating the MovieDetails Component

1.

2.

In Project Builder, choose File » New in Project.

In the New File panel, click the Web Components suitcase.
Type Movi eDet ai | s in the Name field.

Click OK.

In the wizard panel, choose None from the available assistance.
Choose Java as the component language.

Click Finish.

Open the new component in WebObjects Builder.

Storing the Selected Movie

Now, in the MovieDetails component, create a variable that holds the
application’s selected movie. Later on, you’ll add code to the Main.java class
that assigns Main’s selected movie to this variable.

1.

Choose Add Variable/Method from the pull-down menu.

Hare |[r=ectedkioae Type the variable name here.
Topa. = (e as gheen Select this.

" faray of .

7 Mulable pray of .

[et (Ch00SE MoVie.
ot o T o2 e

F Anmnshance varable

F A method reuming he vale Check each of these boxes.

e |

Caneal | S -|—— Click here when you're done.

Name the variable sel ect edMovi e.

Set the variable’s type to Movie.

93

Chapter 3 Creating a WebObjects Database Application

Movie isn’t actually a class; it’s an entity. It’s listed in the combo box as a
type along with entries for all the entities in your model. When you choose
an entity as the type for your variable, WebObjects Builder recognizes that
the variable is an enterprise object. Using information in the model,
WebObjects Builder can determine the entity’s corresponding enterprise
object class and the properties of that class.

4. Check the “An instance variable” box.

5. Check the “A method returning the value” box.
6. Check the “A method setting the value” box.

7. Click Add.

Navigating from Main to MovieDetuils

"To get to the MovieDetails page from the Main page, users use a hyperlink.
Clicking the hyperlink should set MovieDetail’s selectedMovie variable and then
open the MovieDetails page.

1. Add a hyperlink at the bottom of the Main component.

2. Replace the text “Hyperlink” with “Movie Details.”

a -
Rang I-C-\-JH'HN&-E-I TaiD . Al ML A0 BOE . FRing _I
Drnhe Fimb g o | oo B30 BB DAD B2 1ROE S0 BT dOLaRelRened
A .'-c--:uﬂ-nma-u Thif B B0 I POL . i
5 TR
Dl

Add the hyperlink below
the horizontal rule.

S

. T _-,../

3. Choose Add Action from the pull-down menu.

4. In the Add Action panel, type showDet ai | s in the Name field.
5. 'Type Movi eDet ai | s in the “Page returned” field.

6. Click Add.

7. Bind the showDetails action to the hyperlink’s action attribute.

9%

Adding the MovieDetails Page

8.

In Project Builder, modify the showDetails action to look like the
following:

publ i c Conponent showDetail s()

{
Movi eDet ai | s next Page =
(Movi eDet ai | s)application().pageWthName("MvieDetails");
Ent erpri seObj ect sel ection =
(EnterpriseCbject) novi eDi spl ayG oup. sel ect edObj ect () ;
next Page. set Sel ect edMovi e(sel ection);
return next Page;
}

T'his method creates the MovieDetails page and then invokes its
setSelectedMovie method with the movie that’s selected in the Main page.
The display group method selectedObject returns its selected object,
which, in the Main component, is set when a user clicks a movie title
hyperlink.

Designing MovieDetuails’ User Interface

Now lay out the user interface for MovieDetails. When you’re done, your
component should look like the following:

KMowvie Details

B [smlackadcydia kit 1a 0]

Calngng [salac tadiavia -\:ll.-lq-uru'ﬂ
Falinge R saleqtegurdis, ratingl 8

Dipfe Frinasmed; B [andnck scficein . detaFndasand |
Fasvmiigs [s laotagiorls possmnes B

Create a top-level heading with the textMovi e Det ai | s.

Recall that to create a top-level heading, you type the text of the

heading, select the text, click the — J button to add a heading element
around the text, and then use the Inspector to set the heading’s level,
as you did in “Using the Inspector” (page 22).

Below the heading, add a string element.

With the string element selected, add a heading.

95

Chapter 3

Creating a WebObjects Database Application

96

"This adds a new level 3 heading element around the string. The
MovieDetails page will show the title of the selected movie in this
heading.

Add labels and string elements to display the selected movie’s category,
rating, date released, and revenue.

Bold the labels.

Bind selectedMovie.title to the value attribute of the first string element (the one
in the heading).

Similarly, create bindings for the Category, Rating, Date Released, and
Revenue strings.

At the bottom of the page, add a horizontal rule.

Adding Date and Number Formats

String elements have dateformat and numberformat attributes just like text field
elements. Create bindings for the Date Released and Revenue strings so that
dateReleased and revenue values are displayed the way they are in the Main page.

1.

2.

Add the date format" % % %" to the Date Released string.

Add the number format" $ #, ##0. 00" to the Revenue string.

Navigating from MovieDetuails to Main

Now add a hyperlink to the MovieDetails page so users can navigate back to the
Main page from MovieDetails.

1.

2.

Add a hyperlink to the bottom of the page.

Label it Mbvi eSear ch.

Mml; B | smlact scficsin . detaPulesaed L@
e b [s L s Teresrees | (B

Hragvie 5rah B Add the hyperlink here.

Bind the hyperlink’s pageName attribute to the text (including the quotes)
" Mai n".

Recall that the pageName attribute is a mechanism for navigating to another
page without writing code. By setting the attribute to “Main”, you’re

Refining Your Model

telling the application to open the MovieSearch page when the
hyperlink is clicked.

Running Movies

Be sure that all your project’s files are saved (including the components in
WebObjects Builder), and build and run your application. In the Main page,
select a movie and click the Movie Details link. The MovieDetails page
should display all the movie’s information.

Refining Your Model

The model created for you by the wizard is just a starting point. For most
applications, you need to do some additional work to your model to make it
useful in your application. To refine your model so that it can be used in the
Movies application, you’ll ultimately need to do all of the following:

¢ Remove primary and foreign keys as class properties.

e Add relationships to your model if the wizard didn’t have enough
information to add them for you.

e Configure your model’s relationships in the Advanced Relationship
Inspector.

® Generate source files for the Talent class.

These steps are described in more detail throughout the rest of this tutorial.

Opening Your Model
1. In Project Builder, click the Resources category.
2. Select Movies.eomodeld.

3. Double-click the model icon.

[Q

‘Web Comparans
Clasiis

_uJ *g"| m— Double-click to
“ | — COF ronPage Wabe\C ovand open the model.

= - = |

LR T T R H T 4T
Subpmiecis =

Sainaivatnn Fllos u

97

Chapter 3

Creating a WebObjects Database Application

98

Project Builder opens your model file in EOModeler, launching EOModeler
first if it isn’t already running. EOModeler displays your model in the Model
Editor. It lists the entities for the tables you specified in the wizard—Movie,
MovieRole, and Talent.

ks amateHl — DV Tl Pogeiee by VEae TS b basse A T ube lad W Ubasve ol ro beh

bedsl et Bropadp [ock lrdes= Hap

1= 1 e e T e = B
o b |] e

| Tabinz | Bics B | 5|
i e = Mo FACOIYIE EC=enencRacor .
4 Wiie Fioie | M ieApie MOVIE_FROLE ECeGenercRacond
1D Terd ~ Teleni TALENT ECaGenencRecam

L Bdowwd Prooedires

~| i ol vt

Removing Primary and Foreign Keys as Class Properties

By default, EOModeler makes all of an entity’s attributes c/ass properties. When
an attribute is a class property, it means that the property is a part of your
enterprise object, usually as an instance variable.

You should mark as class properties only those attributes whose values are
meaningful in the objects that are created when you fetch from the database.
Attributes that are essentially database artifacts, such as primary and foreign
keys, shouldn’t be marked as class properties unless the key has meaning to the
user and must be displayed in the user interface.

Eliminating primary and foreign keys as class properties has no adverse effect
on how Enterprise Objects Framework manages enterprise objects in your
application.

1. In the left frame (or #7ee view), click the Movie entity.

The right frame switches from a view of the entities in the model to a view
of Movie’s attributes.

2. Click in the Class Property column to remove the # symbol for the
movield attribute.

3. Now repeat the previous step to remove studiold as a class property.

Refining Your Model

O gy somodel] — D:\Faursge ol Lot VW el e ols) T s

Jodal, £t Proparty Click an entity
= | . & =1| [in this frame to
= e T 51 T s 2 s 2
1@"3"‘5" / o L entity.
- clomn = & | @ | o | ‘o s | iEston -
g Pl +| & caegory HESEhing vaRiE]
G Tt & & dasFaewed RO sl en e DETE
1 ol Frodedleres & & lmngusge HSOecivsbynber | UK o
= B e 3] " —— Clickin an
& @ raimg HEShing WAL attribute’s Class
& @ ravene MEOecraHurher U] Property column
& @& rhejiak HEOecrsbunher | HUR toremove it as a
& @ e HEShing AR class property.
1

4. In the MovieRole entity, remove movield and talentld as class properties.

5. In the Talent entity, remove talentld as a class property.

Adding Relationships to Your Model

The Movies application uses two pairs of inverse relationships. The first
pair defines the relationship between the Movie and MovieRole entities,
while the second pair defines the relationship between the MovieRole and
"Talent entities. An Enterprise Objects Framework relationship is directed,
that is, a relationship has a source and a destination. Generally models
define a relationship for each direction.

1. Select the Movie entity.

"The right frame of the Model Editor shows the Movie’s relationships
as well as its attributes.

U0 Wekes. pemadedl — 0P sl Papewtebe\CameniVeiebllbisc A T utsislst, MRIED

echl it Propady ook Mwcons Help

e |) A ﬂ_iﬂﬁgi G |]]] B[=

[v
\ omm o= | @ | e | viden Class | Extaf-
14 Vicevie P * & calegary H55king VARS
G Tand # & maeAeieasesd H G Cakend alinles OAT
L Binred Proosdiues * B larguapgs HECwcimaMuaber HUK
= & & TOViED HEDecimaluber MUK
T b5 _':rJ

b— The selected entity's
relationships are
displayed here.

Your model’s Movie entity might have a different name than the
movieRoles relationship shown above. That’s because the wizard created

99

Chapter 3

Creating a WebObjects Database Application

100

your relationship, and the relationship’s name is dependent on the adaptor
the wizard used. Adaptors don’t all have the same naming convention for
to-many relationships. For example, the Oracle adaptor names Movie’s
relationship movieRoleArray instead of movieRoles.

If your Movie entity doesn’t have a movieRoles relationship, it means that the
database server’s schema information for your database didn’t have enough
information for the wizard to create them. You need to create them by hand
now. The next several steps explain how.

Choose Property » Add Relationship.

A new relationship named “Relationship” is added in the table view at the
bottom of the Model Editor. The new relationship is already selected.
With the relationship selected in the right frame of the Model Editor, click

the ﬂ| button (in the toolbar) to inspect the relationship.

Wl ekticna ep Rad ety — Don't change the relationship’s name, because EOModeler
- updates the name for you automatically when you connect
the Destination and Join properties.

hame:| Aeishiarzhip
Diasitinadiin
Midel: Rdidimn |

First select whether the relationship is to-one or to-many.

= Then select a destination entity.

Select a source attribute...

l——— ...and a matching destination attribute.

l—— When you're done, click here.

In the Inspector, select the To Many option.
Select MovieRole as the destination entity.
Select movield in the Source Attributes list.

Select movield in the Destination Attributes list.

Refining Your Model

10.

Click Connect.

EOModeler automatically renames the relationship based on the name
of the destination entity. For example, after connecting a to-many
relationship from Movie to MovieRole, EOModeler names the
relationship “movieRoles.” To-one relationships are named with the
singular form of the destination entity’s name. For example,
EOModeler names the inverse to-one relationship (from MovieRole to
Movie) “movie.”

If the wizard created your relationship and used a name other than
“movieRoles,” consider renaming the relationship. The rest of this
tutorial assumes that your relationships are named using EOModeler’s
naming convention.

Repeat the steps above to create the following relationships:
A to-one relationship named “movie” in the MovieRole entity where:

¢ 'The destination entity is Movie.
¢ The source attribute is movield.
¢ The destination attribute is movield.

A to-one relationship named “talent” in the MovieRole entity where:

¢ The destination entity is Talent.
¢ The source attribute is talentld.
¢ The destination attribute is talentld.

A to-many relationship named “movieRoles” in the Talent entity
where:

¢ The destination entity is MovieRole.
¢ The source attribute is talentld.
¢ The destination attribute is talentld.

Choose & in the toolbar pop-up list to switch the Model Editor to
Diagram View.

Use this pop-up list to switch to a different view.

Switches to Table View.

Switches to Diagram View.

Switches to Browser View.

101

Chapter 3

Creating a WebObjects Database Application

102

At this point your model has all the relationships it needs. The Diagram View
gives you an overview of the entities in the model and their relationships to
other entities.

Edorrie
Cakigary
dlakaFed s i |
lamuaga |
FriEd

raliig

T i L
FRDDd

i
iRk

1
-

i R

Ml e
raabar | | @ | #
eleid fael @ |

fil*d s -
1= 11 -

_“_I_' rcri R A Dl | -

Talent

frsitars &
litiara | | @ |
enld e @ |

L
-

You can also use the Diagram View to edit your model. Double-click an attribute
or relationship to change its name. To create a relationship and its inverse,
Control-drag from the relationship’s source attribute to its destination attribute.

Using the Advanced Relationship Inspector

There are several additional settings you use to configure a relationship’s
referential integrity rules. For these, use the Advanced Relationship Inspector.

1. Inspect Movie’s movieRoles relationship.

2. In the Inspector, click the Advanced Relationship button.

Siamier el Foalpiian ibds Inpperin

Badch Fauing ——

Bialeh Sa:| o |

Oplianakky
F Cplional
™ Mandalay

Cxkia Fuk
™ Hullly

F Cnsle
r Oeny
™ Mo Acion

Caates Danlinaion
Frit pagacka Primary Ky ™

Advanced Relationship button.

This should be selected.

= This box should be checked.

Refining Your Model

3. Ensure that the delete rule is set to Cascade.

If the wizard created relationships for you, the relationship’s delete
rule should already be set to Cascade. You specified this in the wizard.
If you created your relationships by hand, you’ll have to set the delete
rule yourself.

4. Ensure that the Owns Destination box is checked.

As with the delete rule, if the wizard created relationships for you, the
relationship’s Owns Destination box should already be checked. If you
created your relationships by hand, you’ll have to check this box
yourself.

5. Check the Propagate Primary Key box.

A relationship that propagates its primary key propagates its key value
to newly inserted objects in the destination of the relationship. In this
case, checking the Propagate Primary Key box means that if you create
anew MovieRole and add it to a Movie’s list of MovieRoles, the Movie
object automatically assigns its movield value as the value for the new
MovieRole’s movield property.

"T'his option is usually used with relationships that own their
destination. For more information on propagates primary keys, see
“Where Do Primary Keys Come From?” (page 103).

6. Ensure that Talent’s movieRoles relationship has its delete rule set to
Deny.

7. Ensure that Talent’s movieRoles relationship owns its destination.

8. Set Talent’s movieRoles relationship to propagate its primary key.

Where Do Primary Keys Come From?

Enterprise Objects Framework uses primary keys to identify enterprise
objects in memory, and it works best if you never change an enterprise
object’s primary key from its initial value. Consequently, applications
usually generate and assign primary key values automatically instead of
having users provide them. For example, the Movies application assigns a
movield value to a new movie when it’s created, and the value never changes
afterward. The Movies interface doesn’t even displaymovield values because
they aren’t meaningful to users of the application.

103

Chapter 3

Creating a WebObjects Database Application

Enterprise Objects Framework provides several mechanisms for generating and
assigning unique values to primary key attributes. By default, Enterprise
Objects Framework uses a native database mechanism to assign primary key
values. See the chapter “Answers to Common Design Questions” in the
Enterprise Objects Framework Developer’s Guide for more information.

The Movies application generates primary key values for Movie and Talent
objects using the default mechanism, but MovieRole is a special case because:

¢ MovieRole’s primary key is compound. The default behavior of generating
a primary key value using a native database mechanism works only on
simple (not compound) primary keys.

¢ A MovieRole’s primary key attributes, movield and talentld, must match the
corresponding attributes in the MovieRole’s Movie and "Talent objects. The
default mechanism generates new, unique values.

Instead of the default mechanism, Enterprise Objects Framework uses primary
key propagation to assign primary keys to MovieRole objects. By configuring
the Movie’s movieRoles relationship to propagate primary key, the Framework
knows to assign a new MovieRole’s movield to the same value as the movield of the
MovieRole’s Movie. Similarly, a new MovieRole’stalentld is set to the same value
as the talentld of the MovieRole’s Talent.

Setting Up a Master-Detail Configuration

104

So far your Movies application fetches, inserts, updates, and deletes only Movie
objects. Considered alone, a Movie object isn’t as interesting as it is when it’s
related to actors and roles. In this section, you’ll add MovieRole and Talent
objects to the Movies application.

The relationships defined in your model now come into play. Using Movie’s
movieRoles relationship, you can display the MovieRoles for the selected Movie.
In this type of configuration, called master-detail, a master display group holds
enterprise objects for the source of a relationship, while a detail display group
holds records for the destination. As individual records are selected in the master
display group, the detail display group gets a new set of enterprise objects to
correspond to the selection in the master.

Setting Up a Master-Detail Configuration

In the Movies application, the master-detail configuration is built around
Movie’s movieRoles relationship. The configuration is split across two pages in
the application. The master, movieDisplayGroup, is in the Main component,
while the detail is in MovieDetails.

In this section, you’ll:

e (reate and configure the detail display group.
e Extend the MovieDetails user interface to hold MovieRole and Talent

information.

Creating a Detail Display Group

You can create a detail display group several different ways. You can write a
declaration for it in Project Builder, or you can use WebObjects Builder’s
Add Variable/Method command. But the easiest way to create a detail
display group is by dragging a relationship from EOModeler into your
component, as described below.

1. In EOModeler’s tree view, expand the Movie entity.

. Mg ikl

L Bded Proosdaes

T Y P pgpstnd el A

SEecds Tuinsatst. ..] E3

o= | | | o (naess | Esti et
& @ colejory KNG Llals=
& & doieRalsad HSCalendarDos AT
& & lEnpsge HEDecmakunher | H

- ok HEDie sl Murher H.l'-'

i SR | _']_J

Click here to expand or
contract an entity.

[=] means that the entity
is already expanded. Click
the dash to contract the
entity.

means that the entity
can be expanded to
display its relationships.
Click the plus to expand
the entity.

If an entity has neither a
dash nora plus, the entity
has no relationships, and
therefore can't be
expanded.

2. Drag the Movie’s movieRoles relationship from the tree view into the
MovieDetails component’s object browser.

105

Chapter 3 Creating a WebObjects Database Application

)y mlmlalmlmlm
Movie Det

B mlactadioeia. titla|H]

Cateary H auleckedbiesan cetagery ;II .

(ETETHE mw:m:tlﬂwil
Uatn Retensed: (L salectadioria duteRalasssd| [

Fiezveaiva: j‘.. 1-¢J_¢-cl:_¢-cn-:n:|¢- Lheﬂ--e--.m i I-I' -II
i e]

R s Fodes
r
| spplicatian ;J calEgary
Bkl o Al i e

An Add Display Group panel opens.

TP s i e e WebObjects Builder assigns

a default name based on the
relationship name.

Carcel | rad | #ae v corgues_

3. In the Add Display Group panel, change the name to
nmovi eRol eDi spl ayG oup (remove the “s” from “Roles”).

4. Click Add and Configure.

The Display Group Options panel opens so you can immediately configure
the newly created display group.

106

Setting Up a Master-Detail Configuration

Identifies this display group as a detail display group.

Erity | 7|
kaskioTarial \
 Hoe ceriadl dds g e l—— You can't set the entity of a detail display group. The

entity is computed from the Master/Detail settings.

wiaskr Eniby. [rcum =
gt KBy v Fl i |

Sort MovieRole objects by roleName...

Butng
Endrias fier baich |-:| rake b =j—

Guakicaion: Prabx % = Pacaidig ——t— ..from ‘A to 7.

™ Casranding
F Faiches on ked hiorl Bpated
Check this box so the display group automatically
Favar] | Cancel] ak | fetches its objects.

Notice that the “Has detail data source” box is checked. This means
that movieRoleDisplayGroup gets its objects from a DetailDataSource object.

All display groups use some kind of daza source to fetch their objects. A
data source is an object that exists primarily as a simple means for a
DisplayGroup to access a store of objects. It’s through a data source
that a display group fetches, inserts, updates, and deletes database
records.

A DetailDataSource is a subclass of DataSource that’s intended for use
in master-detail configurations. A detail data source keeps track of a
master object and a detail fey. The master object is typically the selected
object in a master display group, but a master display group isn’t
strictly required. The detail key is the name of the relationship on
which the master-detail configuration is based. When a detail display
group asks its data source to fetch, the DetailDataSource simply gets
the destination objects from the master object as follows:

detai | Cbj ects = nast er Obj ect. val ueFor Key(det ai | Key) ;

In your master-detail configuration, the master object is the selected
Movie, and the detail key is movieRoles. When movieRoleDisplayGroup asks its
data source for its MovieRole objects, the detail DisplayGroup returns
the objects in the selected Movie’s movieRoles vector of MovieRoles.
Similarly, when MovieRole objects are inserted or deleted in
movieRoleDisplayGroup, they are added and removed from the master
object’s movieRoles vector.

5. Set the display group to sort alphabetically by roleName.

107

Chapter 3

Creating a WebObjects Database Application

108

6.

Check the “Fetches on load” box.

When “Fetches on load” is selected, the display group fetches its objects as
soon as the component is loaded into the application. You want this feature
in the MovieDetails page so that users are immediately presented with the
selected movie’s roles. In contrast, the Main page does not fetch on load; it
shouldn’t present a list of movies until the user has entered search criteria
and clicked Match.

Click OK.

In Project Builder, modify MovieDetail’s setSelectedMovie method to look like
the following:

public void set Sel ect edMovi e(Ent er pri seCbj ect newSel ect edMovi e) {
sel ect edvbvi e = newSel ect edMovi €;

/1 Add this line.
nmovi eRol eDi spl ayG oup. set Mast er Obj ect (newSel ect edMbvi e) ;

}

With this addition, whenever a user navigates to the MovieDetails page,
setSelectedMovie updates the movieRoleDisplayGroup’s master object so it displays
the corresponding MovieRole objects.

Adding a Repetition

Now you’ll extend the user interface of the MovieDetails component to display

the

actors in the selected movie. Because different movies have different

numbers of roles, you need the dynamism of a repetition element. When you're
done adding the repetition, your component should look like this:

Movie Details

Bl [andactadfcain tat1n |0H|

Calegnryg [3E{ sa LacLadtirein -:m-;an'.’i
Ry B s legtegurads, pating] 8

Dpis Foinpmedd; T [anlactacHcys . det sbnlasand |8
i [selectadrioyls poesnes| 1

Setting Up a Master-Detail Configuration

In the MovieDetails component window, add the bolded text Starring:
beneath the Revenue line.

Below the Starring label, add a repetition.
Replace the “Repetition” text with three string elements.

T'he strings should all be on the same line, so don’t type carriage
returns between them.

"Type a space between the first two strings and the word“ as ” (with a
space before and after) between the last two.

Add a carriage return after the last string.

L] L] O ®
Configuring a Repetition
Now configure MovieDetails’ repetition in a way similar to the way Main’s

repetition is configured. First you need to create a new variable to bind to
the repetition’s item attribute.

1.

Use the Add Variable/Method command to add a new variable, movieRole,
whose type is set to the MovieRole entity.

Don’t create set and get methods for movieRole. You won’t need accessor
methods because the variable is used only within the MovieDetails
component and shouldn’t be visible to any other classes.

Bind movieRoleDisplayGroup.displayedObjects to the repetition’s list attribute.
Bind movieRole to the repetition’s item attribute.

Bind movieRole.talent.firstName to the value attribute of the first string in the
repetition.

Bind movieRole.talent.lastName to the value attribute of the second string.

Bind movieRole.roleName to the value attribute of the last string.

109

Chapter 3 Creating a WebObjects Database Application

When you’re done, the repetition bindings should look like the following:

A | ey] e el b B pap 0 0 e et o | e el e
[l mavisRals. talant. firathiees | B [EEfmavisRale. talant Lusthess | 3L on (Bl novisRale. roLlsfess] B

=
Bitavie fpauch B .
"
app i cal on Ell novi Ell reitam H
s=gsiIn ralahare Iethiane
i A

¥ ronvvia Aol e0lisp baG rm p
na b i b

Running Movies

Be sure that all your project’s files are saved (including the components in
WebObjects Builder and the model in EOModeler), and build and run your
application. In the Main page, select a movie and click the Movie Details link.
Now, in addition to displaying all the movie’s information, the Movie Details
page should also display the movie’s roles and actors.

110

Updating Objects in the Detail Display Group

Updating Objects in the Detail Display Group

In this section, you’ll add the ability to insert, update, and delete movie
roles. The MovieDetails page will then look something like this:

Movie Details

Affer Hpars

Categary: Comedy

Rating: E

Tiade Heleased 23 Tap (P05
Bavewss: £ 2 300,000.00

Erasviag:
Ten Gar as 1 Click a role to select it and display its
Linda Fisremimo e i information in the editing part below.

Fosamna Arquetts s Barcy

Anmmone :i Use the browser to choose an actor for the
kiAo selected role.
;::s:muuhhm Edit the name of the selected role.
zshele AdpEni = /
Fele Name: [Jiie 1
] Click here to create a new, empty role.

i - i

H 1 H
[T fmwl " | [i=is

T

1 Click here to delete the selected role.

Click here to save your work in the database
(add the new roles you inserted, remove the
roles you deleted, and save changes you made
to existing roles).

Many of the features in this page are similar to features in the Main page,

but in this section you perform by hand the tasks the wizard performed for
you to create Main. Already you’ve learned how to create a DisplayGroup
variable and how to bind it to dynamic elements. In this section you’ll:

e Write code to update a display group’s selected object.
e (reate and configure a browser.
e (reate a custom enterprise object class.

* Configure image buttons to insert, update, and delete using display
group actions.

m

Chapter 3

Creating a WebObjects Database Application

112

Managing a DisplayGroup’s Selection

Remember how clicking a movie title in the Main page selects the
corresponding Movie object in movieDisplayGroup. MovieDetails has a similar
behavior for selecting a MovieRole object in movieRoleDisplayGroup.

First you need to add a hyperlink element around the repetition’s role name
string so that users can select a particular MovieRole. When a user clicks one of
the movie role hyperlinks, the application should select the corresponding
MovieRole object in the movieRoleDisplayGroup.

1.

2.

Select the repetition’s role name string element.

Click the Add WOHyperlink button in the Other WebObjects toolbar to
add a hyperlink element around the string,.

Now you need to create an action method to invoke when the hyperlink is
clicked.

Use the Add Action command in the pull-down menu to add an action
named selectObject, returning null.

Before you write the body of the selectObject method, bind it to the hyperlink
while you’re still in WebObjects Builder.

Bind the selectObject method to the hyperlink’s action attribute.
Now write the code for selectObject in MovieDetail.java.
Modify the selectObject action to look like the following:

publ i c Conponent sel ect Object ()

{

nmovi eRol eDi spl ayG oup. sel ect Obj ect (novi eRol e) ;
return null;

Updating Objects in the Detail Display Group

Adding a Form

Now lay out the user interface used to view and edit the selected
MovieRole. When you’re done, it should look like the following:

#
-
j e
Role Hame: WovieRoleDisplayGroup.selectedﬂbject.roleName
[@ovie Search(] -

1. Add another horizontal rule after the repetition.

2. Use the ™ button (in the “Dynamic form elements” toolbar) to add a
browser element between the two horizontal rules.
A form element is automatically created around the browser.

3. Beneath the browser, type the bolded textRol e Name: .

4. Add a text field.

5. Bind the text field to movieRoleDisplayGroup.selectedObject.roleName.

Adding a Talent Display Group

"T'he browser you just created is going to display a list of Talent objects. Like
a repetition element, a browser has list and item attributes. As the browser
moves through its list, the browser setsitem to the object at the current index.
The Movies application uses a display group to provide the browser with a
list of Talent objects, so now you need to create the new display group and
a variable to bind to the browser’s item attribute.

1. Use the Add Variable/Method command to create two new instance
variables:

o talentDisplayGroup, whose type is DisplayGroup
¢ talent, whose type is Talent

You don’t need to add set and get methods for the variables.

13

Chapter 3

Creating a WebObjects Database Application

114

2. Using the Display Group Options panel, assign talentDisplayGroup’s entity to
Talent.

Remember that to open the Display Group Options panel, simply
double-click the talentDisplayGroup variable in the object browser. The & icon
initially displayed next to the variable indicates that initialization
parameters have not yet been set.

3. Configure talentDisplayGroup to sort its objects alphabetically (ascending)
by lastName.

4. Configure it to fetch on load.

After you configure talentDisplayGroup, the object browser shows a ¥ icon
next to the variable.

The Movies application uses a display group to provide Talent objects, but you
could fetch the Talent objects from the database without one. Display groups
provide a simple way to fetch, insert, update, and delete enterprise objects
without writing much, if any, code. To get finer-grained control over these
operations, you can work directly with an EditingContext object. An editing
context can do everything a display group does and much more, but you have to
write more code to use one. For more information, see the EditingContext class
specification in the Enterprise Objects Framework Reference.

Configuring the Browser

In a way similar to the way you create bindings for a repetition, create your
browser’s bindings.

1. Bind talentDisplayGroup.displayedObjects to the browser’s list attribute.
2. Bind talent to the browser’s item attribute.
3. Bind talentlastName to the browser’s value attribute.

The value attribute tells the browser what string to display. For eachitem in
its list, the browser evaluates the item’s value.

The browser in the MovieDetails page should display the actors’ full
names, but there isn’t an attribute for full name. In the next section, you’ll
create a custom Talent class that implements afullName method, but for now
just use talent.lastName as the value attribute.

A browser also has a selections attribute that should be bound to a vector of
objects. A browser’s selection can be zero, one, or many objects; but in the

Updating Objects in the Detail Display Group

"Talent browser, the selection should refer to a single object.
Consequently, you need to add two methods to manage the browser’s
selection: one to return a vector containing the selected Talent and one
to set the selected Talent from a vector object.

4. Add the method talentSelection to the MovieDetails.java class as follows:

public | mutabl eVector talentSelection () {
Ent erpri seObj ect aTal ent;
Ent er pri seObj ect aMovi eRol e =
(EnterpriseCbject)novi eRol eDi spl ayG oup. sel ect edCbj ect () ;

if (aMovieRole == null) {

return null;
}
aTal ent = (Enterprise(hject)aMvieRol e. val ueForKey("talent");
if (aTalent == null) {
return null;
} else {

Enterpri seObject talentArray[] = {aTal ent};
return new | mut abl eVector (tal ent Array);

}

Because the browser expects a vector for its selections attribute, this
method packages the selected MovieRole’s talent object in a vector. If
the selected MovieRole object is null, talentSelection simply returns null to
indicate that the browser shouldn’t set a selection.

5. Add the method setTalentSelection as follows:

public void setTal ent Sel ecti on(I nmut abl eVector tal entVector) {
if (talentVector.size() > 0) {
Ent er pri seQbj ect aMbvi eRol e =
(Enterpriseject)novi eRol eDi spl ayGr oup. sel ect edOoj ect () ;
Ent erpri seObj ect sel ectedTal ent =
(EnterpriseCbject)tal entVector.firstEl enent();

aMovi eRol e. addoj ect ToBot hSi desOf Rel ati onshi pW t hKey(

sel ect edTal ent
"talent"”

115

Chapter 3

Creating a WebObjects Database Application

116

Again because the browser uses a vector for its selections attribute, the
setTalentSelection method must take a vector as its argument. IftalentVector’s size
is nonzero, then this method sets the selected MovieRole’stalent to the first
object in the vector. Note that by default, a user can’t select more than one
actor in a browser.

With the addition of these methods, WebObjects Builder now displays
talentSelection in MovieDetail’s object browser.

6. Bind talentSelection to the browser’s selections attribute.

Adding Insert, Save, and Delete Buttons

Now add the buttons that let users insert, save, and delete MovieRoles. When
you’re done, it should look like the following:

—H

- |

Pl 1 s Frlelaplsieoup andectadbt mok ol oHess

: Add the image buttons inside

= _!'i o] the form element, which is
Calii

roritire teak bounded by a light gray box.

1. Inside the form, add three image buttons below the Role Name text field.
2. Inspect the first active image element.

3. Bind the filename attribute to the text (including the quotes)
"DBW zardlnsert.gif".

4. Follow the same procedure to set the second image’sfilename attribute to the
text (including the quotes) " DBW zar dUpdat e. gi f".

5. Set the last image’s filename attribute to the text (including the quotes)
"DBW zardDel ete.gif".

The DisplayGroup class defines the actions insert and delete that you’ll bind
to the Insert/New and Delete buttons. It doesn’t, however, provide a save
method. You’ll have to provide that yourself.

Adding Behavior to Your Enterprise Objects

6. Copy the saveChanges method from the Mainjava class and paste it into the
MovieDetails.java class:

public void saveChanges() throws Exception {

try {
t hi s. session().defaul tEditingContext().saveChanges();

}

catch (Exception exception) {
Systemerr.println("Cannot save changes ");
t hrow exception;

}

7. Bind movieRoleDisplayGroup.insert to the Insert/New image’s action attribute.

8. Bind the saveChanges method to the “Save to database” image’s action
attribute.

9. Bind movieRoleDisplayGroup.delete to the Delete image’s action attribute.

Adding Behavior to Your Enterprise Objects

Right now, the Movies application maps all its entities to the
GenericRecord class. As the preceding sections illustrate, you can go quite
far in an application using just this default enterprise object class, but now
you need to add some custom classes to the Movies application.

In this section, you’ll learn how to:

® Generate source code for a custom enterprise object class.
¢ Provide default values in a custom enterprise object class.

You’ll create custom classes for the Talent and MovieRole entities. In the
Talent class, you’ll write a fullName method that concatenates a Talent’s first
and last names. You'll use the method to populate MovieDetail’s browser
element. In the MovieRole class, you’ll provide default values for newly
inserted MovieRoles so they don’t show up in the list of movie roles as a
blank line.

Specifying Custom Enterprise Object Classes

Unless you specify otherwise, EOModeler maps entities to the
GenericRecord class. When you want to use a custom class instead,
you need to specify that custom class in the model.

17

Chapter 3

Creating a WebObjects Database Application

118

3.

In EOModeler, inspect the Talent entity.

In the Entity Inspector for Talent, type Tal ent in the Class field.

B il g ot e 30

M | Tal el
Tl Mt | TALENT
ClGrieie | T ad il e Ty the name of your custom class here.
Pivpertias
= & &
il | & [IrefFlae _-l

R c T
= & falantid

e AT

Set the MovieRole entity’s class to MovieRole.

Now you can generate the source files for your Talent and MovieRole classes.

Generating Custom Enterprise Object Classes

You can easily create a custom class to hold your business logic: EOModeler
provides a command to generate enterprise object classes.

1.

2.

In EOModeler, select the Talent entity.
Choose Property » Generate Java Files.

A Choose Class Name panel opens. If you opened the model file from
Project Builder, the Choose Class Name panel displays the project as the
destination directory and Talentjava as the default file name.

Ensure that the Movies project directory is selected.

Click Save.

A panel opens, asking if you want to insert the file in your project.
Click Yes.

EOModeler creates the source file Talentjava and adds it to your project.

Follow the same procedure for MovieRole.

Adding Behavior to Your Enterprise Objects

Adding Custom Behavior to Talent
Now add the fullName method to Talent and bind it to the browser.

1. Open Talentjava in Project Builder.

The class file declares instance variables for all of Talent’s class
properties (firstName and lastName) and implements set and get methods
for those instance variables.

2. Add the method, fullName, as follows.

public String full Name() { return firstNane() + " " + |astNanme();

After you save, fullName appears in the object browser of WebObjects
Builder as a property of 'Talent.

3. Bind talent.fullName to the browser’s value attribute.

Providing Default Values in MovieRole

As discussed in “Specifying Default Values for New Enterprise Objects”
(page 87), there are two main ways to specify default values for new
enterprise objects without making explicit assignments:

e Assign default values in the enterprise object class.
o Specifty default values using a display group.

For the Movie class, you specified default values using a display group. This
approach is also the more appropriate choice for the MovieRole class, but
you’ll use the other approach for MovieRole just to see how its done.

1. Open MovieRole.java in Project Builder.
2. Add the method, awakeFrominsertionInEditingContext, as follows.

public void awakeFrom nsertionl nEdi ti ngCont ext (Edi ti ngCont ext
context) {

super . awakeFr onl nserti onl nEdi ti ngCont ext (cont ext);
rol eName = "New Rol e";

}

"This method is automatically invoked right after your enterprise object
class creates a new MovieRole and inserts it into an editing context,
which happens when you use a display group to insert.

119

Chapter 3 Creating a WebObjects Database Application

Running Movies

Be sure that all your project’s files are saved (including your model file), and
build and run your application. Now when a user clicks the Insert/New button
on the MovieDetails page, a new MovieRole is inserted, with “New Role”
already displayed as the role name.

120

	GETTING STARTED WITH WEBOBJECTS
	Contents
	Preface
	About WebObjects
	About This Book
	Where to Go From Here

	Creating a Simple WebObjects Application
	Creating a WebObjects Application Project
	Choosing the Programming Language
	Examining Your Project
	Launching WebObjects Builder
	Creating the Page’s Content
	Entering Static Text
	Using the Inspector
	Creating Form-Based Dynamic HTML Elements
	Resizing the Form Elements

	Binding Elements
	Creating Variables
	Binding the Input Elements
	Implementing an Action Method

	Creating the Application’s Output
	Building and Running Your Application

	Enhancing Your Application
	Duplicating Your Project
	Creating a Custom Guest Class
	Binding the Class’s Instance Variables to the Form...
	Creating a Table to Display the Output
	Adding Dynamic Elements to Table Cells
	Binding the Dynamic Elements in the Table
	Creating the Guest Object

	Keeping Track of Multiple Guests
	Creating a Guest List
	Adding Guests to the Guest List

	Adding a Second Component
	Using a Repetition
	Adding the Finishing Touches
	Clearing the Guest List
	Adding a Dynamic Hyperlink

	Creating a WebObjects Database Application
	The Movies Application
	Enterprise Objects and the Movies Database
	Enterprise Objects and Relationships

	Designing the Main Page
	Starting the WebObjects Application Wizard
	Specifying a Model File
	Choosing an Adaptor
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Choosing an Entity
	Choosing a Layout
	Choosing Attributes to Display
	Choosing an Attribute to Display as a Hyperlink
	Choosing Attributes to Query On
	Running Movies

	Examining Your Project
	Examining the Variables
	Examining the Bindings
	Bindings in the Query Part
	Bindings in the Repetition Part
	Bindings in the Editing Part

	Refining Main.wo
	Specifying a Sort Order
	Specifying Default Values for New Enterprise Objec...
	Setting a Date Format
	Setting a Number Format
	Optional Exercise

	Adding the MovieDetails Page
	Creating the MovieDetails Component
	Storing the Selected Movie
	Navigating from Main to MovieDetails
	Designing MovieDetails’ User Interface
	Adding Date and Number Formats
	Navigating from MovieDetails to Main
	Running Movies

	Refining Your Model
	Opening Your Model
	Removing Primary and Foreign Keys as Class Propert...
	Adding Relationships to Your Model
	Using the Advanced Relationship Inspector
	Where Do Primary Keys Come From?

	Setting Up a Master-Detail Configuration
	Creating a Detail Display Group
	Adding a Repetition
	Configuring a Repetition
	Running Movies

	Updating Objects in the Detail Display Group
	Managing a DisplayGroup’s Selection
	Adding a Form
	Adding a Talent Display Group
	Configuring the Browser
	Adding Insert, Save, and Delete Buttons

	Adding Behavior to Your Enterprise Objects
	Specifying Custom Enterprise Object Classes
	Generating Custom Enterprise Object Classes
	Adding Custom Behavior to Talent
	Providing Default Values in MovieRole
	Running Movies

