SL-1 ISDN Primary Rate Interface

Description and administration

Publication number: 553-2901-100 Product release: X11 release 19 Document release: 8.0 Document status: Standard Date: October 31, 1993

© 1989 Northern Telecom All rights reserved.

Revision history

December 20, 1989	Standard, X11 release 15.
December 20, 1990	This document is issued for X11 release 16. Traffic reports have been removed (see <i>Traffic measurement formats and output</i> (553-2001-450)). Due to the extent of the revisions, change bars in the margins are omitted.
December 1, 1991	This document is issued for X11 release 17. <i>ISDN Primary Rate Interface</i> description (553-2901-100) and <i>ISDN Primary Rate Interface administration</i> (553-2901-300) have been combined into one document called <i>ISDN Primary Rate Interface description and administration</i> (553-2901-100). Due to the extent of the changes, revision bars have been omitted.
December 31, 1992	
	This document is reissued to include updates to Trunk Route Optimization (TRO) and Network Call Redirection (NCRD), and a new module for Remote Virtual Queueing. Additionally, updates required for MSDL, and LD17 are included. Changes are noted with revision bars in the margins. Information from Product Bulletin 92034 (August 1992) is included in this document
February 1, 1993	This document is reissued to include information relating to X11 release 18 and option 81 systems. Due to the extent of changes, revision bars are omitted. Product Bulletin 93007 has been incorporated in this document.
August 1, 1993	This document is reissued to include changes for X11 release 19. Changes are noted with revision bars.

ISDN PRI description and administration 553-2901-100

ii

October 31, 1993

This document is issued to include technical updates. Changes are noted with revision bars in the margins.

,

Contents

Introduction	1-1
Document overview	1-1
References	1-2
ISDN product overview	2-1
What is ISDN?	2-1
ISDN and the Meridian 1 environment	2-1
Network interfaces	2-2
Signaling	2-4
Signaling protocols	2-6
Types of ISDN network interface	2-6
nB+D Primary Rate Interface (non-associated signaling)	2-7
ISDN Signaling Link (ISL) interface	2-8
Backup D-channel	2-11
Integrated Trunk Access	2-11
Integrated Services Access	2-12
Coordinating PRI parameters	3-1
Frame format	3-2
Superframe format	3-2
Extended superframe format	3-4
Line encoding	3-7
B7 coding	3-7
B8ZS coding	3-7
Error detection	3-8
Yellow alarm (remote alarm)	3-8

٦

Bit error rate	3-9
Frame alignment	3-10
Frame slip	3-11
Data rate parameters	3-12
56 Kbps inverted	3-12
64 Kbps clear and restricted	3-12
Channel parameters	3-13
B-channels	3-13
D-channels	3-13
Interface protocols	3-14
User to network	3-14
Symmetric	3-14
Configuring PRI	4-1
Basic PRI configuration	4-1
Default call types	4-1
Modification of call types	4-1
Configuring PRI capability and applications	4-3
PRI configuration	4-4
Asynch port configuration (X11 release 17 and earlier)	4-26
Asynch port configuration (X11 release 18 and later)	4-27
Service verification	5-1
Testing PRI	5-1
PRI local loop back test	5-2
PRI self-test	5-3
PRI automatic loop test	5-4
Link diagnostic and remote loop-back tests	5-5
Testing DCH	5-8
DCH tests 100 and 101 (QPC757 DCHI card only)	5-8
DCH tests 200 and 201 (QPC757 DCHI card only)	5-11
MSDL local loopback test (NT6D80)	5-13
MSDL remote loopback tests (NT6D80)	5-15

Correlation tables	6-1
Meridian 1 to Meridian 1 correlation tables	6-3
Meridian 1 to DMS-100 correlation tables	6-10
Meridian 1 to DMS-250 correlation tables	6-15
Engineering guidelines	7-1
Configuration parameters	7-2
Data characteristics	7-3
Transmission characteristics	7-3
Software packages	7-7
Software and hardware compatibility	7-10
Hardware requirements	7-18
	/-19
Backup D-channel	8-1
Operating parameters	8-4
Feature interactions	8-5
Feature operation	8-6
Feature packaging	8-7
Feature implementation	8-7
Basic Call Service	9-1
PSTN Equal Access and Special Number Services	9-3
64K Clear Data	9-5
BRI/PRI Basic Call Interworking	10-1
Overview	10-1
Operating parameters	10-2
Feature interactions	10-3
Feature packaging	10-3
Feature implementation	10-4
Feature operation	10-4

.

Sec. Sec.

Calling Line Identification CLID with SID/ANI CLID in CDR Feature implementation	11-1 11-5 11-5 11-7
Data Packet Network access	12-1
Digital Trunk Interface replacement	13-1 13-3
Electronic Switched Network interworking	14-1
Feature implementation Private Network Hopoff Private Network Overflow	14-7 14-11 14-12
Integrated Services Access	15-1
Establishing ISA routes	15-3 15-3
ISA capability	15-6 15-6 15-8
Operating parameters	15-10
Feature interactions	15-13
Feature packaging	15-14
Feature implementation Configuring ISA routes	15-15 15-15
Feature testing	15-19
ISDN Signaling Link	16-1 16-6
Configuring ISL	16-6
Feature testing	16-15

Integrated Trunk Access	17-1
MWI Interworking with DMS	18-1
Operating parameters	18-3
Feature interactions	18-4
Feature packaging	18-5
Feature implementation	18-7
Feature operation	18-10
Network Call Party Name Display/Network Name	
Delivery	19-1
Operating parameters	19-3
Network Name Delivery method 1	19-3
Network Name Delivery method 2	19-4
Feature interactions	19-4
Feature packaging	19-5
Feature implementation	19-5
Network Call Redirection	20-1
Network Call Forward Busy	20-15
Network Hunt	20-19
Network Transfer	20-23
Network Call Pickup	20-28
Feature implementation	20-29
Feature testing	20-36
Network Message Services	21-1
X11 release 15	21-1
X11 release 16	21-1
Network Message Services – Message Center	21-3
Network Message Services – Meridian Mail	21-4
Operating parameters	21-5
Feature interactions	21-5

Feature packaging	21-7
Feature implementation	21-8
Feature testing	21-13
Network Ring Again	22-1
X11 release 14	22-3
X11 release 15 and later	22-3
Operating parameters	22-5
Feature interactions	22-6
Feature packaging	22-7
Feature implementation	22-8
Configuration	22-8
Check Numbering Plan enhancement interaction	22-9
Release identification	22-11
NARS calls	22-11
Coordinated Dialing Plan call	22-11
Implementation procedures	22-12
Feature testing	22-16
Remote Virtual Queueing	23-1
Operating parameters	23-2
Feature interactions	23-5
Feature operation	23-6
RVQ on a private network	23-7
RVQ with NRC trunks	23-8
RVQ on a conventional main (RVQCM)	23-9
Operating RVQ from a digital telephone	23-11
Operating RVQ from a 500/2500 telephone	23-12
Operating RVQCM from conventional main telephone	23-13
Feature packaging	23-13
Feature implementation	23-14
Software Defined Network access	24-1
Feature implementation	24-2

. Ash

Contents	xi

Software Release ID	25-1 25-2
T309 Timer	26-1
Operating parameters	26-2
Feature interactions	26-2
Feature packaging	26-2
Feature implementation	26-2
Trunk Optimization (before answer)	27-1
Trunk Optimization (before answer)Operating parameters	27-1 27-4
Trunk Optimization (before answer) Operating parameters Feature Interactions	27-1 27-4 27-6
Trunk Optimization (before answer) Operating parameters Feature Interactions Feature packaging	27-1 27-4 27-6 27-8
Trunk Optimization (before answer) Operating parameters Feature Interactions Feature packaging Feature implementation	27-1 27-4 27-6 27-8 27-8
Trunk Optimization (before answer) Operating parameters Feature Interactions Feature packaging Feature implementation Glossary	27-1 27-4 27-6 27-8 27-8 GL-1

i

List of figures

Figure 2-1 The Frame Structure of T-1 Digital Carrier (from CCITT G.704)	2-3
Figure 2-2 A functional view of per-trunk signaling	2-4
Figure 2-3 A functional view of ISDN's common channel signaling capability	2-5
Figure 2-4 ISDN PRI's common channel signaling capability	2-5
Figure 2-5 Primary Rate Interface structures	2-7
Figure 2-6 An example of the nB+D Primary Rate Interface structure	2-9
Figure 2-7 ISDN Signaling Link (ISL) interface structure	2-10
Figure 3-1 Bipolar violations	3-9
Figure 5-1 PRI remote loop-back and link diagnostic tests	5-7
Figure 5-2 DCH tests 100 and 101 (QPC757 DCHI card only)	5-10
Figure 5-3 DCH tests 200 and 201 (QPC757 DCHI card only)	5-12
Figure 5-4 / Local loopback test (NT6D80)	5-14

Figure 5-5 Remote loopback tests (NT6D80)	5-16
Figure 7-1 PRI loss and level plan	7-5
Figure 7-2 PRI hardware required	7-20
Figure 7-3 Cable distance to DSX-1 and office repeater bay	7-26
Figure 8-1 PRI with backup D-channel	8-3
Figure 9-1 ISDN Basic Call Service connections	9-2
Figure 9-2 Equal Access Service	9-4
Figure 9-3 Connection options for 64K Clear Data	9-6
Figure 11-1 Digit Display format for Calling Line Identification	11-3
Figure 11-2 CLID number displays	11-4
Figure 12-1 Meridian 1 PRI to DMS-100 Data Packet Network	12-2
Figure 13-1 Digital Trunk Interface communication	13-2
Figure 14-1 INAC configuration rules	14-4
Figure 14-2 ESN capability in the ISDN network	14-6
Figure 14-3 Private Network Hopoff	14-11
Figure 14-4 , Private Network Overflow	14-12

Figure 15-1 Dedicated trunks 15-1	i-2
Figure 15-2 ISA trunks 15-2	-2
Figure 15-3 LD21 SVRT prompt (X11 release 17) 15-3	-9
Figure 16-1 ISDN Signaling Link: shared mode	-2
Figure 16-2 ISDN Signaling Link: dedicated mode configurations	-4
Figure 18-1 Private corporate network with Meridian 1 hosting the Message Center 18-	-2
Figure 18-2 Private corporate network with DMS hosting the Message Center 18-	-2
Figure 18-3 Configuration requirements for MWI Interworking	-8
Figure 19-1 Network Call Party Name Display	-2
Figure 20-1 Display format for NCRD: Originating party with CLID	-3
Figure 20-2 Display format for NCRD: Terminating party with CLID	-3
Figure 20-3 Network configurations for NCFAC and NCFNA	-7
Figure 20-4 Intranode NCFAC redirection	-8
Figure 20-5 Internode NCFAC	_9
Figure 20-6 Tandem NCFAC 20-1	Í
Figure 20-7 Tandem NCFAC intranode	12

Figure 20-8 NCFNA	20-13
Figure 20-9 Tandem NCFNA	20-14
Figure 20-10 Remote NCFB	20-15
Figure 20-11 Internode NCFB	20-16
Figure 20-12 NCFB through a tandem node	20-17
Figure 20-13 NCFB through a tadem node	20-18
Figure 20-14 Remote NHNT	20-19
Figure 20-15 Internode Hunting	20-20
Figure 20-16 NHNT through a tandem node	20-21
Figure 20-17 NHNT through a tandem node	20-22
Figure 20-18 NXFER internode call	20-24
Figure 20-19 NXFER remote node call	20-25
Figure 20-20 NXFER tandem node call	20-26
Figure 20-21 NXFER tandem node remote call	20-27
Figure 20-22 Network Call Pick Up	20-28
Figure 22-1 ' Network Ring Again configuration	22-4

Figure 22-2	
Database conversion	22-10
Figure 23-1 Remote Virtual Queueing example	23-1
Figure 23-2 RVQ and NCRD	23-5
Figure 23-3 RVQ configuration example on a private network	23-7
Figure 23-4 RVQ configuration example with an NRC trunks	23-8
Figure 23-5 RVQCM example with a conventional main	23-9
Figure 24-1 Access to Software Defined Network	24-1
Figure 27-1 Trunk Optimization examples	27-3

,

i

List of tables

Table 3-1 The Superframe format table	3-3
Table 3-2 Extended superframe format table	3-5
Table 4-1 Default call types	4-2
Table 6-1 PRI database correlation (protocol layer 1) for Meridian 1 to Meridian 1	6-4
Table 6-2 DCH database correlation (protocol layer 2) for Meridian 1 to Meridian 1 X11 Release 17 and earlier	6-6
Table 6-3 DCH database correlation (protocol layer 2) for Meridian 1 to Meridian 1 X11 Release 18 and later	6-7
Table 6-4 Facility database correlation (protocol layer 3) for Meridian 1 to Meridian 1 X11 Release 17 and earlier	6-8
Table 6-5Facility database correlation (protocol layer 3) for Meridian 1 toMeridian 1 X11 Release 18 and later	6-9
Table 6-6PRI database correlation (protocol layer 1) for Meridian 1 toDMS-100	6-10

Table 6-7DCH database correlation (protocol layer 2) for Meridian 1 toDMS-100 X11 Release 17 and earlier	6-12
Table 6-8 DCH database correlation (protocol layer 2) for Meridian 1 to DMS-100 X11 Release 18 and later	6-13
Table 6-9 Facility database correlation (protocol layer 3) for Meridian 1 to DMS-100	6-14
Table 6-10 PRI database correlation (protocol layer 1) for Meridian 1 to DMS-250	6-15
Table 6-11 DCH database correlation (protocol layer 2) for Meridian 1 to DMS-250 X11 Release 17 and earlier	. 6-17
Table 6-12 DCH database correlation (protocol layer 2) for Meridian 1 to DMS-250 X11 Release 18 and later	. 6-17
Table 6-13Facility database correlation (protocol layer 3) for Meridian 1 toDMS-250	. 6-18
Table 7-1 Software packages	. 7-8
Table 7-2 Meridian 1 software and hardware compatibility	. 7-12
Table 7-3Meridian 1 compatibility with connectivity to SL-100, DMS-100,DMS-250	. 7-14
Table 7-4Meridian 1 compatibility with connectivity to AT&T 4ESS	. 7-16
Table 7-5 Meridian 1 software and hardware compatibility with connectivity to AT&T 5ESS	o . 7-16

Table 7-6Meridian 1 software and hardware compatibility7-12
Table 7-7 System hardware requirements with a Single D-Channel
Table 7-8 System hardware requirements with a Backup D-Channel
Table 7-9 ROM and Memory card requirements 7-24
Table 8-1Use LD17 to configure the backup D-channel(X11 release 18 and later)8-9
Table 9-1Connection options for 64K Clear Data
Table 11-1 Calling Line Identification number in the TTY output
Table 14-1 ESN features available with ISDN
Table 14-2 Default Call Types 14-7
Table 15-1 Example of Min/Max function for Meridian 1 to DMS 15-12
Table 15-2 Example of Min/Max function for Meridian 1 to ESS
Table 15-3 Package requirements for ISA enhancements 15-14
Table 18-1 Package requirements for an MWI originating node
Table 18-2 Packages required for an MWI host node 18-6
Table 18-3 Package requirements for an MWI tandem node

Table 18-4 When MWI is activated	18-10
Table 18-5 When MWI is deactivated	18-11
Table 20-1 Tones returned on call redirection	20-5
Table 21-1 Required feature packages for each NMS-Message Center node	21-7
Table 21-2 Required feature packages for each NMS-Meridian Mail node	21-8
Table 21-3Network Message Services DN(applies to both NMS-MC and NMS-MM)	21-12
Table 22-1 Originating Switch Timers	22-2
Table 22-2 Terminating Switch Timers	22-2
Table 22-3 Package requirements for Network Ring Again	22-7
Table 22-4 Inserting ESN access code	22-9
Table 25-1 Software Release ID information	25-1

í

Introduction

Document overview

This document provides an introduction to the Integrated Services Digital Network (ISDN) and a description of the features available on the Meridian 1 with ISDN Primary Rate Interface (PRI). The chapters of this document cover the following topics.

- Introduction: lists Meridian 1 reference documents and explains the format of this document.
- ISDN PRI product overview: provides a functional overview of ISDN, as applied to the Meridian 1 environment.
- PRI configuring: shows how to configure ISDN PRI and the D-channel.
- PRI service verification: provides verification for a new PRI system.
- Coordinating PRI parameters: gives an overview of PRI parameters such as framing formats, line encoding, and error detection that must be coordinated with the far end PRI facility
- Correlation tables: provides correlation tables for Meridian 1 to Meridian 1, Meridian 1 to DMS-100, and Meridian 1 to DMS-250.
- Engineering guidelines: lists Meridian 1 ISDN requirements.
- ISDN feature description: provides a detailed description of PRI services and features. The features are described in feature modules which are arranged alphabetically by feature name. The Table of Contents lists these features. Feature descriptions are page numbered separately and the figures and tables within each module are numbered for that specific feature.
- Glossary: lists acronyms.

References

For a reference of all Northern Telecom Publications, see:

- Master index of publications (553-3001-000)

Refer to the following documents for system information.

- Multi-purpose Serial Data Link description (553-3001-195)
- System installation (553-3001-210)
- Circuit card installation and testing (553-3001-211)
- Telephone and attendant console installation (553-3001-215)
- Upgrade system installation (553-3001-250)
- Disk drive upgrade procedures (553-3001-251)

For ISDN documentation, see:

- ISDN Primary Rate Interface installation (553-2901-200)
- ISDN Primary Rate Interface maintenance (553-2901-500)

For software documentation, see:

- Software conversion procedures (553-2001-320)
- X11 features and services (553-3001-305)
- X11 input/output guide (553-3001-400)

For traffic reports documentation, see:

- Traffic measurement formats and output (553-2001-450)

For networking documentation, see:

- Meridian Networking Feature Document (P0710203)
- Electronic Switched Network description (309-3001-100)
- Basic and Network Alternate Route Selection description (553-2751-100)
- Coordinated Dialing Plan description (553-2751-102)
- Network Queue description (553-2751-101)
- MCDN Basic Call Service (555-8001-101)
- MCDN Integrated Services Access (555-8001-102)
- MCDN Network Ring Again (555-8001-103)

Note 1: Throughout this document Meridian 1 refers to both Meridian SL-1 ST, STE, NT, RT, XT, and Meridian 1 system options 21, 21E, 51, 61, 71, and 81 unless otherwise noted.

Note 2: ISDN is an evolving product. Features and connectivities improve with each software release. To plan your system for future expansions, please consult with your Northern Telecom representative.

ISDN PRI description and administration 553-2901-100

ŕ

· · .

ISDN product overview

What is ISDN?

Integrated Services Digital Network (ISDN) is a set of recommendations developed by the International Telegraph and Telephone Consultative Committee (CCITT). These recommendations form a standard in digital communications, providing digital interfaces between telephones, terminals, and telecommunication networks.

ISDN uses a single transport to carry multiple information types. What once required separate networks for voice, data, image or video conferencing is now combined onto one common high-speed transport.

User voice and data information is carried over bearer channels, or B-channels. The standard signaling protocol is transmitted over a dedicated data channel called the D-channel. The D-channel carries call set-up and feature activation information to the destination.

ISDN and the Meridian 1 environment

Meridian networking supplements the currently-defined CCITT ISDN recommendations with network functions, like alternate route selection, private numbering plans, class of service, and network access security. Also, Meridian networking extends the CCITT ISDN network functions defined for the interface to public ISDN connections, into the private network environment.

Network interfaces

The initial step in building a network is to define the network interfaces which physically and logically connect the switches in the network.

A network interface is physically composed of a collection of trunks, each of which carries signaling and/or user data information. Trunks are transmission channels which carry the users' voice and data traffic, together with signaling information, between switching systems in the network.

Trunks can be classified based on two parameters:

- the type(s) of service supported on the trunk
- the nature of the signal which is transmitted on the trunk, either digital or analog

There are a number of trunk types classified by the type of service they can provide. For example:

- PBX-to-Public Exchange trunks (also referred to as Central Office trunks or COTs) provide public switched telephone service to the PBX.
- TIE trunks connect PBXs directly without being switched at the intermediate Public Exchange(s) (although they may be).
- Foreign Exchange (FX) trunks provide the PBX with the equivalent of a local connection to a "foreign" or distant Public Exchange, bypassing switching at the local Public Exchange.
- Wide Area Telecommunications Services (WATS) trunks permit the PBX to receive (INWATS or "800" service) or originate (OUTWATS) long-distance calls at a lower rate than regular long-distance service, based on a bulk pricing arrangement with the long-distance service provider.
- Direct Inward Dial (DID) trunks provide a portion of the called party's number, signaled from the local Public Exchange to the PBX, enabling the call to be delivered without private network attendant intervention.

Note: Due to CCITT regulations, any DID/COT connection by means of ISDN is two-way. There is no distinction between the two trunk types. The Central Office views them as public trunks and will not throttle.

Analog trunks are provided on voice-frequency (VF) facilities which operate in either a 2-wire or 4-wire transmission mode. In the 2-wire mode, both transmit and receive signals are carried on the same pair of wires. 4-wire mode uses separate wire pairs for each direction of transmission. The information-bearing capability of these trunks is sufficient to support speech or voice-grade data. A voice-grade channel is one with sufficient bandwidth to pass an analog voice signal, or approximately 3.1 kilohertz (kHz). Voice-grade data is a data signal which can be successfully passed through the same 3.1 kHz channel (for example, a modem).

A digital trunk is a 56 kbps data channel that can carry either voice or data information. In North America and some other international countries, the digital trunk is carried on the T-1 digital transmission facility. The T-1 carrier has a data rate of 1.544 MBit/s and can support up to 24 digital trunks. The digital trunk signal transmitted on these carriers is represented by a sequence of 8-bit digital words. Each word occupies one channel (called a "timeslot") in a larger structure called a "frame". The frame structure of the T-1 carrier's signal is shown in Figure 2-1.

Signaling

Trunks provide the communication channels for the network interface; signaling permits these channels to be used effectively. Signaling is the process of transferring information between two or more switches of a communications network in order to control the establishment of connections and related operations.

Each trunk type (CO, TIE, FX, WATS, DID) requires its own particular form of signaling (loop start, 2-wire duplex, 4-wire duplex, E and M 2-wire, E and M 4-wire, loop dial repeating). Pre ISDN trunks (that is, analog or digital) carry this signaling information together with the user's information. This scheme, illustrated by Figure 2-2, is commonly referred to as per-trunk signaling (PTS), or inband signaling.

Figure 2-2 A functional view of per-trunk signaling

Meridian networking uses ISDN's common channel signaling capability to replace per-trunk signaling with an out-of-band computer-to-computer signaling channel which carries the signaling information for a number of trunks. This concept is illustrated by Figure 2-3.

Primary Rate Interface (PRI) integrates the signaling requirements of all the public exchange trunk types. Meridian networking supports this functionality, as illustrated by Figure 2-4. This is referred to as out-of-band signaling

Figure 2-3 A functional view of ISDN's common channel signaling capability

Figure 2-4 ISDN PRI's common channel signaling capability

Signaling protocols

Signaling protocols govern the format, timing, sequencing, and control of the exchange of signaling information between switches in the network.

Meridian networking uses the ISDN D-channel, out-of-band signaling protocols as defined by CCITT. These protocols are based on a model containing seven layers which was developed by the International Standards Organization (ISO). This seven-layer model, called the Open Systems Interconnection (OSI) model, was adopted by the CCITT and used as the basis for building sets of protocols for ISDN.

A detailed description of the OSI model and how it is applied in the Meridian networking signaling system is found in Appendix 1 of the Meridian Networking Feature Document (P0710203).

Types of ISDN network interface

Meridian networking currently supports three forms of ISDN network interface:

- Primary Rate Interface (PRI 23B+D)
- nB+D Primary Rate Interface (non-associated signaling)
- ISDN Signaling Link (ISL) interface

Primary Rate Interface (PRI 23B + D)

The Primary Rate Interface (PRI) is structured as a collection of 24 digital, 56 kbps/64 kbps channels. One of these channels is used to carry the D-channel signaling information. The other channels are for user voice and data transport and are referred to as Bearer Channels, or B-channels.

The physical (layer 1) specification for the PRI is defined in CCITT Recommendation I.431. This specification supports the standard electrical characteristics and frame structures of the 1.544 MBit/s T-1 digital carrier. PRI can therefore only support up to 23 B-channels and one D-channel. Figure 2-5 shows the PRI structure.

Figure 2-5 Primary Rate Interface structures

nB+D Primary Rate Interface (non-associated signaling)

Although the CCITT currently specifies the PRI layer 1 protocol for 23B+D interface structures, CCITT layer 3 (Q.931) supports the D-channel messages for call setup, feature activation, and call tear down. Meridian networking can also support a feature called non-associated signaling (nB+D). In this configuration, one active D-channel can provide signaling support for all the B-channels contained on up to 16 digital carriers. This translates to support for 382 B-channels and one D-channel and one backup D-channel with T-1 carriers. Figure 2-6 shows an nB+D PRI structure.

ISDN Signaling Link (ISL) interface

The CCITT currently limits the Layer 1 ISDN protocols to digital facilities only. Analog facilities can meet some customer applications more effectively. Meridian networking offers this flexibility in the form of the ISDN Signaling Link (ISL) interface.

The ISL interface is a configuration unique to Meridian networking for Meridian 1 to Meridian 1 systems. It extends the advantages of ISDN signaling to locations served by analog or digital facilities. The ISL interface can contain analog and/or digital trunks. The signaling information is carried on one of these trunks, called the ISDN Signaling Link, which is a D-channel. The other trunks are for user voice and data transport.

The signaling connection is a separate or synchronous data circuit which can be established over a leased line, or an existing trunk circuit using standard data communications equipment (DCE) interfaces (such as modems, multiplexers, or Meridian 1 data adapters). In the case of a failure on this link, signaling operation reverts to conventional, per-trunk signaling.

The ISL interface structure is illustrated by Figure 2-7. For more information on ISL, see the description module later in this document.

ISL Modes of operation

,

There are two modes of ISL operation: shared and dedicated.

Shared mode requires a PRI (either 23B+D or nB+D) between originating and terminating Meridian 1 systems. The ISDN D-channel is used as the vehicle to provide out-of-band signaling for the non-ISDN trunks. Since the PRI D-channel is shared between the PRI B-channels and the analog/digital trunks, this ISL configuration is called shared mode.

Dedicated mode is appropriate when no PRI exists between originating and terminating Meridian 1 systems or when it is not desirable to share an ISDN D-channel as described above. A dedicated signaling link (ISL) is established between originating and terminating Meridian 1 systems. The signaling information for the selected, analog/digital ISDN trunks is transported over the ISDN signaling link.

Figure 2-6 An example of the nB+D Primary Rate Interface structure

Note: If the maximum number of carriers are configured for nB+D (that is, 16), then it is necessary to have a backup D-channel, as shown. Otherwise, only 15 carriers can be configured per single D-channel.

553-5210

ï

1. .
Backup D-channel

The signaling reliability on each of these ISDN network interfaces can be enhanced by adding the backup D-channel function.

In situations where the reliability of the D-channel signaling is critical, each of the PRI, and the nB+D PRI interfaces can be configured to use one active and one backup D-channel. If the active D-channel fails, then D-channel processing switches to the backup D-channel. When dealing with standard 23B+D PRI structures, it is necessary to have at least two T-1 spans in order to provide a backup D-channel. Figure 2-6 shows a backup D-channel configuration. (Configuration of backup D-channel is shown in "Configuring PRI" on page 4-1. For a more detailed description of the backup D-channel, see "Backup D-channel" on page 8-1.)

Integrated Trunk Access

Integrated Trunk Access (ITA) allows in-band A and B bit signaling trunks and out-of-band common channel signaling trunks to share the same digital carrier. ITA provides trunking efficiency when accessing a mix of ISDN and non-ISDN services from a Meridian 1 or an ITA-compatible public exchange switch (such as DMS-100).

Integrated Services Access

Integrated Services Access (ISA) allows different service or trunk types to be routed over any B-channel, on a call-by-call basis, rather than dedicating each B-channel to a specific service or trunk type. This is referred to as dynamic allocation of B-channels.

Trunk types or service designation is made by means of the Network Specific Facilities information element in the call set-up message. ISA service routes are configured through service change. An ISA master route contains a list of B-channels that can be shared. Different service route types, such as WATS, DID/CO, Foreign Exchange (FX) and TIE, are then created and associated with an ISA service route. These service routes are not allowed to have private B-channel members.

Note: Due to CCITT regulations, any DID/COT connection by means of ISDN is two-way. There is no distinction between the two trunk types. The Central Office views them as public trunks and will not throttle.

The number of simultaneous calls using an ISA route can be controlled by defining a maximum threshold for calls allowed for each service route type. Also, a minimum threshold can be defined for the number of B-channels that are ready for use by a service route. For a more detailed description of ISA, see the ISA module under ISDN features.

Coordinating PRI parameters

This chapter describes the major parameters that must be coordinated with the far end facility. These parameters are:

Frame format

Superframe format Extended superframe format

Line encoding

B7 coding B8ZS coding

Error detection

Yellow alarm (remote alarm) Bit error rate Frame alignment Frame slip

Data rate parameters

56 Kbps inverted 64 Kbps clear and restricted

Channel parameters

B-channels D-channels

Interface protocols

network to user

Frame format

The DS-1 basic format consists of 24 8-bit bytes with one byte per channel and one framing bit, or F-bit. This makes a total of 193 bits per frame. The nominal bit rate of the DS-1 signal is 1.544 Mb/s and the sampling rate for each channel is 8000 Hz.

Superframe format

A superframe format, the standard format, consists of 12 DS-1 frames. See Table 3-1. It is consistent with the channel bank formats D2, D3, and D4. The signaling bit is time-shared to identify both the channel and the signaling frame. The framing pattern is the repeated sequence 100011011100.

Channel framing identifies the location of timeslot one. The signaling frame identifies those frames in which two signaling states, A and B, are transmitted on a time-shared basis. The assignments of the F-bit and the A and B bits in the superframe format are shown in Table 3-1.

Table 3-1 The Superframe format table

Frama	F-Bit		DCM anding	0	0.
number	Terminal framing	Signaling framing	bits	bit	channel
1	1		1–8		
2	-	0	18		
3	0		18		
4	—	0	18		
5	1	—	1—8		
6	—	1	1–7	8	А
7	0	—	1–8		
8		1	1–8		
9	1		1–8		
10	—	1	1–8		
11	0	—	1–8		
12	-	0	1–7	8	В
Note: The most	Note: The most significant bit is defined as bit one and the least significant bit as bit eight.				

i

Extended superframe format

The Extended superframe format (ESF) consists of 24 frames. The 8 Kbps F-bit channel is divided into three separate channels:

- Framing Pattern Sequence (FPS) Beginning with frame 4 or ESF bit 579, the framing bit of every fourth frame forms FPS 001011, which is used to determine the mainframe, superframe, and robbed bit signaling synchronization. This sequence is a 2 Kbps channel.
- Facility Data Link (FDL) This is a 4 Kbps channel, used to turn on a yellow alarm. Meridian 1 system software uses FDL to convey yellow alarm (remote alarm) information or to transmit all ones, as selected in service change.
- Cyclic Redundancy Check (CRC) The CRC sequence is a 2 Kbps channel. CRC indicates one or more bit errors in a block, or bits from the received bit stream. CRC can be used as an end-to-end bit error rate indicator.

The assignments of the F-bit and the A, B, C, and D bits in ESF are shown in Table 3-2.

,

Table 3-2 Extended superframe format table (Part 1 of 2)

	F-Bit				
Frame number			Assignments		
	Bit number	FPS	FDL	CRC	
1	0		m		
2	193		—	CB1	
3	386	—	m		
4	579	0		_	
5	772	·	m		
6	965	—	—	CB2	А
7	1158	—	m		
8	1351	0		—	
9	1544	_	m	—	
10	1737			CB3	
11	1930	—	m	-	
12	2123	1	—		В
13	2316	_	m	—	
14	2509		—	CB4	

Table 3-2Extended superframe format table (Part 2 of 2)

Frame number	Ditaurahan	Assignments			Robbed bit signaling
	Bit number	FPS	FDL	CRC	
15	2702		m		
16	2895	0	-	_	
17	3088		m		
18	3281	—	·	CB5	с
19	3474		m		
20	3667	1		-	
21	3860		m		
22	4053		_	CB6	
23	4246	—	m		
24	4439	1			D

.

Line encoding

Line coding for DS-1 is bipolar, Alternate Mark Inversion (AMI). The general requirements for DS-1 code suppression are:

- a maximum of 15 consecutive zero binary bits
- a minimum average of 12.5 percent density of one binary bit over any 192 consecutive bits

To meet the maximum and minimum requirements, PRI provides B7 and B8ZS zero code substitution techniques as options.

B7 coding

B7 coding restricts the D-channel operating modes to 56 Kbps or 64 Kbps inverted (64KI).

When all eight PCM bits in a channel are zero and the eighth bit is not a signaling bit in state one, the seventh bit is substituted by a one. This means zero code suppression is done on a per byte basis.

Note: Do not invoke the seventh bit substitution when digital data is being transmitted as this causes data corruption.

B8ZS coding

The B8ZS coding format supports 64 Kbps clear channel (64 KC), or 64 Kbps inverted HDLC (64 KI).

When eight consecutive zeros appear on a channel and the last bit transmitted is positive, the eight bits are substituted by the following pattern:

Substituted word 0 0 0 +1 -1 0 -1 +1

If the last bit was negative, the polarity is reversed. This results in the following substituted word:

Reverse polarity $0 \quad 0 \quad 0 \quad -1 \quad +1 \quad 0 \quad +1 \quad -1$

Bipolar violations occur in the fourth and seventh bit positions of the inserted code. Therefore, B8ZS coding can be used only when the receiving end is capable of recognizing that these are not bipolar violations or bit errors.

Error detection

This chapter describes the ISDN error detection. There are four types of error detection:

- yellow (remote) alarm
- bit error rate
- frame alignment
- frame slip

Yellow alarm (remote alarm)

A yellow alarm signal (received by the near end) indicates that the far end (the remote end) is not ready. If the PRI is receiving the yellow alarm pattern, it indicates that there is a T1 connection. When the PRI receives a yellow alarm signal from the far end, all 24 channels are disabled.

The yellow alarm method used depends on the framing format (D2, D3, D4, or ESF) selected. If D2, D3, or D4 framing formats are chosen, Digit 2 yellow alarm is automatically selected by software. If the ESF framing format is chosen, the yellow alarm method must be set through service change.

- Digit 2 (DG2) yellow alarm signaling is provided by external circuitry. This alarm is detected when each digit 2 in 63 contiguous channels is logic zero. Use DG2 yellow alarm signaling with D2, D3, and D4 frame formats in Canada and the U.S. Also use DG2 yellow alarm signaling with the ESF frame format in Canada, in compliance with Canadian standard CS03.
- Facility Data Link (FDL) yellow alarm signaling is a 4 Kbps channel. In the U.S., use FDL yellow alarm signaling when the ESF frame format is selected.

When the PRI stops receiving the yellow alarm, channels are placed into the idle state and made available for calls. (In comparison, TIE trunks using A&B bit signaling are made to match the state of the far end, as presented by the T1 port.)

Each time a yellow alarm is generated, a counter is incremented. When the remote alarm 24-hour threshold (prompt RALM in LD73) is reached, the PRI must be restored to service manually.

Bit error rate

Bit error rate monitoring detects errors in transmission. There are two methods of bit error rate monitoring, bipolar violation tracking and cyclic redundancy check (CRC). If the D2, D3, or D4 framing format is selected in LD17, prompt DLOP, bipolar violation tracking is implemented. If the Extended superframe format (ESF) is selected, CRC is implemented.

Bipolar violations (BPV) In a bipolar pulse stream, pulses alternate in polarity. A bipolar violation has occurred if, after transmission, two pulses of the same polarity are received in succession (this could be caused by an electrical disturbance, such as noise). See Figure 3-1.

Note: Some bipolar violations are normal when using the B8ZS coding.

Figure 3-1 Bipolar violations

Cyclic redundancy check (CRC) The Extended Super Frame (ESF) format contains a checksum of all the data in the frame. The receiving side uses the checksum to verify that the data is correct.

The primary difference between BPV and CRC is that bipolar violations indicate errors on the local span, while CRC indicates errors on an end-to-end span. For example, on a satellite link, BPV only detects errors in the span between the Meridian 1 system and the satellite connection. Since CRC traverses the entire span, it detects errors from the Meridian 1 system to the satellite connection, then to the far end connection, indicating an end-to-end bit error rate. **Bit error rate thresholds** PRI hardware detects BPV or CRC errors. It sends an overflow (OVFL) message to the Meridian 1 CPU each time 1024 BPV or CRC errors are detected. Running the midnight routines prints the number of overflows and clears the counter.

There are three bit error rate thresholds set in LD73. Setting BIPC to zero enables automatic recovery.

BIPV	1-(3)-4	maintenance threshold
	1-(2)-4	out of service threshold
BIPC	0-(2)-128	maximum number of times a
		DTI/PRI loop can be taken out
		of service in 24 hours.

Note: The BIPV values determine the sensitivity of the loop to errors, where BIPV = 1 is the least tolerant to errors, and BIPV = 4 is the most tolerant.

Frame alignment

Loss of frame alignment monitoring detects out-of-frame conditions on the DS-1 bit stream.

Loss of frame alignment thresholds PRI hardware detects out-of-frame conditions. Running the midnight routines prints the number of loss of frame alignment occurrences and clears the counters.

If a loss of frame alignment condition persists for three seconds, the affected PRI loop is taken out of service and a red alarm (local alarm) is raised. If the loss of frame alignment condition clears for at least 15 seconds, the PRI is automatically restored to service. Three frame alignment thresholds are set in LD73. Setting LFAC to zero enables automatic recovery.

LFAL	1-(17)-10240	maintenance threshold
	1-(511)-10240	out of service threshold
LFAC	0-(3)-128	24-hour out of service limit

i

Frame slip

Digital signals must have accurate clock synchronization for data to be interleaved into or extracted from the appropriate timeslot during multiplexing and demultiplexing operations. Frame slip monitoring detects frame deletion and repetition errors in clock synchronization.

Clock synchronization can either track on a primary or secondary reference clock, or operate in free run (non-tracking) mode. In LD73 (prompts PREF and SREF), one PRI may be defined as the primary clock reference. Another may be defined as the secondary clock reference.

Tracking mode PRI hardware detects frame slips in a tracking reference clock. Running the midnight routines prints the number of overflows and clears the counters.

There are two thresholds set in LD73.

SRTK	1-(5)-24	maintenance threshold (elapsed
		time in hours between frame slips)
	1-(30)-3600	out of service threshold (number of
		slips per hour)

Automatic recovery After the tracking mode or non-tracking mode out of service thresholds are exceeded, the slip rate is monitored for improvement. When the slip rate has improved, the trunks are returned to service.

There are two parameters set in LD73:

SRIM	(1) - 127	improvement timer in minutes
SRMM	1 - (2) - 127	improvement criteria

If the non-tracking mode maintenance threshold is exceeded SRMM or fewer timers in the duration of SRIM, then the trunks are returned to service. If not, the timer is restarted and monitoring continues.

Frame slippage is considered less important than alarms for loss of framc alignment persisting for 3 seconds, remote alarm, and bipolar violations exceeding the out of service threshold. If any of these alarms are reported while the slip rate is being monitored for improvement, then the monitoring stops. The trunks are returned to service only when the more serious alarm clears.

Free run (non-tracking) mode PRI hardware detects frame slips in the free run mode. Running the midnight routines prints the number of frame deletions and repetitions and clears the counters.

Data rate parameters

ISDN uses three types of data rates 56 Kbps inverted, 64 Kbps clear, and 64 Kbps restricted.

56 Kbps inverted

A 56 Kbps channel is specified with the Bearer Capability Information Element (IE).

- The information transfer capability is set to restricted digital information.
- The information rate is set to 56 Kbps.
- The layer and protocol identification in octet 5 is set to user information layer 1 protocol, rate adaptation, and the rate is encoded as 56 Kbps.

64 Kbps clear and restricted

The 64 Kbps inverted HDLC (64 Kbps restricted), or 64 Kbps clear (64C) is specified in the Bearer Capability IE in the SETUP message.

The 64 Kbps restricted (also called inverted HDLC) switched connections are supported by the Meridian 1 to DMS-100 protocol.

The Meridian 1 to Meridian 1 protocol supports 64 Kbps clear transmission.

Channel parameters

There are two types of ISDN channels, B-channels and D-channels.

B-channels

To minimize glare situations, Meridian 1 allocates B-channels from channel 23 down to channel 1; DMS-100 begins at channel 1 and goes up to channel 23.

Set outgoing trunk hunting on B-channels for the round robin searching method, rather than the linear method. Thus, when the system looks for an outgoing idle trunk, it looks for the next lower available trunk member, rather than the last member that was used.

The B-channel network loop, 0-511, and the PRI channel number, 1-23, are defined in LD14.

D-channels

1

The D-channel location must be coordinated with the far end. See the correlation tables in this guide for specific information.

To establish the PRI link, the D-channel interface port number and PRI loop numbers are associated in LD17. The DCHI port number must be an odd number between 1 and 15. PRI loop numbers may be between 0 and 511.

The D-channel can operate at 56 or 64 Kbps data rate. Its use may also be 64 Kbps clear, 64 Kbps restricted (inverted HDLC), or 56 Kbps. The selection of data rate is on a per PRI basis and is determined by service change. The B8ZS zero code suppression method is used to achieve 64 Kbps clear channel for the D-channel.

Interface protocols

User to network

The interface protocol between Meridian 1 and Central Office (CO) PRI equipment is a user-to-network protocol. If the far end is identified as a CO in service change (LD17), the Meridian 1 system is automatically designated as the "user."

The user to network protocol does not employ the same call states and state transactions at each end, and does not always send the same response to a given protocol message. In addition, the user to network protocol has an implicit master-slave relationship, relinquishing control to the network in cases such as glare resolution.

Symmetric

The interface protocol between a Meridian 1 and another Meridian 1 is a symmetric protocol. Call processing uses a master-slave relationship for glare resolution.

One PBX must be designated as the network (master), the other as the user (slave) (in LD17). If the master side of the interface sends a SETUP message as the slave initiates an outgoing call, priority is given to the call sent from the master switch. The outgoing call on that channel, the call initiated by the slave, is dropped and another virtual B-channel is selected for call origination.

Configuring PRI

Basic PRI configuration

PRI loops must be configured before defining DCH links or ISDN features. The following procedure outlines configuring the PRI loops, DCHI interface, DCH link and applications that are enabled as part of the overall configuration. These include:

- Basic Call Service
 - setting up and tearing down
- Electronic Switched Network (ESN) interworking

Default call types

When an ISDN call is made, a default call type is set initially. See Table 4-1. The call type is set depending on the dialing method used.

Modification of call types

The call type of an ISDN call can be modified automatically by software or you can use service change. See Table 4-1.

 Outgoing default UKWN or SPN call types over Central Office trunks go through automatic digit analysis of the final called number. This determines the call type according to North American Dialing Plans E.163 and E.164.

- Outgoing ISDN calls over CO trunks with LOC, CDP, SPN, and UKWN, a 10 or 11 digit dialing plan, the CLID automatically reflects 10 digits.
- The final call type of a direct dialed ISDN call (over a TIE trunk) can be modified in LD16. The CTYP prompt in LD16 permits you to modify the outgoing call types of PRI/ISL routes. This prompt, which is applicable only to TIE trunks, may have one of the aforementioned call types with UKWN as default.

Note: The CTYP prompt applies to Direct Trunk Access only.

Dial method	Default call type	Comment
Direct dial	UKWN (unknown)	Direct dial to trunks using Trunk Access Code
CDP (DSC/TSC)	CDP (Coordinated Dialing Plan)	Dial CDP number using DSC/TSC code
CDP (LSC)	UKWN	Dial CDP number using LSC code
ESN (LOC)	LOC (location code)	Dial NARS location code
ESN (HLOC)	UKWN	Dial ESN HLOC number
ESN (NPA)	NPA (national)	Dial ESN NPA number
ESN (NXX)	NXX (local)	Dial ESN NXX number
ESN (SPN)	SPN (special number)	Dial ESN SPN number

Table 4-1 Default call types

Configuring PRI capability and applications

Features enabled as part of basic PRI configuration, or are provided directly by DMS-100 are not included in this document. These include the following.

- Basic Call Service: configured as part of basic PRI
- Call Redirection and Call Forwarding: configured as part of basic PRI
- Private Network Hopoff: provided by DMS-100
- Private Network Overflow: provided by DMS-100
- Public Switched Telephone Network Equal Access and Special Number Service: provided by DMS-100

Descriptions given in the ISDN features description chapters.

- Backup D-channel
- Basic Call Service
- PSTN Equal Access and Special Number Services 64K Clear Data
- Calling Line Identification
- Data Packet Network access
- Digital Trunk Interface replacement
- Electronic Switched Network interworking
- Private Network Hopoff / Private Network Overflow
- Integrated Services Access
- ISDN Signaling Link
- Integrated Trunk Access
- Network Call Party Name Display/Network Name Delivery
- Network Call Redirection and Trunk Optimization
- Network Message Services
- Network Ring Again
- Remote Virtual Queueing
- Software Defined Network access

- Software Release ID
- T309 Timer

Note 1: Some networking features require a numbering plan in order to operate. Network Message Services, Network Ring Again, and Network ACD must be used with a Universal or Coordinated Dialing Plan (UDP, or CDP).

Note 2: The tariff is approved for ISDN PRI as of 1992.

PRI configuration

The following procedures show how to configure PRI only. For specific features (ISA or ISL, for example) refer to the individual feature modules found later in this document.

X11 release 18 and later requirements

X11 release 18 changes LD17 prompt and response sequences. The introduction of the MSDL card adds new options to LD17. Be sure to use the correct procedure to configure PRI for your system (X11 release 18 and later, or X11 release 17 and earlier). Pay close attention to the following guidelines.

- the primary and backup D-channels must be on the same card type (DCHI QPC757 or MSDL NT6D80)
- the parameters defined for the primary D-channel are automatically copied to the back-up D-channel (except for BCHL and RCVP)
- the D-channels must be disabled before making any changes
- changes to the D-channel pair should be made to the primary D-channel first (except for BCHL and RCVP)
- the backup D-channel must be removed prior to removing the primary D-channel
- when a backup D-channel is configured for a primary D-channel, the USR of the primary can be changed from SHA to ISLD or PRI, but not from ISLD to PRI or SHA

,

Use the following steps to configure PRI capability and applications.

- LD73 Digital Data Block Set error detection thresholds and clock synchronization control. Required only when configuring PRI for the first time. Optional for subsequent configurations.
- LD17 Configuration Record Add a PRI loop.
 X11 RELEASE 17 AND EARLIER
- OR
- 3 LD17 Configuration Record Add a PRI loop.
 WITH X11 RELEASE 18 AND LATER
- 4 LD73 Digital Data Block Change existing thresholds, or change tracking modes. This can be done any time after Procedure 4-3.
- 5 LD17 Configuration Record Add a DCHI card, and the D-channel link.
 X11 RELEASE 17 AND EARLIER

OR

- LD17 Configuration Record Add a DCHI card, or an MSDL card and the D-channel link.
 WITH X11 RELEASE 18 AND LATER
- LD15 Customer Data Block
 Define a PRI customer.
 Required only when configuring a new PRI customer. If PRI is already defined, skip this procedure.
- 8 LD16 Trunk Route Administration Configure PRI trunk routes.
- 9 LD14 Trunk Administration Add PRI trunks.

Asynchronous port configuration procedures follow these procedures./

The following prompts in LD73 require a response before adding PRI loops (Part 1 of 2)

Prompt	Response	Description
REQ	NEW	Create a PRI datablock
TYPE	DDB	Digital data block
PREF	Іоор	Primary reference source for clock controller (0-511)
	<cr></cr>	Free run mode No primary or secondary reference source assigned X preceding the number deletes existing primary reference source
SREF	Іоор	Secondary reference source for clock controller (0-511) prompted only if PREF is not free run
	<cr></cr>	Free run mode No primary or secondary reference source assigned X preceding the number deletes existing secondary reference source
TRSH	0-15	Create, or change a PRI threshold set Enter this number in LD17 when defining the PRI loop
		X preceding number deletes Threshold set.
RALM	1-(3)-128	Yellow alarm (remote alarm) 24-hour threshold number of remote alarm clear signals received in 24 hours
		If the threshold is reached, the PRI must be restored to service manually
BIPC	0-(2)-128	24-hour bit rate violation threshold If zero is entered, trunks are restored to service automatically
		with D2, D3, or D4 framing format, bipolar violation threshold with ESF, Cyclic Redundancy Check (CRC) threshold
LFAC	0-(3)-128	24-hour loss of frame alignment threshold If zero is entered, trunks are restored to service automatically
BIPV		Bit rate (bipolar violation and CRC) monitoring limits
	1-(3)-4	Maintenance threshold
	1-(2)-4	Out-of-service threshold

The following prompts in LD73 require a response before adding PRI loops (Part 2 of 2)

Prompt	Response	Description
SRTK		Frame slip tracking monitoring limits
	1-(5)-24 1-(30)-3600	Maintenance threshold, the minimum time, in hours, between slips Out-of-service threshold, the maximum number of slips per hour
SRNT		Frame slip free run (non-tracking) monitoring limits
	1-(15)-1024	Maintenance threshold, the minimum time, in seconds, between 10 consecutive slips
	1-(3)-1024	Out-of-service threshold, the minimum time, in seconds, between 10 consecutive slips See "Coordinating parameters" and ISDN Primary Rate Interface maintenance (553-2901-500) for a description of the automatic recovery sequence.
LFAL		Loss of frame alignment monitoring limits
	1-(17)-10240 1-(511)-10240	Maintenance threshold Out-of-service threshold
SARR	YES-(NO)	Automatic recovery allowed after out of service condition
SRGT	1-(15)-30	Auto recovery guard timer in minutes (X11 release 14 and earlier only)
SRMM	1-(2)-127	Slip Rate exceeded maintenance limit

Procedure 4-2 Use LD17 to add a PRI loop (X11 release 17 and earlier) (Part 1 of 2)

Prompt	Response	Description
REQ	CHG	Change parameters in LD17.
TYPE	CFN	Configuration data block
CEQU	YES	Change common equipment options
DLOP	loop dd ff	PRI loop parameters: loop = Network loop number (0-159) dd = Number of data calls (0-24) ff = Fame format: D2, D3, D4, (ESF)
		Frame format must match the far end.
MODE	PRI	Primary Rate Interface mode
LCMT	(B8S), AMI	Line encoding method must match the far end
		B8S = B8ZS coding format AMI = B7 coding format (Alternate Mark Inversion)
YALM	FDL, DG2	Yellow alarm (remote alarm) method prompted only if the frame format is ESF must match the far end. If NOT prompted, DG2 was set automatically
		Use FDL with ESF in the U.S
		FDL or DG2 can be used in Canada.

Procedure 4-2 Use LD17 to add a PRI loop (X11 release 17 and earlier) (Part 2 of 2)

i

Prompt	Response	Description
TRSH	0-15	The maintenance and performance threshold set for this PRI, as defined by prompt TRSH in LD73
DTIC	0-159	Starting network loop slot for the PRI card
		This prompts asks the technician to tell the system what card slot is used by the T1. This makes these loops unavailable for other use.
		X preceding the loop number returns the loops for system use.
		The loop number must be even.
		In system option 21, each network slot has one superloop (four loops). Since the PRI card takes two slots, eight loops are used per PRI, and therefore unavailable.
		When installed on a Network expansion shelf, enter carriage return and ignore the SCH2035 message. This indicates that the T1 is not in an intelligent Bus.
		Do not input loop numbers that take the system out of its bounds.

Use LD17 to add a PRI loop (X11 release 18 and later) (Part 1 of 2)

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel on logical port 0-63
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCHI, physical card address for MSDL
PORT	x	Port number on MSDL cards, or option 81 I/O devices
USR	PRI, ISLD, SHA	D-channel mode
_ISLM	1-382	Number of ISL trunks controlled by the D-Channel
DCHL	0, 2, 4,159	PRI loop number for D-Channel
GRP	0-4	Network group number for option 81 systems
OTBF	1-(32)-127	Number of output request buffers
_BPS	хххх	Baud rate for ISL D-channel on MSDL port (default 64000)
_PARM	R232,(R422) DCE, (DTE)	ISL D-channel interface and transmission mode (MSDL only)
PRI	0-159 2-15	Additional PRI loops using the same D-channel, and interface ID
DRAT	(56K), 64KC, 64KI	D-channel transmission
IFC	aaa	Interface type: SL1, S100, (D100), D250, ESS4, ESS5, etc
SIDE	NET, (USR)	Meridian 1 node type
RLS	xx	Release ID of the switch at the far end of the D-Channel
RCAP	MSL, NCT, ND1, ND2, RVQ	Remote D-channel capabilities
_CLOK	INT, (EXT)	Internal or external clock on ISL D-channels

100 Jan

ISDN PRI description and administration 553-2901-100

Procedure 4-3 Use LD17 to add a PRI loop (X11 release 18 and later) (Part 2 of 2)

Prompt	Response	Description
LAPD	Yes, (No)	D-channel LAPD parameters
T23	1-(20)-31	Interface guard timer (DCHI only)
T200	2-(3)-40	Retransmission timer
N200	1-(3)-8	Maximum number of retransmissions
N201	4-(260)	Maximum number of octets in information field
T203	2-(10)-40	Maximum time (in seconds) without frames being exchanged
_к	1-(7)	Maximum number of outstanding frames
ADAN	NEW BDCH 0-63	Add a backup D-channel on logical port 0-63
PDCH	0-63	Primary D-channel
CTYP	DCHI, MSDL	Card type (automatically printed: must be the same as DCH)
DNUM	0-15	Physical port (odd) for D-channel, card number for MSDL
_PORT	x	Port number on MSDL cards, or option 81 I/O devices
BCHL	0,2,4 159	PRI loop number for back-up D-channel
GRP	0-4	Network group number for option 81 systems
RCVP	Yes, (No)	Auto-recovery to primary D-channel option
ADAN	<cr>,****</cr>	Go on to next prompt or exit overlay

1.

The following prompts in LD73 require a response to change tracking or thresholds (Part 1 of 2)

Prompt	Response	Description
REQ	CHG	Change a PRI datablock
TYPE	DDB	Digital data block
PREF	Іоор	Primary reference source for clock controller (0-511)
	<cr></cr>	PFree run mode No primary or secondary reference source assigned X preceding the number deletes existing primary reference source
SREF	Іоор	Secondary reference source for clock controller (0-511) prompted only if PREF is not free run
	<cr></cr>	Free run mode No primary or secondary reference source assigned X preceding the number deletes existing secondary reference source
TRSH	0-15	Create, or change a PRI threshold set Enter this number in LD17 when defining the PRI loop
		X preceding number deletes Threshold set.
RALM	1-(3)-128	Yellow alarm (remote alarm) 24-hour threshold number of remote alarm clear signals received in 24 hours
		If the threshold is reached, the PRI must be restored to service manually
BIPC	0-(2)-128	24-hour bit rate violation threshold If zero is entered, trunks are restored to service automatically
		with D2, D3, or D4 framing format, bipolar violation threshold with ESF, Cyclic Redundancy Check (CRC) threshold
LFAC	0-(3)-128	24-hour loss of frame alignment threshold If zero is entered, trunks are restored to service automatically

ISDN PRI description and administration 553-2901-100

Prompt	Response	Description
BIPV		Bit rate (bipolar violation and CRC) monitoring limits
	1-(3)-4	Maintenance threshold
	1-(2)-4	Out-of-service threshold
SRTK		Frame slip tracking monitoring limits
	1-(5)-24	Maintenance threshold, the minimum time, in hours, between
	1-(30)-3600	Out-of-service threshold, the maximum number of slips per hour
SRNT		Frame slip free run (non-tracking) monitoring limits
	1-(15)-1024	Maintenance threshold, the minimum time, in seconds, between 10 consecutive slips
	1-(3)-1024	Out-of-service threshold, the minimum time, in seconds, between 10 consecutive slips See "Coordinating parameters" and <i>ISDN Primary Rate Interface maintenance</i> (553-2901-500) for a description of the automatic recovery sequence.
LFAL		Loss of frame alignment monitoring limits
	1-(17)-10240 1-(511)-10240	Maintenance threshold Out-of-service threshold
SRMM	1-(2)-127	Slip Rate exceeded maintenance limit

ŕ

The following prompts in LD73 require a response to change tracking or thresholds (Part 2 of 2)

Use LD17 to add a DCHI card and the D-channel interface (X11 release 17 and earlier) (Part 1 of 3)

Prompt	Response	Description
REQ	CHG	
TYPE	CFN	Configuration data block
ISDN	YES	Change DCHI parameters
DCHI	1-15	DCHI port number, only odd numbers are allowed
BCHI	(0)-1-15	Back-up DCHI port number
USR	PRA	D-channel is for ISDN PRI only
	ISLD SHA	D-channel is for ISL in dedicated mode D-channel is for ISL in "shared" mode
IFC	aaaa	Interface type aaaa = (DMS1), D250, ESS4, ESS5, SL-1, S100
RCVP	YES, (NO)	Recovery to Primary D-channel option prompted only when BCHI has a number entered. When RCVP=YES, the primary D-channel automatically returns as the active D-channel when it recovers.
		When RCVP = No, the Back Up D-channel remains active even after the primary D-channel recovers.
		Both sides must be either YES or NO. If the two sides do not match, both sides default to NO.
		If IFC = D100, D250, SL100, or ESS4, RCVP defaults to No.
DCHL	0-511	PRI loop number for DCHI, one DCHI card can support up to 15 PRIs when Back Up D-channel is configured.
BCHL	0-159	PRI loop number for BCHI <cr> when BCHI = 0</cr>
OTBF	1-(16)-127	number of output request buffers

,

· .

Procedure 4-5 Use LD17 to add a DCHI card and the D-channel interface (X11 release 17 and earlier) (Part 2 of 3)

Prompt	Response	Description
DRAT	56K 64KC 64KI	D-channel transmission rate must match the far end 56 Kbps, default when LCMT is AMI 64 Kbps clear, default when LCMT (LD17) is B8S 64 Kbps inverted HDLC (64 Kbps restricted)
		In X11 release 15 and later DRAT is not prompted when configuring ISL D-channels because the speed is controlled by the modem baud rate
PRI	loop id	Additional loops using the same D-channel.
		loop = loop number (0-159) id = interface ID (2-15)
		Up to 16 loops can be supported, including the 14 loops that can be entered here and the primary and backup D-channel loops that are assigned automatically. The primary and backup D-channel IDs are 0 and 1. This cannot be changed.
SIDE	MAS, (SLAV)	Prompted only if IFC is set to Meridian 1. One side of the PBX-to-PBX interface must be set as the "master", the other must be set as the "slave"
RLS	хх	X11 or BCS release of far end. Enter release only, not issue. For example, acceptable responses are 14, 15, 16, 17, 29, 30, 31, 32.
RCAP	aaa	Remote D-channel capability aaa = NCT, ND1, ND2 NCT = Network Call Trace ND1 = Network Name Delivery method 1 (X11 release 13 and greater) ND2 = Network Name Delivery method 2 (X11 release 17 and greater)
		Xaaa removes the capability.
CLOK	EXT	D-channel clock type ,source of primary clock is external to DCHI card
		Always use EXT for PRI.

ISDN PRI description and administration 553-2901-100

Use LD17 to add a DCHI card and the D-channel interface (X11 release 17 and ear	lier)
(Part 3 of 3)	

Prompt	Response	Description
LAPD	YES, (NO)	Change LAPD parameters Select YES to activate timers during system set up. The following prompts appear when LAPD = YES.
		Note: When adding a D-channel the MEM AVAIL data is output after this prompt, indicating the channel has been added. You can therefore abort the program without going to the REQ prompt.
_T23	1-(20)-31	Interface guard timer checks how long the interface takes to respond In units of 0.5 seconds, default of 20 = 10 seconds
_T200	2-(3)-40	Retransmission timer in units of 0.5 seconds, default of 3 = 1.5 seconds
_T203	2-(10)-40	Maximum time allowed without frames being exchanged in seconds
_N200	1-(3)-8	Maximum number of retransmissions
_N201	4-(260)	Maximum number of octets in information field
_K	1-(7)-31	Maximum number of outstanding unacknowledged frames (NAKS)

,

Use LD17 to add a DCHI card, or an MSDL card and the D-channel interface (X11 release 18 and later) (Part 1 of 2)

Prompt	Response	Description
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
USR	PRI, ISLD, SHA	D-channel mode
_ISLM	1-382	Number of ISL trunks controlled by the D-Channel
DCHL	0, 2, 4,159	PRI loop number for DCHI
OTBF	1-(32)-127	Number of output request buffers
_BPS	хххх	Baud rate for ISL D-channel on MSDL port (default 64000)
_PARM	R232,(R422) DCE, (DTE)	ISL D-channel interface and transmission mode (MSDL port only)
PRI	0-159 2-15	Additional PRI loops using the same D-channel, and interface
DRAT	(56K), 64KC, 64KI	D-channel transmission
IFC	aaa	Interface type: SL1, S100, (D100), D250, ESS4, ESS5
SIDE	NET, (USR)	Meridian 1 node type
RLS	хх	Release ID of the switch at the far end of the D-Channel
RCAP	MSL, NCT, ND1, ND2, RVQ	Remote D-channel capabilities
_CLOK	INT, (EXT)	Internal or external clock on ISL D-channels
LAPD	Yes, (No)	D-channel LAPD parameters

ISDN PRI description and administration 553-2901-100

Use LD17 to add a DCHI card, or an MSDL card and the D-channel interface (X11 release 18 and later) (Part 2 of 2)

Prompt	Response	Description
T23	1-(20)-31	Interface guard timer (DCHI only)
T200	2-(3)-40	Retransmission timer
N200	1-(3)-8	Maximum number of retransmissions
N201	4-(260)	Maximum number of octets in information field
T203	2-(10)-40	Maximum time (in seconds) without frames being exchanged
_ĸ	1-(7)	Maximum number of outstanding frames
ADAN	NEW BDCH 0-63	Add a backup D-channel
PDCH	0-63	Primary D-channel
СТҮР	DCHI, MSDL	Card type (automatically printed because it must be the same as primary D-channel)
DNUM	0-15	Physical port (odd) for D-channel, card number for MSDL
_PORT	0-3	Port number on MSDL card
BCHL	0,2,4,-159	PRI loop number for back-up D-channel
RCVP	Yes, (No)	Auto-recovery to primary D-channel option
ADAN	<cr>,****</cr>	Go on to next prompt or exit overlay

i

Procedure 4-7 Use LD15 to define a PRI customer (Part 1 of 2)

Prompt	Response	Description
REQ	NEW, CHG	Add or change a customer
TYPE	CDB	Customer data block
CUST	xx	Customer number (0-99)
LDN0	XXXX X	Listed Directory Number 0 length This value must be set to terminate all incoming ISDN/DID calls. Determines the number of digits to translate.
ANAT	xxxx x	Attendant billing number ANAT and ANLD combined must be 7 digits.
ANLD	xxxx x	ANI listed DN ANLD and ANAT combined must be 7 digits
AC2		Access Code 2 Enter call types (type of number) that use access code 2. This relates to ESN dialing plans. If you do not have a dialing plan, <cr> past this prompt. Multiple responses are permitted. If a call type is not entered here, it automatically defaults to access code 1.</cr>
	NPA NXX INTL SPN LOC	E.164 National E.164 Subscriber International Special number Location code Prompted only for NARS.
ISDN	Yes, (No)	Change ISDN options
_PNI	1-32700	Private Network Identifier (for CLID)

i

~

Use LD15 to define a PRI customer (Part 2 of 2)

Prompt	Response	Description
PFX1	XXXX	Prefix (area) code for International PRA (for CLID)
_PFX2	xxxx	Central Office Prefix for IPRA (for CLID)
_HNPA	100-999	Home Number Plan Area code (for CLID)
_HNXX	100-999	Prefix for Central Office (for CLID)
_HLOC	100-9999	Home Location Code (ESN) (for CLID)
_LSC	xxxx	Local steering code (for CLID)
_CNTP	LDN, (PDN)	Default for Calling Line ID (CLID)
_RCNT	0-(5)	Maximum inter-node hops in a network redirection call
Procedure 4-8 Use LD16 to define a PRI trunk route (Part 1 of 3)

Prompt	Response	Description	
REQ	NEW	Add a PRI trunk route	
TYPE	RDB	Type of data	
CUST	0-99	Customer number	
ROUT	0-511	Route number	
ТКТР	aaa	Trunk route type: DID, FEX, FGDT, ISA, ISL, RLM, RLR, TIE, WATS	
PRIV	Yes, (No)	Route is (is not) a Private line route	
ESN	Yes, (No)	ESN signalling	
CNVT	Yes, (No)	Route to conventional switch	
DDMI	ххх	Digit manipulation index	
ATDN	(0) - xxxxxxx	Attendant DN of conventional main, ESN main, ESN node or ETN node	
SAT	Yes, (No)	Trunk route via earth orbiting satellite transmission	
RCLS	INT, (EXT)	Route classmarked as internal, (external)	
DTRK	Yes, (No)	Digital trunk route	
BRIP	Yes, (No)	ISDN BRI packet handler route	
DGTP	aaa	Digital trunk type	
ISDN	Yes, (No)	ISDN PRI option	
_MODE	PRA, ISLD	Mode of D-Channel that controls the route	
_DCHI	1-15	DCHI port number Prompted if Mode = ISLD	
_PNI	0-32700	Customer Private ID (unique to a customer)	
_IFC	XXXX	Interface machine type for this PRI route	

1.

ISDN PRI description and administration 553-2901-100

Procedure 4-8 Use LD16 to define a PRI trunk route (Part 2 of 3)

Prompt	Response	Description		
_SRVC	aaa	Service provisioned for AT&T ESS connections (NNSF), ACC, I800, LDS, M800, MEG, SDN, IWAT, WATM, WATB		
		<i>Note:</i> NSF = services provided on a Call-by-Call basis.		
_SRPM	0-(15)-255	Service parameter Prompted if SRVC = WATB		
_NCNA	(Yes), No	Network call name allowed		
_NCRD	(No), Yes	Network Call Redirection		
_TRO	Yes, (No)	Trunk optimization allowed (denied) on the route		
_NSF	Yes, (No)	Network Service Facility		
_COTR	0-511	Incoming DID/CO route number		
_TIER	0-511	Incoming Tie route number		
_WATR	ххх	WATS route number		
_CHTY	ABCH, (BCH)	Signaling type for B-channel digital routes		
_CTYP	aaa	Call type for outgoing direct dialed Tie route		
_INAC	Yes, (No)	Insert ESN access code to incoming private network call		
NCOS	(0)-99	Network Call Of Service		
CLS	aaa	Class of service restriction for tie route		
TGAR	0-31	Trunk group access restrictions		
IEC	000-999	Interexchange carrier ID		
ΡΤΥΡ	aaa	Port type at far end		
AUTO	Yes, (No)	Auto terminate trunks		
ICOG	IAO, ICT, OGT	Incoming and/or outgoing trunk		
SRCH	RRB, (LIN)	Round røbin or linear outgoing trunk search		
ACOD	xxx x	Trunk route access code		

.

ISDN PRI description and administration 553-2901-100

1.0

Procedure 4-8

Use LD16 to define a PRI trunk route (Part 3 of 3)

7

Prompt	Response	Description	
SIGO	aaa	Signaling arrangement	
NEDC	ORG, ETH	Near end disconnect control	
FEDC	ETH, FEC, JNT,(ORG)	Far end disconnect control	
CPDC	Yes, (No)	Meridian 1 is the only controlling party on incoming calls	
SPCT	DLY, (IMM)	Delayed or immediate cut-through speech path control	
DLTN	Yes, (No)	Provide dial tone to the far-end	
PSEL	TLNK, (DMDM)	T-link or DM-DM protocol selection	
EQAR	Yes, (No)	Enable Equal Access on this route	
_GCR	(Yes), No	Use General Carrier Restriction for Equal Access calls	
_NTOL	ALOW, (DENY)	Allow or deny North American toll calls (1+ calls)	
	ALOW, (DENY)	Allow or deny international toll calls (011+ calls)	
_SCR	Yes, (No)	Use Selective Carrier Restriction for Equal Access calls	
AUTH .	Yes, (No)	Authcode to be prompted for incoming tie callers	
FGNO	(0)-127	Feature Group D block number	
TDET	Yes, (No)	Tone detector required	
TTBL	(0)-31	Tone table number	

Procedure 4-9

Use LD14 to define a PRI trunk (Part 1 of 2)

Prompt	Response	Description	
REQ	New	Create a PRI trunk	
TYPE	aaa	Trunk Type	
		DID, FEX, FGDT, ISA, ISL, RLM, RLR, TIE, WATS	
		Note: Per FCC regulations, DID trunks must be designated for answer supervision. Refer to "FCC Compliance for DID Answer Supervision" in <i>X11 features and services</i> (553-3001-305).	
TN	lscu,Ich	Terminal Number, or loop and channel	
XTRK	XUT, XEM	Universal trunk card, Enhanced E&M trunk card	
SFEX	Yes, (No)	Special digital FEX trunk	
CUST	0-99	Customer Number	
NCOS	xx	Network Class of Service Group Number	
RTMB	rrr mmm	Route number and Member number	
CHID	xx	Channel ID for this trunk	
MNDN	хххх	Manual Directory Number	
PRDN	xxxx	Private line directory number	
CMF	Yes, No	Call modification for private lines	
RLDN	xxxx	Release Link trunk Directory Number	
NITE	хххх	Night Service Directory Number	
TGAR	(0)-31	Trunk group access restriction	
SIGL	aaa	Trunk signaling	
CDEN	SD, DD	Single or double card density	
EMTY	TY1, (TY2)	4-wire E&M type 1 or 2	

12

ISDN PRI description and administration 553-2901-100

Procedure 4-9 Use LD14 to define a PRI trunk (Part 2 of 2)

Prompt	Response	Description		
CPAD	CIN, (COUT)	Carrier interface pad in (out) for 4-wire E &M Tie trunks		
LDOP	bop, (loop)	Loop Dial Outpulsing		
TIMP	(600), 900, 1200	Termination impedance		
BIMP	600, (3com)	Balance impedance 3-component or 600 ohms		
CDEN	SD, DD	Single or double card density		
STRI	aaa	Incoming start arrangement		
STRO	aaa	Outgoing start arrangement		
SUPN	Yes, No	Answer and disconnect supervision required		
FCAR	Yes, (No)	Forced Charge account		
CLS	aaa	Class of service options		

Asynch port configuration (X11 release 17 and earlier)

The following procedure describes how to configure the asynchronous port of the QPC757 or the NT6D11AB D-channel card as a Serial Data Interface (SDI) port. This SDI port is able to serve as a QPC139 circuit. As defined here, the asynchronous port is only an even numbered port.

Note: The port should be set for DCE and RS-232-C interface options. See *ISDN Primary Rate Interface installation* (553-2901-200) for the socket locations.

Prompt	Response	Description	
REQ	CHG	Change the configuration	
TYPE	CFN	Configuration record	
ЮТВ	YES	Change input/output device	
ADAN	NEW TTY x	New TTY number	
		x = TTY port address as set by the card switch settings	
ESDI	YES	This port uses an ESDI card	
SYNC	NO	This port is not in synchronous mode	
_DUPX	HALF, (FULL)	Duplex rate	
_BPS	1200, 2400, (4800), 9600, 19200, 48000, 56000, 64000	Baud rate	
_BITL	7, (8)	7 or 8 data bit length	
_STOP	(1), 1.5, 2	Number of stop bits	
		Enter 1x5 for 1.5	
_PRTY	ODD, EVEN, (NONE)	Parity	
_FLOW	CTS, XON, (NONE)	Flow control	
_USER	aaa	Output message types	
		,aaa = BUG, CDL, CTY, MTC, SCH, TRF	
		(among others, see <i>X11 input/output guide</i> (553-3001-400))	

Procedure 4-10 Respond to the following prompts in LD17

ISDN PRI description and administration 553-2901-100

Asynch port configuration (X11 release 18 and later)

The following procedure describes how to configure the asynchronous port on the QPC757 DCHI card as a Serial Data Interface (SDI) port. This SDI port is able to serve as a QPC139 circuit. As defined here, the asynchronous port is only an even numbered port.

Note: The port should be set for DCE and RS-232-C interface options. See *ISDN Primary Rate Interface installation* (553-2901-200) for the socket locations

Procedure 4-11 Respond to the following prompts in LD17

Prompt	Response	Description
REQ	СНG	Change the configuration
TYPE	CFN	Configuration record
ADAN	NEW TTY x CHG TTY x	New or changed TTY number x = TTY port address as set by the card switch settings (even number)
СТҮР	DCHI	This port uses a QPC757 DCHI card
DNUM	x	Device number automatically printed when ADAN = CHG
BPS	110, 150, 300, 600, (1200), 2400, 4800, 9600, 19200	Baud rate
PRTY	ODD, EVEN, (NONE)	Parity
STOP	(1), 2	Number of stop bits
BITL	7, (8)	7 or 8 data bit length
USER	aaa	Output message types
		aaa = BUG, CDL, CTY, MTC, SCH, TRF (among others, see <i>X11 input/output guide</i> (553-3001-400))

ISDN PRI description and administration 553-2901-100

,

Service verification

Testing PRI

There are four tests used to test the Primary Rate Interface:

- the PRI local loop back test
- a PRI self-test performed manually
- the PRI automatic loop test

,

 the PRI remote loop-back test (must run in conjunction with a link diagnostic test at the far end)

Note: X11 release 18 changes the way you enter the card type for some commands. X11 release 17 and earlier uses ENL DCHI, DIS DCHI. X11 release 18 requires ENL DCH, DIS DCH. The X11 release 18 commands are reflected in this document.

PRI local loop back test

This test checks the communication path between the QPC414 Network card and QPC720 PRI card. It also checks the leads for the J4. It is often performed when the PRI cannot be enabled. The PRI card must be installed, and a cable connecting its J3 connector to a QPC414 Network card.

1 Disable the D-channel.

LD96 DIS DCH x

2 Disable the PRI loop:

LD60 DISL loop

- 3 Disconnect the cable connector from the QPC720 J4 (if attached). Several LEDs will light on the faceplate.
- 4 Attach a female 15 pin connector loopback plug to J4. The loopback plug must have pins 1 and 3, and pins 9 and 11 shorted together.
- 5 Enable the PRI loop:

LD60 ENLL loop

The green ACT LED will light in a few seconds. If so, the test passed. Continue with the following steps.

If the green ACT light does not come on, retest. Unseat the PRI card between steps 2 and 3.

If the light still does not turn on, try replacing your QPC414 or QPC720 cards, or the connecting cable.

- 6 Remove the loopback plug from the J4 connector.
- 7 Replace cable connector to the QPC720 J4 (removed in step 3).
- 8 Enable the loop: LD60 ENLL loop
- 9 Enable the DCH: LD96 ENL DCH x

PRI self-test

The self-test checks speech path continuity, zero code suppression, remote alarm detection, and A&B bit signaling. This test is performed manually, on a per channel or a per frame (24 channels) basis.

The DCH and PRI must be disabled before performing the self-test or call processing is disrupted. To perform the self-test on a specific loop:

- 1 Disable DCH: LD96 DIS DCH x
- 2 Disable the PRI loop and run the self-test: LD60 DISL loop SLFT loop

When the system returns OK, it indicates that the hardware is operable.

3 Re-enable the PRI loop: LD60

ENLL loop

i

The D-channel will re-enable automatically.

1.

PRI automatic loop test

The automatic loop test checks the same functions as the self-test. Unlike the self-test, it can be run automatically, as part of the midnight routines.

With the ATLP command set to one:

If all 23 channels are idle at midnight, the system disables the card and performs a self-test on all channels.

If any of the 23 channels are busy at midnight, the system disables one idle channel, chosen at random, and checks it while the card is enabled.

With the ATLP command set to zero, only one channel is tested. The channel tested is randomly selected by software; it cannot be specified.

To perform the remote loop-back test, use the following:

LD60 ATLP 1 or 0

When ATLP 1 is entered, the TTY prints out AUTO TEST ENBL. When ATLP 0 is entered, the TTY prints out AUTO TEST DSBL.

Link diagnostic and remote loop-back tests

The remote loop-back test and the link diagnostic test are performed manually on a per channel or a per frame (23 channels) basis.

Link diagnostic test

The link diagnostic test, also called the far end loop-back test, does not test the Meridian 1 PRI. It puts the PRI in loop-back mode at the far end so a remote loop-back test can be performed on far end equipment. The PRI channel, loop, or frame tested must be disabled.

Remote loop-back test

The remote loop-back test, also called the near end loop back test, checks the integrity of the PRI from the Meridian 1 system to the far end. The far end must be put into loop-back mode before this test can be performed. The PRI channel, loop, or frame tested must be disabled.

Coordinating the tests

When a technician at the far end asks for loop-back mode on the Meridian 1, perform the following steps.

- 1 Disable the D-channel. LD96 DIS DCH x
- 2 Disable the PRI loop and activate loop-back mode.

LD60 DISL loop RLBK loop The QPC720 LBK LED lights.

When a technician at the far end asks for loop-back mode on the Meridian 1 to be disabled, perform this step.

Disable loopback mode. LD60, DLBK loop The LBK LED turns off. When a technician at the far end asks for PRI and DCH to be re-enabled, perform this step.

Enable the PRI loop.

```
LD60
```

```
ENLL loop
```

OK will print out. The D-channel re-enables automatically.

To run the remote loop-back test on the Meridian 1, call a technician at the far end and ask for loop-back mode at that facility.

When loop-back mode at the far end is confirmed, the technician at the far end follows these steps.

1 Disable the D-channel.

LD96 DIS DCH N

2 Disable the PRI loop and run the loop-back test using.

LD60 DISL L RMST L SLFT OK prints out to indicate a successful test.

3 Call the far end technician to disable the loopback test, and to re-enable the PRI and DCH. The far end technician enables the PRI.

LD60

ENLL L

OK prints out, and the D-channel re-enables automatically.

Figure 5-1 shows the relationship between the remote loop-back test and the link diagnostic test.

Figure 5-1 PRI remote loop-back and link diagnostic tests

Testing DCH

This chapter describes the following DCH tests. These tests are supported on the QPC757 DCHI card only. MSDL card (NT6D80) tests are shown later in this chapter.

- Test 100: Interrupt generation
- Test 101: Loop-back mode
- Test 200: Interrupt handler
- Test 201: Interrupt handler-to-link interface

DCH tests 100 and 101 (QPC757 DCHI card only)

DCH tests 100 and 101 are isolated hardware tests. Test 100 checks interrupt generation on the DCHI card. Test 101 checks the DCHI loop-back capability. If either test fails, either a faulty DCHI or a contention problem is indicated. A test failure initiates DCH error messages. See Figure 5-2.

Tests 100 and 101 must be run in sequential order (tests 200 and 201 may follow). Established calls stay up, but new calls cannot be placed.

The DCH link must be in the reset state when these tests are run. Reset can be accomplished when the status of the D-channel is established (EST) or released (RLS).

To reset:

LD96 STAT DCH x (responds either EST or RLS) RST DCH x

If the DCHI is disabled, it must be enabled before reset can be established.

To enable the DCHI:

,

LD96	
STAT DCH x	(responds RST)
ENL DCH x	(if a problem caused the disabled state, RLS occurs;
	if the disabled state is cleared, status is EST)

To run Test 100 and Test 101 after verifying that the DCH is reset:

TEST 100 x TEST 101 x OK appears when test passes successfully.

Figure 5-2

DCH tests 200 and 201 (QPC757 DCHI card only)

DCH tests 200 and 201 are software tests. See Figure 5-3. Test 200 monitors the DCHI interrupt handler. Test 201 checks the interrupt handler-to-link interface path. A failure of either test indicates software problems. A test failure initiates DCH error messages.

Tests 200 and 201 must be run sequentially after tests 100 and 101. Established calls stay up, but new calls cannot be placed.

The DCH link must be in the reset state when these tests are run. Reset can be established when the status of the D-channel is established (EST) or released (RLS).

To reset:

LD96 STAT DCH x (responds either EST or RLS) RST DCH x

If the DCHI is disabled, it must be enabled before reset can be established.

To enable the DCHI:

LD96	
STAT DCH x	(responds RST)
ENL DCH x	(if a problem caused the disabled state, RLS occurs; if the disabled state is cleared, status is EST)

RST DCH x

ï

To run Test 200 and Test 201 after verifying that the DCH is reset:

TEST 200 x TEST 201 x OK appears when test passes successfully.

Figure 5-3

DCH tests 200 and 201 (QPC757 DCHI card only)

ISDN PRI description and administration 553-2901-100

MSDL local loopback test (NT6D80)

To start the local loopback test on the MSDL card, use the following steps. The test checks both MSDL expedited and normal (ring) interfaces.

1	Place MSDL in Test state. Enter			
	ENL TEST DCH x	x = the D-channel logical address		
2 Place the MSDL in local loopback mode. Enter		al loopback mode. Enter		
	ENL LLB DCH x	x = the D-channel logical address		

3 Perform the test. Enter

TEST LLB DCH x x = the D-channel logical address

The response for the expedited interface that carries urgent signaling and maintenance messages between the Meridian 1 CPU and the MSDL MPU follows.

```
DCH : X XDU TEST CONFIRM TIME : <time of day>
TEST : PASS (or FAIL)
```

X is the D-channel logical address

XDU is the expedient message sent around the loop.

The response for the ring interface that transmits operation data between the Meridian 1 CPU and the MSDL MPU follows.

```
DCH : X DU TEST CONFIRM TIME : <time of day>
TEST : PASS (or FAIL)
```

- 1 If the test fails, check the status of the MSDL card, used by this DCH link, with the STAT MSDL x FULL command.
- 2 If the MSDL card may be faulty, disable the card and perform self-test.

DIS MSDL x	x = the MSDL device number
SLFT MSDL x	x = the MSDL device number

3 If the card passed the test, the problem may lie in incompatible software.

Refer to Multi-purpose Serial Data Link description (553-3001-195).

Figure 5-4 Local loopback test (NT6D80)

MSDL remote loopback tests (NT6D80)

Before beginning this test, verify the following.

- D-channels on both switches are configured on MSDL cards
- DCH links on both switches are set to TEST mode
- DCH at Switch B is in remote loopback mode (RLB)
- remote capability (RCAP) is MSDL

To place DCH links on both systems in TEST mode, enter ENL TEST DCH x on Switch A and ENL TEST DCH y on Switch B for the same DCH link (x is the logical address for the DCH link in Switch A and y is the corresponding DCH link in Switch B). The DCH link on both switches are automatically placed in idle state (IDLE).

- 1 Place the Switch B DCH link in remote loopback state (RLB) with ENL RLB DCH x. The DCH link in Switch A must stay in idle.
- 2 From Switch A, perform the loopback test with **TESTRLB x**.

The result of the remote loopback test is displayed on Switch A's console in the following format.

DCH : X RLB TEST CONFIRM TIME : <time of day> TEST : PASS TEST : FAIL - NO DATA RCV FAR END TEST : FAIL - CORPT DATA RCV FAR END TEST : FAIL - REASON UNKNOWN

TEST : FAIL may indicate a problem in the physical link between the two switches, or faulty equipment in either switch. Check the connections, and verify the status of the MSDL and PRI trunk cards used for this link. Refer to *ISDN Primary Rate Interface maintenance* (553-2901-500) for detailed troubleshooting procedures.

- **3** Place the Switch B DCH link back to the idle state, with the **DIS RLB y** command.
- 4 If you think the MSDL card used in either switch has failed, check the status of the DCH link and the status of the MSDL card by entering **STAT** MSDL x FULL.

- 5 If the MSDL card may be faulty, disable the card and perform self-test.
 DIS MSDL x
 SLFT MSDL x
- 6 If the card passed the test, the problem may lie in incompatible software. Refer to *Multi-purpose Serial Data Link description* (553-3001-195).

Figure 5-5 Remote loopback tests (NT6D80)

ISDN PRI description and administration 553-2901-100

Correlation tables

The correlation tables are used to coordinate the software features between two switches.

The following correlation tables are contained in this chapter:

- Meridian 1 switch to another Meridian 1 switch
- Meridian 1 switch to DMS-100 switch
- Meridian 1 switch to DMS-250 switch

7

Note 1: The Meridian 1 to SL-100 datafill is the same as the Meridian 1 to DMS-100 datafill.

Note 2: Due to proprietary constraints, the Meridian 1 to AT&T 4ESS and AT&T 5ESS datafill is not available for publication in this document.

The following tables are provided for Meridian 1 to Meridian 1:

- Table 6-1 PRI database correlation (protocol layer 1)
- Table 6-2 DCH database correlation (protocol layer 2) (X11 release 17 and earlier)
- Table 6-3 DCH database correlation (protocol layer 2) (X11 release 18 and later)
- Table 6-4 Facility database correlation (protocol layer 3) (X11 release 17 and earlier)
- Table 6-5 Facility database correlation (protocol layer 3) (X11 release 18 and later)

The following tables are provided for Meridian 1 to DMS-100:

- Table 6-6 PRI database correlation (protocol layer 1)
- Table 6-7 DCH database correlation (protocol layer 2) (X11 release 17 and earlier)
- Table 6-8 DCH database correlation (protocol layer 2) (X11 release 18 and later)
- Table 6-9 Facility database correlation (protocol layer 3)

The following tables are provided for Meridian 1 to DMS-250:

- Table 6-10 PRI database correlation (protocol layer 1)
- Table 6-11 DCH database correlation (protocol layer 2) (X11 release 17 and earlier)
- Table 6-12 DCH database correlation (protocol layer 2) (X11 release 18 and later)
- Table 6-13 Facility database correlation (protocol layer 3)

Meridian 1 to Meridian 1 correlation tables

Tables 6-1 through 6-3 describe how to coordinate the software features between two Meridian 1 switches. The tables consist of three columns. The description column lists the software feature to be coordinated. The first Meridian 1 column lists the Meridian 1 software prompts and the proper responses for a corresponding feature. The second Meridian 1 column lists the software tables and the correct values for the fields in these tables. The Meridian 1 system information also corresponds to a particular feature.

Each of the three tables corresponds to one of three protocol layers.

Note: Both near and far ends must match the parameters. For example, DLOP, LCMT, and YALM responses must be the same for both ends. This applies to all the following tables for Meridian 1 to Meridian 1 configuration.

Table 6-1

PRI database correlation (protocol layer 1) for Meridian 1 to Meridian 1 (Part 1 of 2)

Description	Meridian 1		Meridian 1	
CARD TYPE	Program: Prompt: Response:	LD17 MODE PRI	Program: Prompt: Response:	LD17 MODE PRI
FRAME FORMAT Superframe Extended Superframe (ESF)	Program: Prompt: Response:	LD17 DLOP (field ff) D3 ESF	Program: Prompt: Response:	LD17 DLOP (field ff) D3 ESF
LINE ENCODING Zero code suppression Bit 8 zero suppression	Program: Prompt: Response:	LD17 LCMT AMI B8S	Program: Prompt: Response:	LD17 LCMT AMI B8S
BIT ERROR RATE BASE Bipolar violations CRC	Program: Prompt:	LD73 n/a (preset to four classes of error rates)	Program: Prompt:	LD73 n/a (preset)

,

Table 6-1PRI database correlation (protocol layer 1) for Meridian 1 to Meridian 1 (Part 2 of 2)

Description	Meridian 1		Meridian 1	
DATA LINK (yellow alarm method)	Program: Prompt: Response:	LD17 YALM DG2 FDL	Program: Prompt: Response:	LD17 YALM DG2 FDL
INHIBIT ALARM TRANSMISSION	Program: Prompt:	LD60 DISY L (disable yellow alarm for loop L)	Program: Prompt: Response:	LD60 DISY L (disable yellow alarm for loop L)
BIT ERROR RATE maintenance threshold	Program: Prompt: Response:	LD73 BIPV 1-(3)-4	Program: Prompt: Response:	LD73 BIPV 1-(3)-4
BIT ERROR RATE out of service threshold	Program: Prompt: Response:	LD73 BIPC 1-(2)-4	Program: Prompt: Response:	LD73 BIPV 1-(2)-4
BIT ERROR RATE 24-hour threshold (errored second threshold)	Program: Prompt: Response:	LD73 BIP 0-(3)-128	Program: Prompt: Response:	LD73 BIPC 0-(3)-128
FRAME ALIGNMENT maintenance threshold	Program: Prompt: Response:	LD73 LFAL 1-(17)-10240	Program: Prompt: Response:	LD73 LFAL 1-(17)-10240
FRAME ALIGNMENT out of service threshold	Program: Prompt: Response:	LD73 LFAL 1-(511)-10240	Program: Prompt: Response:	LD73 LFAL 1-(511)-10240
FRAME SLIP maintenance threshold	Program: Prompt: Response:	LD73 SRNT 1-(15)-1024	Program: Prompt: Response:	LD73 SRNT 1-(15)-1024
FRAME SLIP out of service threshold	Program: Prompt: Response:	LD73 SRNT 1-(3)-1024	Program: Prompt: Response:	LD73 SRNT 1-(3)-1024

ï

Table 6-2DCH database correlation (protocol layer 2) for Meridian 1 to Meridian 1X11 Release 17 and earlier

Description	Meridian 1	Meridian 1
Associate D-channel with PRI	Program: LD17 Prompt: DCHI, DCHL Response: D-channel, PRI loop	Program: LD17 Prompt: DCHI, DCHL Response: D-channel, PRI loop
Associate backup D channel with PRI	Program: LD17 Prompt: BCHI Response: BCHL RCVP BCHI is the D-channel (or DCHI port number); BCHL is the associated PRI card (or PRI loop); RCVP requests recovery to the primary D channel.	Program: LD17 Prompt: BCHI Response: BCHL RCVP BCHI is the D-channel (or DCHI port number); BCHL is the associated PRI card (or PRI loop); RCVP requests recovery to the primary D channel.
Data rate of D-channel	Program: LD17 Prompt: DRAT Response: 64KC 56KI	Program: LD17 Prompt: DRAT Response: 64KC 56KI
DCHI mode	Program: LD17 Prompt: USR Response: PRA, SHA ISLD	Program: LD17 Prompt: USR Response: PRA, SHA ISLD

i

Table 6-3 DCH database correlation (protocol layer 2) for Meridian 1 to Meridian 1 X11 Release 18 and later

7

Description	Meridian 1		Meridian 1	
Associate D-channel with PRI	Program: Prompt and ADAN DCHL	LD17 Response: DCH xx PRI loop	Program: Prompt and ADAN DCHL	LD17 Response: DCH xx PRI loop
Associate backup D-channel with PRI	Program: Prompt and ADAN	LD17 Response: BDCH x is the backup D-channel number	Program: Prompt and ADAN	LD17 Response: BDCH x is the backup D-channel number
	BCHL	xx is the associated PRI card (or PRI loop);	BCHL	xx is the associated PRI card (or PRI loop);
	RCVP	Yes requests recovery to the primary D-channel.	RCVP	Yes requests recovery to the primary D-channel.
Data rate of D-channel	Program: Prompt and DRAT	LD17 Response: 64KC, 56KI	Program: Prompt and DRAT	LD17 Response: 64KC, 56KI
DCH mode	Program: Prompt and USR	LD17 Response: PRA, SHA, ISLD	Program: Prompt and USR	LD17 Response: PRA, SHA, ISLD

Table 6-4

Facility database correlation (protocol layer 3) for Meridian 1 to Meridian 1 X11 Release 17 and earlier

Description	Meridian 1		Meridian 1	
B-channel selection	Program:	LD16	Program:	LD16
	Prompt:	SRCH	Prompt:	SRCH
	Response:	RRB	Response:	RRB
Loss and level		preset		preset
User-user interface	Program:	LD17	Program:	LD17
	Prompt:	SIDE	Prompt:	SIDE
	Response:	MAS	Response:	SLAV
B-channels defined	Program: Prompt: Response:	LD14 TN network loop and channel	Program: Prompt: Response:	LD14 TN network loop and channel
Interface type	Program:	LD17	Program:	LD17
	Prompt:	IFC	Prompt:	IFC
	Response:	SL1	Response:	SL1
DCHI mode route	Program:	LD16	Program:	LD16
	Prompt:	MODE	Prompt:	MODE
	Response:	PRA, ISLD	Response:	PRA, ISLD

,

Table 6-5Facility database correlation (protocol layer 3) for Meridian 1 to Meridian 1X11 Release 18 and later

1

Description	Meridian 1		Meridian 1	
B-channel selection	Program:	LD16	Program:	LD16
	Prompt:	SRCH	Prompt:	SRCH
	Response:	RRB	Response:	RRB
Loss and level		preset		preset
User-user interface	Program:	LD17	Program:	LD17
	Prompt:	SIDE	Prompt:	SIDE
	Response:	MAS	Response:	SLAV
B-channels defined	Program: Prompt: Response:	LD14 TN network loop and channel	Program: Prompt: Response:	LD14 TN network loop and channel
Interface type	Program:	LD17	Program:	LD17
	Prompt:	IFC	Prompt:	IFC
	Response:	SL1	Response:	SL1
DCH mode route	Program:	LD16	Program:	LD16
	Prompt:	MODE	Prompt:	MODE
	Response:	PRA, ISLD	Response:	PRA, ISLD

Meridian 1 to DMS-100 correlation tables

Tables 6-6 through 6-9 describe how to coordinate the software features between a Meridian 1 switch and a DMS-100 switch. The tables consist of three columns. The description column lists the software feature to be coordinated. The Meridian 1 column lists the Meridian 1 software prompts and the proper responses for a corresponding feature. The DMS-100 column lists the software tables and the correct values for the fields in these tables. The DMS-100 information also corresponds to a particular feature.

Each of the three tables corresponds to one of three protocol layers.

Description				
Description	Meridian 1		DMS-100	
Card type	Program: Prompt: Response:	LD17 MODE PRI	Table: Field: Value:	CARRMTC CARD NT6X50AA NT6X50AB
Frame format Superframe Extended Superframe	Program: Prompt: Response:	LD17 DLOP (field ff) D3 ESF	Table: Field: Value:	CARRMTC FF SF ESF
Line encoding Zero code suppression Bit 8 zero suppression	Program: Prompt: Response:	LD17 LCMT AMI B8S	Table: Field: Value:	CARRMTC ZLG ZCS B8ZS
Bit error rate base Bipolar violations CRC	Program: Prompt:	LD73 n/a (preset to four classes of error rates)	Table: Field: Value:	CARRMTC BERB BPV CRC
Data link (yellow alarm method) No data link	Program: Prompt: Response:	LD17 YALM DG2 (Note) FDL	Table: Field: Value:	CARRMTC DLK NILDL
Note: When the DMS-100 CARRMTC table has Field = FF and Value = SF, configure the Meridian 1 with				

Table 6-6PRI database correlation (protocol layer 1) for Meridian 1 to DMS-100 (Part 1 of 2)

Note: When the DMS-100 CARRMTC table has Field = FF and Value = SF, configure the Meridian 1 with DG2. When the DMS-100 CARRMTC table has Field = FF and Value = ESF, configure the Meridian 1 with FDL.

ISDN PRI description and administration 553-2901-100

Table 6-6 PRI database correlation (protocol layer 1) for Meridian 1 to DMS-100 (Part 2 of 2)

Description	Meridian 1		DMS-100	
Inhibit alarm transmission	Program: Prompt:	LD60 DISY L (disable yellow alarm for loop L)	Table: Field: Value:	CARRMTC IAT Y N
Bit error rate maintenance threshold	Program: Prompt: Response:	LD73 BIPV 1-(3)-4	Table: Field: Value:	CARRMTC BERML 6
Bit error rate out of service threshold	Program: Prompt: Response:	LD73 BIPV 1-(2)-4	Table: Field: Value:	CARRMTC BEROL 3 (exponent)
Bit error rate 24-hour threshold (errored second threshold)	Program: Prompt: Response:	LD73 BIPC 0-(3)-128	Table: Field: Value:	CARRMTC ES 864
Frame alignment maintenance threshold	Program: Prompt:	LD73 LFAL 1-(17)-10240	Table: Field:	CARRMTC FRAMEML
Frame alignment out of service threshold	Program: Prompt: Response:	LD73 LFAL 1-(511)-10240	Table: Field: Value:	CARRMTC FRAMEOL 511 (exponent)
Frame slip maintenance threshold	Program: Prompt: Response:	LD73 SRNT 1-(15)-1024	Table: Field: Value:	CARRMTC SLIPML 4
Frame slip out of service threshold	Program: Prompt: Response:	LD73 SRNT 1-(3)-1024	Table: Field: Value:	CARRMTC SLIPOL 255 (exponent)

i

Table 6-7

DCH database correlation (protocol layer 2) for Meridian 1 to DMS-100 X11 Release 17 and earlier

Description	Meridian 1		DMS-100	
Associate D-channel with PRI	Program: Prompt: Response:	LD17 DCHI DCHL DCHI sets D-channel; DCHL is the associated PRI card.	Table: Field: Value:	TRKSGRP DCHNL same as DS1 end point in table SPECCONN
Associate backup D-channel with PRI	Program: Prompt: Response:	LD17 BCHI BCHL RCVP BCHI is the D-channel (or DCHI port number); BCHL is the associated PRI card (or PRI loop); RCVP requests recovery to the primary D-channel.	Table: Field: Value:	TRKGRP DCHBCKUP Same as DS! and point in table SPECCONN
Data rate of D-channel	Program: Prompt: Response:	LD17 DRAT 64KC 56KI	Table: Field: Value: Field: Value:	STINV CONTYPE PRIBAUD BAUD 64 Kbps 56 Kbps

,
Table 6-8 DCH database correlation (protocol layer 2) for Meridian 1 to DMS-100 X11 Release 18 and later

ï

Description	Meridian 1	DMS-100
Associate D-channel with PRI	Program: LD17 Prompt and Response: ADAN DCH xx DCHL PRI loop	Table:TRKSGRPField:DCHNLValue:same as DS1end point intableSPECCONN
Associate backup D-channel with PRI	Program: LD17 Prompt and Response: ADAN BDCH x is the backup D-channel number BCHL xx is the associated PRI card (or PRI loop); RCVP Yes requests recovery to the primary D-channel.	Table:TRKGRPField:DCHBCKUPValue:Same as DS!and point in tableSPECCONN
Data rate of D-channel	Program: LD17 Prompt and Response: DRAT 64KC, 56KI	Table:STINVField:CONTYPEValue:PRIBAUDField:BAUDValue:64 Kbps56 Kbps

Table 6-9

Facility database correlation (protocol layer 3) for Meridian 1 to DMS-100

Description	Meridian 1		DMS-100	
Q.931 Interface identifier (used in CID IE)	n/a		Table: Field: Value:	IACPSINV IID 0
Q.931 CALL REFERENCE VALUE LENGTH	n/a		Table: Field: Value:	TRKSGRP CRLENGTH 2
B-channel selection	Program: LD16 Prompt: SRC Response: RRB	6 H LIN	Table: Value: Field:	TRKGRP SELSEQ MIDL ASEQ
Billing at Primary Rate Interface (PRI)	n/a		Table: Field: Value:	TRKGRP BILLDN N
loss and level	preset		Table: Field: Value:	TRKGRP PADGRP PRAC
User-network interface	Program: LD17 Prompt: IFC Response: D100	7) (sets user)	Table: Field: Value:	TRKSGRP IFCLASS NETWORK
Q.931 progress indicator location	n/a		Table: Field: Value:	TRKSGRP LOCATION USER
B-CHANNELS DEFINED	Program: LD14 Prompt: TN Response: 0-59 loop 1-23	1 = network = channel	Table: Field: Value:	TRKMEM EXTTRKMEM IACCKTTS

Meridian 1 to DMS-250 correlation tables

Tables 6-10 through 6-13 describe how to coordinate the software features between a Meridian 1 switch and a DMS-250 switch. The tables consist of three columns. The description column lists the software feature to be coordinated. The Meridian 1 column lists the Meridian 1 software prompts and the proper responses for a corresponding feature. The DMS-250 column lists the software tables and the correct values for the fields in these tables. The DMS-250 information also corresponds to a particular feature.

Each of the three tables corresponds to one of three protocol layers.

Table 6-10	
PRI database correlation (protocol layer 1) for Meridian 1 to DMS-250 (Part 1 of 2)

Description	Meridian 1		DMS-250	
Card type	Program: Prompt: Response:	LD17 MODE PRI	Table: Field: Value:	CARRMTC CARD NT6X50AA NT6X50AB
Frame format Superframe Extended Superframe	Program: Prompt: Response:	LD17 FRM D3 ESF	Table: Field: Value:	CARRMTC FF SF ESF
Line encoding Zero code suppression Bit 8 zero suppression	Program: Prompt: Response:	LD17 LCMT AMI B8S	Table: Field: Value:	CARRMTC ZLG ZCS B8ZS
Bit error rate base Bipolar violations CRC	Program: Prompt:	LD73 n/a (preset to four classes of error rates)	Table: Field: Value:	CARRMTC BERB BPV CRC
Data link (yellow alarm method) No data link	Program: Prompt: Response:	LD17 YALM n/a DG2 FDL	Table: Field: Value:	CARRMTC DLK NILDL FDL1 FDL2

,

Table 6-10

PRI database correlation (protocol layer 1) for Meridian 1 to DMS-250 (Part 2 of 2)

Description	Meridian 1		DMS-250		
Inhibit alarm transmission	Program: Prompt:	LD60 DISL/X (disable yellow alarm for loop L)	Table: Field: Value:	CARRMTC IAT YN	
Bit error rate maintenance threshold	Program: Prompt: Response:	LD73 BIPV 1-(3)-4	Table: Field: Value:	CARRMTC BERML 6	
Bit error rate out of service threshold	Program: Prompt: Response:	LD73 BIPV 1-(2)-4	Table: Field: Value:	CARRMTC BEROL 3 (exponent)	
Bit error rate 24-hour threshold (errored second threshold)	Program: Prompt: Response:	LD73 BIPC 0-(3)-128	Table: Field: Value:	CARRMTC ES 864	
Frame alignment maintenance threshold	Program: Prompt:	LD73 LFAL 1-(17)-10240	Table: Field: Value:	CARRMTC FRAMEML 17	
Frame alignment out of service threshold	Program: Prompt: Response:	LD73 LFAL 1-(511)-10240	Table: Field: Value:	CARRMTC FRAMEOL 511 (exponent)	
Frame slip maintenance threshold	Program: Prompt: Response:	LD73 SRNT 1-(15)-1024	Table: Field: Value:	CARRMTC SLIPML 4	
Frame slip out of service threshold	Program: Prompt: Response:	LD73 SRNT 1-(3)-1024	Table: Field: Value:	CARRMTC SLIPOL 255 (exponent)	

Table 6-11 DCH database correlation (protocol layer 2) for Meridian 1 to DMS-250 X11 Release 17 and earlier

Description	Meridian 1		DMS-250	
Associated D-channel with PRI	Program: Prompt:	LD17 DCHI DCHL PRI	Table: Field: Value: Field:	TRKSGRP PMTYPE DTCI DTCINO
	Response:	loop and Interface ID	Value: Field: Value: Field: Value:	NiI DTCICKTNO 16 DTCICKTTS 24
Data rate of D-channel	Program: Prompt: Response:	LD17 DRAT 64KC56KI	Table: Field: Value: Value:	TRKSGRP DCHRATE 56 Kbps 64 Kbps

Table 6-12 DCH database correlation (protocol layer 2) for Meridian 1 to DMS-250 X11 Release 18 and later

Description	Meridian 1	DMS-250
Associated D-channel with PRI	Program: LD17 Prompt and Response: ADAN DCH xx DCHL PRI loop	Table:TRKSGRPField:PMTYPEValue:DTCIField:DTCINOValue:NilField:DTCICKTNOValue:16Field:DTCICKTTSValue:24
Data rate of D-channel	Program: LD17 Prompt and Response: DRAT 64KC, 56KI	Table:TRKSGRPField:DCHRATEValue:56 KbpsValue:64 Kbps

. .

Table 6-13

Facility database correlation (protocol layer 3) for Meridian 1 to DMS-250

Description	Meridian 1		DMS-250	
Q.931 Interface identifier (used in CID IE)	n/a		Table: Field: Value:	LTCTSINV PSLNKTAB O/DSIPRA/ Default/N/Nil
Q.931 CALL REFERENCE VALUE LENGTH	n/a		Table: Field: Value:	TRKSGRP CRLENGTH 2
B-channel selection	Program: LD16 Prompt: SRC Response: RRB	6 :H BLIN	Table: Value: Field:	TRKGRP SELSEQ MIDLASEQ
Billing at PRI interface	n/a		Table: Field: Value:	TRKGRP BILLDN N
Loss and level	preset		Table: Field: Value:	TRKGRP PADGRP PRAC
User-network interface	Program: LD17 Prompt: IFC Response: D250	7) (sets user)	Table: Field: Value:	TRKSGRP IFCLASS NETWORK
Q.931 progress indicator location	n/a		Table: Field: Value:	TRKSGRP LOCATION USER
Back Up D-channels defined	Program: LD14 Prompt: TN Response: 0-159 loop chan	4 9 = network 1-23 = nel	Table: Field: Value: Field: Value: Field: Value: Field: Value:	TRKMEM PMTYPE DTCI DTCINO Nii DTCICKTNO 16 DTCICKTTS 5

Engineering guidelines

This chapter contains guidelines for ISDN compatible software and hardware. This information includes the following:

- system compatibility
- configuration parameters
- data characteristics
- transmission characteristics
- software packages
- software/hardware compatibility
- hardware requirements
- disk hardware requirements
- cable information
- loss and level plan

A number plan must be in place for Network Message Services, Network ACD, and Network Ring Again.

System compatibility

The X11 release 17 ISDN software supports the following system types.

- Meridian 1 ST, NT, RT, and XT
- system options 21, 51, 61, and 71

The ST machine type requires the QPC814A memory card.

The X11 release 18 ISDN software supports the following system types.

- STE, NT, RT, and XT
- 21E, 51, 61, 71, and 81

Configuration parameters

There are three types of configuration parameters:

- line rate
- T1 compatibility

The line rate is 1.544 Mbps.

Note: Lines have to be conditioned for 64K so the D-channel can be brought up.

The integrated voice and data can use a single medium to transmit speech and data between locations.

There are three advantages to T1 compatibility:

,

- T-link version 2 supports Meridian 1 to Meridian 1, Meridian 1 to SL-100, and Meridian 1 to DMS-100 for 56 or 64 kbps data
- includes capability to be configured as a standard T1 DS-1 link
- eliminates need for channel bank equipment when using digital network facilities

Data characteristics

PRI utilizes Northern Telecom's T-link Data Rate Adaptation protocol. There are three transmission modes:

- asynchronous 50 bps to 19.2 Kbps
- synchronous 1200 bps to 64 Kbps
- half or full duplex

Transmission characteristics

There are five types of transmission necessary for ISDN compatibility:

- carrier system compatibility
- synchronization
- signaling
- trunk types supported
- voice transmission

These transmission types are described by the lists that follow.

Carrier system compatibility:

- compatible with D2, D3, D4, B8ZS, and Extended superframe format (ESF) framing on T1 repeater cables
- compatible with systems that use a DS-1 interface, such as fiber optics, microwave, copper, satellite, and infrared
- meets CCITT Q.921 and Q.931 Recommendations
- complies with T1D1 minimal subset

Synchronization: stratum 3 compatible (accuracy, jitter, pull-in range)

Signaling:

- in PRI Mode: ISDN D-channel signaling
- in DTI Mode: loop start, ground start, E&M, DTMF, and dial pulse
- in ITA mode: PRI trunks use PRI mode and DTI trunks use DTI mode

Trunk types supported:

- CO, FX, WATS, DID, TIE (2-wire E&M, 4-wire E&M)

Voice transmission:

 meets EIA Digital PBX Draft Standard PN-1429 requirements such as loss and level, distortion, and delay

Note: ISDN meets the Radio Frequency Interference (RFI) requirements.

Loss and level plan

The loss plan for PRI has been added to the existing Meridian 1 loss matrix (the EIA loss plan).

Figure 7-1 shows the connections on a port-to-port basis and the corresponding loss values (in dB) for both directions of transmission.

Figure 7-1 PRI loss and level plan

2

	Meridian 1 Ports			PRI	Por	t
Stations				\uparrow	\downarrow	
		ONS	\geq	4		
		OPS	\rightarrow		7	
			é		3	
		D/ONS		0	0	
		I/ONS	\rightarrow	0		
Analog Trunks			<u> </u>		0	
		A/TT	\rightleftharpoons	0	3	
		S/ATT	\rightleftharpoons	0		
		A/CO	\rightleftharpoons	0	<u> </u>	
Digital Trunks		A/TO	${\geq}$	0	3	
		D/TT	$\stackrel{>}{\leftarrow}$	0	0	
		S/DTT	\rightleftharpoons	0	3	Note 3
		D/CO	$\stackrel{>}{\downarrow}$	0	3/0	Note 4
		D/TO	\rightleftharpoons	0	n	
		PRI	\geq	0		
					0	
						553-1371

Note 1: The loss is bidirectional. For example, the A/TT coordinate indicates a nominal port-o-port loss of:

0 dB from the A/TT interface to the Primary Rate Interface (PRI) 3 dB loss from the Primary Rate Interface (PRI) to the A/TT interface

Note 2: The table column is shown; the loss table has a corresponding row.

Note 3: For echo control reasons, this connection cannot be loss-less.

Note 4: The value of 0 dB in the PRI-D/CO direction is the long-term objective. The value of 3 dB is to be used for connections to D/COs which have not been programmed for inserting receive-side loss on PRI to local loop connections.

Legend:

ONS	Line interface/on premise line
OPS	Line interface/off premise line
D/ONS	Digital line interface/on premise line
I/ONS	ISDN terminal (on premise)
A/TT	Analog trunk interface/analog TIE trunk
S/ATT	Analog trunk interface/analog satellite PBX TIE trunk
A/CO	Analog trunk interface/analog CO trunk
A/TO	Analog trunk interface/analog toll office trunk
D/IT	Digital Trunk Interface/digital or combination TIE trunk
S/DTT	Digital Trunk Interface/digital satellite PBX TIE trunk
D/CO	Digital Trunk Interface/digital or combination CO trunk
D/TO	Digital Trunk Interface/digital or combination toll office trunk
PRI	Primary Rate Interface

Software packages

The following tables list the software features and their corresponding packages. All Meridian 1 systems require disk drives to run ISDN software. Refer to the following notes.

To upgrade current ISDN software, see *Software conversion procedures* (553-2001-320).

Package 19 is required for receiving CLID or NCPND.

Package 75, PBX interface, is not required for ISL (Package 147), unless ISL is over DTI. For ISL over analog trunks, ESN # 2 or 3 signaling is required. ESN # 5 signaling can be used if package 75 is installed.

The QPC720B PRI card is needed instead of the QPC472 DTI card, with X11 release 17 and later.

CDP (package 59) requires packages 28 and 61. Packages 28 and 61 are not required for NARS (package 58).

If the user dials a Location code, package 58 must be equipped at the originating and the receiving Meridian 1. If CDP is used, package 59 needs to be equipped at both sites.

Package 117 is also required in ISA configurations.

Multi-purpose Serial Data Link (MSDL) cards (NT6D80) require package 222 for D-Channel (and Application Module Link) operations.

Table 7-1 Software packages (Part 1 of 2)

Features	Package dependencies
64 Kbps Clear Data Transport	75, 145, 146
Backup D-channel	75, 145, 146 or 147
Basic Call Service	75, 145, 146 or 147
Calling Line Identification (CLID)	19, 75, 145, 146 or 147
CLID in CDR record	4, 5, or 6, 118, 75, 145, 146 or 147
Data Packet Network (DPN) access	75, 145, 146
DTI Backwards Compatibility	75
DTI with Extended Superframe (ESF)	75, 145, 146
ESN or ISL over Primary Rate Interface	14, 32, 37, 39, 58 or 59, 75, 145, 146
Integrated Services Access (ISA)	75, 117, 145, 146
Integrated Trunk Access (ITA)	75, 145, 146
ISDN Signaling Link (ISL)	75, 145, 147
Local trunk queuing over PRI/ISL (off-hook or call back queuing)	14, 28, 32, 37, 58 or 59, 62, 75, 145, 146 or 147
Multi-purpose Serial Data Link (MSDL)	222
NCOS over ISDN Signaling Link (ISL)	14, 32, 37, 39, 58 or 59, 75, 145, 147
NCOS over Primary Rate Interface to DMS-100	14, 32, 37, 39, 58 or 59, 75, 145, 146
Network Call Forwarding	14, 32, 58 or 59, 75, 145, 146 or 147
Network Call Party Name Display (NCPND)	19, 75, 95, 145, 146 or 147
Network Call Redirection (NCRD)	145, either 146 or 147
Network Message Services (NMS)	14, 32, 58 or 59, 75, 77, 145, 146 or 147, 148, 175
Network Ring Again (NRAG)	14, 32, 37, 58 or 59, 75, 145, 146 or 147,148

Table 7-1 Software packages (Part 2 of 2)

Features	Package dependencies
Non-Associated Signaling (nB +D)	75, 145, 146, or 147
PRI to DMS-250 or AT&T 4ESS	75, 145, 146, 149
Private Network Hopoff and Overflow	14, 28, 32, 58 or 59, 61, 75, 145, 146 or 147
Remote Virtual Queueing	192
T-1 Frame Slippage Auto-recovery	75, 145, 146
Trunk Optimization (TRO)	145, 146 or 147, 148

i

Software and hardware compatibility

The different configurations within an ISDN environment are supported by different sets of features and services. As ISDN evolves, more and varied configurations are supported. These different configurations have their own software and hardware dependencies, as listed in the following tables.

The tables in this chapter describe the following configurations:

- Meridian 1 software and hardware compatibility
- Meridian 1 connectivity to SL-100, DMS-100, and DMS-250, with software and hardware compatibility
- Meridian 1 connectivity to AT&T 4ESS and 5ESS software and hardware compatibility

Features in progressive releases of X11 software are compared with the hardware introduced per release – different versions of the QPC720 and the OPC757 cards. Remember that features are limited to the lowest software release supporting a particular feature.

For example, a Meridian 1 with QPC757A supports software up to X11 release 13 only. A node with QPC757C can support software up to X11 release 15 - and calls between these two nodes are only supported by the lowest software version, X11 release 13. Therefore, all nodes in the same network should support the same hardware and software.

Note: QPC720C is introduced in X11 release 17. It is required for high speed data calls (56K) between a Meridian 1 with a QPC472 using DTI to a DMS-100 using PRI to a Meridian 1 with a QPC720.

,

Conventions within the following tables are:

- LF = Limited Functionality (the two items do interact, but call functions are somewhat limited compared to a different configuration)
- N = No, or "Not supported"
- NA = Not Applicable, or it does not apply to this configuration
- NR = Not Recommended for this configuration
- R = X11 release number
- Y = Yes, it is supported

Table 7-2

Meridian 1 software and hardware compatibility (Part 1 of 2)

Features	R14	R15	R16	R17	R18	R19	720A	720B	720C	757A	757B	757C	757D	757E	MSDL
Backup D-channel	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y
Basic Call Service	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Calling Line ID	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
CLID in CDR	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
DCH Error Report and Monitoring	N	N	N	Y	Y	Y	Y	Y	Y	N	N	N	N	Y	Y
DTI, ESF, CRC	Y	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	NA	NA	NA	NA
DTI Compatibility	Y	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	NA	NA	NA	NA
ESN over PRI	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
ISL	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	NR	NR	Y	Y	Y
ISL (Conventional)	Y	Y	Y	Y	Y	Y	N	Y	Y	N	N	N	Y	Y	Y
ITA	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
NACD	N	Y	Y	Y	Y	Y	N	Y	Y	N	N	N	Y	Y	Y
n B + D	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
NCPND	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
NND	N	N	N	Y	Y	Y	Y	Y	Y	N	N	N	N	Y	Y
NCRD	—			—	—					_	_				
— NCFAC	Y	Υ	Y	Y	Y	Y	N	Y	Y	N	Y	Y	Y	Y	Y
— NCFB	N	N	Y	Y	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y
NCFNA	Υ	Υ	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y
NHNT	N	N	Y	Y,	Y	Y	N	Y	Y	N	N	Υ	Y	Y	Y
NXFER	N	N	Y	Y	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y

1000

Table 7-2 Meridian 1 software and hardware compatibility (Part 2 of 2)

i

Features	R14	R15	R16	R17	R18	R19	720A	720B	720C	757A	757B	757C	757D	757E	MSDL
Network Call Trace	Ν	Ν	Ν	Υ	Υ	Υ	N	Υ	Υ	N	Ν	Ν	N	Y	Y
B8ZS	N	Ν	Ν	N	Ν	Y	Y	Υ	Y		[
NMS-MC	Ν	Υ	Υ	Y	Y	Y	N	Y	Y	Ν	N	Y	Y	Y	Y
NMS-MM	Ν	Ν	Y	Υ	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y
NRAG (no 500/2500)	Y	Υ	Y	Υ	Υ	Y	Y	Υ	Y	N	Y	Y	Y	Y	Y
NRAG (All phones)	Υ	Y	Y	Y	Y	Y	Ν	Y	Y	N	Y	Y	Y	Y	Y
64 K Clear Data	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y
Remote Virtual Queueing	N	N	N	N	Y	Y	NA								
TRO	N	N	Y	Y	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y
T1 Frame Slip Auto-recovery	Y	Y	Y	Y	Y	Y	N	Y	Y	NA	NA	NA	NA	NA	NA
T309 Timer	N	N	N	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Table 7-3

Meridian 1 compatibility with connectivity to SL-100, DMS-100, DMS-250 (Part 1 of 2)

Features	R14	R15	R16	R17	R18	R19	720A	720B	720C	757A	757B	757C	757D	757E	MSDL
Backup D-channel	N	N	N	Y	Y	Y	N	Y	Y	N	N	Ν	Y	Y	Y
Basic Call Service	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Call-By-Call Service	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y
CLID (Calling Line ID)	Y	Υ	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
CLID in CDR	Υ	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y
DPN access	Y	Y	Y	Y	Y	Y	N	Y	Y	N	Y	Y	Y	Y	Y
DTI + ESF, CRC	Y	Y	Y	Y	Y	Υ	Y	Y	Y	NA	NA	NA	NA	NA	NA
DTI Compatibility	Y	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	NA	NA	NA	NA
ESN over PRI	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
NCRD	-	_			—	—									
NCFAC **	Y	Y	Y	Y	Y	Y	N	Y	Y	N	Y	Y	Y	Y	Y
NCFB ***	Ν	N	Y	Y	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y
— NCFNA **	Υ	Υ	Y	Υ	Υ	Y	N	Υ	Υ	N	Y	Υ	Y	Y	Y
NHNT ***	N	N	Y	Y	Y	Y	N	Y	Y	N	N	Υ	Y	Y	Y
NXFER ***	N	Ν	Y	Y	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y
NND ****	N	N	N	Y	Y	Y	N	Y	Y	N	N	N	N	Y	Y
NRAG (TIE)	Y	Y	Y	Y	Y	Y	N	Y	Υ	N	N	Y	Y	Y	Y
Private Network Hopoff	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Private Network Overflow	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

.

金額

Table 7-3Meridian 1 compatibility with connectivity to SL-100, DMS-100, DMS-250 (Part 2 of 2)

Features	R14	R15	R16	R17	R18	R19	720A	720B	720C	757A	757B	757C	757D	757E	MSDL
64 K Clear Data	Y	Y	Y	Y	Υ	Y	Ν	Y	Υ	N	Y	Y	Y	Y	Y
Remote Virtual Queueing		_			n	Y				NA	NA	NA	NA	NA	NA
T1 Frame Slippage, Auto-recovery	N	Y	Y	Y	Y	Y	N	Y	Y	NA	NA	NA	NA	NA	NA
B8ZS	N	Ν	N	N'	N	Y	NA	NA	NA						
These features are supported with X11 release 14 and later. *These features are supported with X11 release 16 and later. ****These features are supported with X11 release 17 and later.															

i

Table 7-4

Meridian 1 compatibility with connectivity to AT&T 4ESS

Features	314	315	316	317	318	319	20A	20B	200	57A	57B	57C	57D	57E	ISDL
ANI in CDR	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	r Y	≥ Y
ANI Station ID	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y
Backup D-channel	N	Ν	N	Y	Y	Y	N	Y	Y	N	N	N	Y	Y	Y
Basic Call Service	Y	Y	Υ	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Υ
ISA (Call-By-Call Service)	N	N	Y	Y	Y	Y	N	Y	Y	N	N	N	Y	Y	Y
DTI + ESF, and B8ZS and CRC	Y	Y	Y	Y	Y	Y	N	Y	Y	NA	NA	NA	NA	NA	NA
n B + D	Y	Y	Y	Y	Y	Y	N	Y	Y	N	Y	Y	Y	Y	Y

Table 7-5

Meridian 1 software and hardware compatibility with connectivity to AT&T 5ESS

Features	R14	R15	R16	R17	R18	R19	720A	720B	720C	757A	757B	757C	757D	757E	MSDL
ANI/Station Identification (CLID)	N	N	Y	Y	Y	Y	N	Y	Y	N	N	Y	Y	Y	Y
ISA (Call by Call Service)	N	N	N	Y	Y	Y	N	Y	Y	N	N	N	Y	Y	Y
Basic Call Service	Ν	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

.

Table 7-6

Meridian 1 software and hardware compatibility

Correitore	_	_		6		_		₹	m	Q	A	m	U	0	ш	Ы
Services	R13	R14	R15	R16	R1 7	B18	R 19	720	720	720	757	757	757	757	757	MS
Release 13	Y	LF	LF	LF	LF	LF	LF	Y	Y	Y	Y	LF	LF	LF	LF	Ν
Release 14	LF	Υ	LF	LF	LF	LF	LF	NR	Y	Υ	N	LF	Y	Y	Y	N
Release 15	LF	LF	Y	LF	LF	LF	LF	N	Y	Y	N	Ν	Y	γ	Υ	N
Release 16	LF	LF	LF	Y	LF	LF	LF	Ν	Y	Υ	N	Ν	LF	Y	Υ	N
Release 17	LF	LF	LF	LF	Υ	LF	LF	Ν	Y	Υ	N	N	Ν	LF	Y	N
Release 18	LF	LF	LF	LF	LF	Y	LF	Ν	N	Y	N	N	N	N	Y	Y
Release 19	LF	LF	LF	LF	LF	LF	Y	Ν	N	Y	Ν	N	Ν	N	Y	Y
QPC720A	Y	NR	N	Ν	N	N	N	Y	LF	LF	Y	Y	LF	LF	LF	N
QPC720B	Y	Y	Y	Υ	Υ	N	Ν	LF	Y	LF	Ν	LF	Υ	Y	Y	N
QPC720C	Y	Y	Y	Y	Y	Y	Υ	LF	LF	Y	N	LF	Υ	Y	Y	Y
QPC757A	Y	N	Ν	N	N	Ν	N	Y	N	N	Y	L.F	LF	LF	LF	LF
QPC757B	LF	LF	Ν	N	Ν	N	N	Y	LF	LF	LF	Y	LF	LF	LF	LF
QPC757C	LF	Υ	Υ	LF	N	N	Ν	LF	Y	Υ	LF	LF	Y	LF	LF	N
QPC757D	LF	Υ	Y	Y	LF	N	N	LF	Y	Y	LF	LF	LF	Y	LF	Y
QPC757E	LF	Y	Y	Y	Y	Y	Y	LF	Y	Y	LF	LF	LF	LF	Y	Y
NT6D80 (MSDL)	N	N	N	N	N	Y	Y	N	N	Y	N	N	N	Y	Y	Y

Y=Yes (supported); N=Not supported; NR=Not recommended; LF=Limited functionality (items interact, but call functions are comparatively limited)

í

Meridian 1 connectivity

Refer to *ISDN Primary Rate Interface installation* (553-2901-200) for complete instructions on hardware configuration. X11 release 17 and later software supports ISDN signaling between Meridian 1 and the following products:

- Meridian 1
- SL-100
- DMS-100 and DMS-250
- AT&T 4ESS
- AT&T 5ESS

General networking capabilities available with X11 release 17 General ISDN features available in X11 release 17 are listed below.

- Basic Call Service
- Calling Line Identification
- Calling Line Identification in Call Detail Recording (CDR) Record
- DTI Backwards Compatibility
- Trunk Route Optimization (before answer)

General networking capabilities available with X11 release 18 General ISDN features available in X11 release 18 are listed below.

- Remote Virtual Queueing

Hardware requirements

As shown by Figure 7-2, Table 7-7, and Table 7-8, the following hardware is required for ISDN.

- QPC720B Primary Rate Interface card(s), and for 64K data transmission between Meridian 1 and DMS-100
- QPC757C, or NT6D11AB D-channel Interface (one per 16 PRIs)

OR

- NT6D80AA Multi-purpose Serial Data Link (MSDL) supported on X11 release 18 and later
- QPC471 (vintage B or higher is recommended) or QPC775 Clock Controller (one per CPU)
- QPC471 vintage H or later is required for option 81 systems
- QPC414B Network Card (one loop per PRI)

1

Note 1: For PRI, the QPC720B, QPC757C (or NT6D80), and QPC471 (or QPC775) cards are all required. For every destination, an independent D-channel is also needed, one for every 16 PRIs to the same destination.

QPC720C is introduced in X11 release 17. It is required for high speed data calls (56K) between a Meridian 1 with a QPC472 using DTI to a DMS-100 using PRI to a Meridian 1 with a QPC720.

Note 2: The QPC471 and QPC775 Clock Controller cards cannot be intermixed in one system.

Note 3: For every destination, an individual D-channel is required.

Figure 7-2 PRI hardware required

- Channel Service Unit (CSU): U.S.A. regulations (FCC Part 68), require Network Channel Terminating Equipment (NCTE) at the demarcation point to registered common carrier trunks. Use Digilink, Verilink or similar CSUs (one per PRI).
- Echo Canceller: for voice calls over satellite transmission, use a Tellabs
 24-Channel Echo Canceller or the equivalent.
- Packet Assembler/Disassembler (PAD): for DPN capability, an X.25 Meridian 1 compatible PAD is required.
- Test Equipment: use a Thor Error Counter, or the equivalent, to test bipolar violations on PRI circuits.
- 2400-baud Modem with auto dial capability: may be used for ISL in dedicated mode. The recommended modem is the Hayes Smartmodem 2400. See ISDN Primary Rate Interface installation (553-2901-200) for information about how to configure the Hayes Smartmodem 2400.
- QMT11 Asynchronous/Synchronous Interface Module (ASIM) may be used for ISL in dedicated mode. This module has leased line capability.
- QMT21 High Speed Data Module (HSDM) must be used for 64K clear transmission (available between Meridian 1 systems). This also applies to the DMS-250 and the SL-100 using their data units.
- QPC237 4W TIE E&M Trunk may be used to support ISL uniform trunk hardware configuration.

Tables 7-7 and 7-8 shows current system hardware requirements.

Table 7-7 System hardware requirements with a Single D-Channel

Suctom poromotoro	080757	NT6D11AB					
System parameters	QPC/3/	Single port	Dual port				
Maximum cards	8	15	8				
Maximum DCHI	8	15	8				
Maximum Asynch ports	8	15	8				
Maximum PRI channels to each destination, by each D-channel port	23 with 1 PRI 47 with 2 PRI 359 with 15 PRI	23 with 1 PRI 47 with 2 PRI 359 with 15 PRI	23 with 1 PRI 47 with 2 PRI 359 with 15 PRI				
Maximum B-channels	2872	5385	2872				

ISDN PRI description and administration 553-2901-100

Table 7-8 System hardware requirements with a Backup D-Channel

i

0	000757	NT6D11AB					
System parameters	QPC/57	Single port	Dual port				
Maximum cards	8	15	8				
Maximum DCHI	8	15	8				
Maximum Asynch ports	8	15	8				
Maximum PRI channels to each destination, by each D-channel port	23 with 1 PRI 47 with 2 PRI	23 with 1 PRI 47 with 2 PRI	23 with 1 PRI 47 with 2 PRI				
	•						
	382 with 16 PRI	382 with 16 PRI	382 with 16 PRI				
Maximum B-channels	1528	2674	1528				

ROM requirements

Table 7-9 shows current ROM and Memory card requirements.

Table 7-9 ROM and Memory card requirements

X11 release	Card type	ST, 21	STE and 21E	RT	NT, 51, 61	XT, 71	81
14	Memory	QPC673 or QPC814	N/A	QPC583	QPC583	QPC583	N/A
	ROM	QPC717D or QPC937	N/A	QPC602	QPC602	QPC602	N/A
15/16/17	Memory	QPC814	N/A	QPC583A	QPC583	QPC583	N/A
	ROM	QPC940	N/A	QPC939A	QPC939	QPC939	N/A
18	Memory	N/A	NTND01	NTND09	NTND09	NTND09	Note
	ROM	N/A	NTND31	NTND08	NTND08	NTND08	Note
Note: ROM NT6D66 Ca	I and memory II Processor (requirements f CP) card.	or the option &	31, X11 release	18 and later, ar	e fulfilled with	the

Cable information

~

The following lists contain cable and channel information. The cable type used is a 2-pair twisted wire.

Capacity per D-channel (with Backup D-channel):

- up to 382 B-channels with 16 PRIs:
 - 64 Kbps clear64 Kbps restricted56 Kbps unrestricted
- 2 D-channel:

D-channel signaling D-channel backup

- Maximum of 8 D-channels per system with the QPC757
- Maximum of 16 D-channels per system with the NT6D11AB

Cable distance (see Figure 7-3)

- 655 ft (200 M) Meridian 1 to DSX-1 cross-connect point (using ARAM or ABAM equivalent shielded cable)
- 750 ft (229 M) from Meridian 1 to Office Repeater Bay

Specific cables are detailed in *ISDN Primary Rate Interface installation* (553-2901-200).

Figure 7-3

Cable distance to DSX-1 and office repeater bay

i

Issued:	93 10 31
Status:	Standard
X11 Release:	14

8-1

Backup D-channel

A second D-channel can be added to a Primary Rate Interface (PRI) link to provide a backup as shown in Figure 8-1. When the active D-channel goes down, two things automatically occur: the standby D-channel is brought into the In-service (active) state and the auto-recovery on the failed D-channel starts.

The backup D-channel is installed and configured the same way as the primary D-channel. See *ISDN Primary Rate Interface installation* (553-2901-200) for installation procedures.

In X11 releases 14 through 16, the backup D-channel supports Meridian 1 to Meridian 1 connectivity only. With X11 release 17 software, the backup D-channel provides connections from Meridian 1 to the following systems:

- Meridian 1
- SL-100
- DMS-100 (BCS32 and later)
- DMS-250 (BCS 32 and later)
- AT&T 4ESS

In X11 release 17, the backup D-channel conforms to the Meridian Customer Defined Networking (MCDN) protocol and AT&T's TR41449 and TR41459.

Backup D-channel capacity per PRI link

The maximum number of network loops per PRI link is 16. With 24 channels per loop, 16 network loops provide a maximum of 382 B-channels $((16 \times 24) - 2)$ and 2 D-channels per PRI link. Using the maximum number of 16 network loops requires the ISDN backup D-channel functionality. With 15 or fewer network loops, the backup D-channel is not required but it is recommended. Without a backup D-channel, 15 network loops provide a maximum of 359 B-channels $((15 \times 24) - 1)$ and 1 D-channel.

Total backup D-channel capacity

With X11 release 17 and earlier, a maximum of eight D-channels is allowed per system with the QPC757, a total of four active D-channels per system and four backup D-channels is available. This allows 4 PRI links per system, or 4 X 382 = 1528 B-channels. With the NT6D11AB, you can have up to 16 D-channels in your system. Eight can be used as primary, and eight as the back up D-channels. You can have eight PRI links per system (when all have a back up D-channel). You can, therefore, have 8 x 382 = 3056 B-channels.

X11 release 18 supports up to 64 D-channels with the MSDL card, providing a maximum of 32 active D-channels and 32 backup D-channels. This capacity allows for a great deal of system flexibility since some D-channels may require backup D-channels and others do not due to customer traffic configurations.

Note: With X11 release 18 and later, primary and backup D-channels must be the same card type.

Figure 8-1 PRI with backup D-channel

i

Operating parameters

The active D-channel is responsible for call processing signaling for all B-channels in the route.

The backup D-channel does not perform any call processing signaling until it is active. Load sharing between the two D-channels is not allowed.

A switchover from the active D-channel to the backup D-channel is allowed only when the active D-channel goes down or is disabled.

Channel 24 of the first PRI loop is reserved for the primary D-channel. Channel 24 of the second PRI loop is reserved for the backup D-channel, if provisioned. The assignment of the primary and secondary D-channels must match at both ends to ensure that they try to bring up the primary D-channel first at start-up.

During the switchover from the active D-channel to the standby, call control messages received by the D-channel before it becomes active are ignored. Therefore, the calls which are in a transient state are not guaranteed completion. Established calls remain in active state. Some portion of the established calls, for example, message associated user-to-user information element, may be lost.

With a Meridian 1 to Meridian 1 interface, the active D-channel switches to the standby D-channel when a Service message is received in either of the following formats:

- the MCDN format
- the X11 release 13 format, even though it does not have the Channel Identification Information Element
With X11 release 16 and later, the backup D-channel attempts to bring the primary D-channel to the In-service state first during the start-up period. If the backup D-channel is established first, the X11 release 17 backup D-channel sends a Service message and enters into the WAIT state. During this time, if the primary D-channel is established, the primary D-channel of the X11 release 17 sends a Service message and it enters the WAIT state. The backup D-channel enters the Maintenance Busy state where it does not process or receive any messages. Thus, only the primary D-channel first. The backup D-channel is established as the standby D-channel afterwards.

Feature interactions

Timer 309 – Timer 309 specifies a 90-second wait interval after a failure of Layer 2 before the active calls are removed from service. For Meridian 1 to Meridian 1, active calls remain whether the D-channel goes down or not. If the T309 expires for both the primary D-channel and the backup D-channel, active calls are terminated on the SL-100, DMS-100, DMS-250, and AT&T 4ESS interfaces.

Integrated Services Access – Integrated Services Access (ISA) in the Meridian 1 manages Call-by-Call service selection (CBC). After the switchover, transient calls might be lost, but the integrity of the minimum and maximum counters for each service route is maintained in the ISA.

D-channel establishment – Enter the ENL Serv command in LD96 when the associated D-link is not established. After the D-link is established, the Service message for B-channels is exchanged between the near end and the far end switch. This is recommended for all CO interfaces.

D-channel sanity polling – For the Meridian 1 interface only, if the active D-channel has been idle for 30 seconds, a Service message for the D-channel is sent to the far end to poll the sanity of the D-channel. If the far end does not return Service Ack message, the near end tears down this D-channel and switches to the backup D-channel. It then reestablishes the torn down D-channel. This function is invoked by using the ENL SERV command in LD96. If there is a mismatch of the active and backup D-channel at the two ends of the PRI, this function can be turned on to synchronize the D-channel state.

Note: Both the D-channel establishment and the D-channel sanity polling are addressed in LD96. Enable the SERV command only when both D-channels are not established. Regardless of the IFC, the SERV option should always be enabled.

Feature operation

The switchover from the primary D-channel to the backup D-channel is initiated when the backup D-channel receives either Release indication or Release confirmation from the active D-channel. A Service message is sent on the standby D-channel and the T321 timer (40 seconds) starts running. During this time, the system only processes Service messages and Service Ack messages, ignoring call control messages (for example, Restart message or Status Enquiry message).

If the far end responds with a Service Ack message on the backup D-channel, then the backup D-channel becomes the active D-channel. If the T321 timer expires, the system tries to bring the inactive D-channel into the In-service state.

Automatic switchover occurs in the following situations:

- The PRI loop of the active D-channel issues a red alarm or yellow alarm.
- The D-channel Interface card of the active D-channel fails, is unplugged, or is hardware disabled.
- The cable connection between the QPC720 and the QPC757 of the active D-channel is disconnected.

Manual switchover involves issuing the DIS or RST DCH commands in LD96 to the active D-channel. When this is done, the Primary Rate Interface (PRI) establishes the backup D-channel as the active D-channel.

When one D-channel is in the In-service state and the other D-channel is in the standby state, the active D-channel carries all call control messages. The standby D-channel ignores all messages other than Service and the Service Ack messages for the D-channel.

When using the QPC757 DCHI card, disable the backup D-channel software before disabling its hardware. This ensures that the QPC757 is in the reset condition before restoring it as the backup D-channel.

For Meridian 1 to Meridian 1 interfaces, RCVP can be set to YES or NO in LD17 as long as the near and the far ends match. When interfacing to anything other than a Meridian 1, set RCVP = NO in LD17.

Feature packaging

Backup D-channel is included in basic ISDN PRI/ISL functionality. No additional packages are required.

Feature implementation

i

Basic PRI or ISL administration must be performed before the backup D-channel is defined. The PRI loop must already be defined in LD17.

Procedure 8-1 Use LD17 to configure the backup D-channel (X11 release 17 and earlier)

Prompt	Response	Description
REQ	CHG	Change configuration record
TYPE	CFN	Configuration record
PWD2	хххх	Password
ISDN	YES	Change ISDN options
DCHI	1-15	Primary D-channel port number
BCHI	1-15	Backup D-channel port number
USR	PRA, ISLD, SHA	D-channel mode PRA = D-channel for ISDN PRI only ISLD = D-channel for ISL only, in dedicated mode, without using the PRI channel SHA = Shared mode. D-channel used for both ISDN PRI and ISL. One of the above responses is required. There is no default.
RCVP	YES, (NO)	Recover to primary D-channel. When RCVP = YES, the primary D-channel is automatically forced to be the active channel after it is brought up from a released state. Both sides must be either YES or NO. If the two sides do not match, both sides default to NO.
		This prompt applies to Meridian 1 interfaces only. When IFC = D100, D250, SL100 or ESS4, set the RCVP prompt to NO.
DCHL	0-159	PRI loop number for primary D-channel
BCHL	0-159	PRI loop number for backup D-channel
RLS	хх	Release ID for D-channel. This is the current software release of the far end (X11 or BCS). If the far end has an incompatible release of the software, it prevents the sending of application messages. Refer to X11 input/output guide (553-3001-400) for compatible releases.

ISDN PRI description and administration 553-2901-100

Table 8-1 Use LD17 to configure the backup D-channel (X11 release 18 and later)

1

Prompt	Response	Description
REQ	СНG	Change
TYPE	CFN	Configuration Record
ADAN	NEW BDCH 0-63	Add a backup D-channel (also CHG, MOV, and OUT BDCH)
PDCH	0-63	Primary D-channel
СТҮР	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
USR	PRI, ISLD, SHA	D-channel mode
_ISLM	1-382	Number of ISL trunks controlled by the D-Channel
DCHL	0, 2, 4,159	PRI loop number for DCHI
OTBF	1-(32)-127	Number of output request buffers
_BPS	хххх	Baud rate for ISL D-channel on MSDL port (default 64000)
_PARM	R232,(R422) DCE, (DTE)	ISL D-channel interface and transmission mode (MSDL port only)
BCHL	0,2,4,-159	PRI loop number for back-up D-channel
RCVP	Yes, (No)	Auto-recovery to primary D-channel option
ADAN	<cr>,****</cr>	Go on to next prompt or exit overlay

ISDN PRI description and administration 553-2901-100

i

Issued:	91 12 01
Status:	Standard
X11 Release:	14

9-1

Basic Call Service

Basic Call Service permits the transmission of the ISDN call. Basic Call Service consists of call progress signaling and voice and data transmission. Basic Call Service is supported for the following switch configurations:

- Meridian 1 to Meridian 1
- Meridian 1 to SL-100
- Meridian 1 to DMS-100
- Meridian 1 to DMS-250
- Meridian 1 to AT&T 4ESS
- Meridian 1 to AT&T 5ESS

See Figure 9-1 for an example of these configurations.

Call progress signaling PRI supports 56 and 64 Kbps out-of-band signaling (on the D-channel) for:

- call setup
- call tear down
- feature activation
- local busy and reorder (overflow supplied locally)

Messages to generate tones are transmitted on the D-channel. Both out-of-band messages and in-band tones are provided for ringback.

Figure 9-1

ISDN Basic Call Service connections

Voice and data transmission High speed voice and data are transmitted on the B-channel and assigned on a per call basis. The following modes of transport are available:

- 56 Kbps circuit switched data transmission
- 64 Kbps circuit switched voice and data transmission
- 64 Kbps packet data transmission

Numbering plans Three numbering plans are supported:

- Coordinated Dialing Plan (CDP) of 3 to 10 digits
- North American 10-digit numbering plan
- Electronic Switched Network (ESN) 7-digit private numbering plan

Typically, the numbering plan for a customer's private network consists of a 3-digit location code (such as the LOC code) and a 4-digit extension. This allows the same extension to be used for private networks and for Direct Inward Dialing (DID) from the public network.

Note: When using ISDN (without ESN), the caller dials a trunk access code(s) without waiting for a second (or third) dial tone. However, NRAG, NACD, and NMS require dialing plans. They are not supported using Direct Trunk Access.

PSTN Equal Access and Special Number Services

Public Switched Telephone Network (PSTN) Equal Access Service (EAS) allow a customer to select available carriers for long distance telephone service on a call-by-call basis. See Figure 9-2.

Inter-Exchange Carrier (IEC) The IEC access code can be defined for a trunk route which is part of the PRI.

When the IEC is not specified in Meridian 1 software, the DMS-100 examines the Called Party Number and selects an appropriate outbound route.

PSTN Special Number Services These allow access to public network numbers such as:

- 411 for directory assistance
- 911 for emergencies

The user dials a public network access code followed by the special number.

Figure 9-2 Equal Access Service

i

64K Clear Data

64K Clear Data allows a customer to send 64 Kbps of clear data from the Meridian 1 to the following systems:

- Meridian 1
- SL-100
- DMS-100

64 Kbps of clear data can also pass through the AT&T 4ESS and DMS-250 switch as long as the AT&T tandem switch is transparent. See Figure 9-3 and Table 9-1 for an example of a configuration that permits the flow of 64 Kbps of clear data.

The version IDs of both the originating and the terminating systems must be 2 in order to transmit data at speeds of 64 Kbps through the T-Link version 2 protocol.

Selecting B8ZS line coding method allows the B-channel to transport 64 Kbps of clear data. The selection is made in LD17, the Configuration Record.

On the Meridian 1 side, the 64K clear data can only pass through the QMT21 High Speed Data Module. Therefore, this data module must be connected to each system configured. In addition, 64K Clear Data allows connection to High Speed Data Units (HSDU) through a DMS-100.

64K Clear Data supports ISDN data applications that require a clear 64 Kbps channel, such as communications between two Group IV facsimile machines set for that data rate.

Figure 9-3 shows the connection options for 64K Clear Data.

Note: 64K Clear Data requires a B8ZS compatible facility format from the Telco and T1 B8ZS repeaters.

Figure 9-3

Connection options for 64K Clear Data

Table 9-1 Connection options for 64K Clear Data

Path	Originating	Terminating	See note below
1-2	1	2	1
1-4	1	4	3
1-2-3	1	3	1
1-4-3	1	3	1
1-5-4	1	4	1,2

Note 1: Requires same release software. X11 release 14 is equivalent to BCS release 29. X11 release 15 is equivalent to BCS release 30. X11 release 16 is equivalent to BCS release 31, and X11 release 17 is equivalent to BCS release 32.

Note 2: This connection only occurs if AT&T tandem switch is transparent.

1.

Note 3: Requires X11 release 13 software or above.

Issued:	93 10 31
Status:	Standard
X11 release:	19

BRI/PRI Basic Call Interworking

Overview

BRI/PRI Basic Call Interworking provides data connectivity between ISDN BRI and ISDN PRI. It does the following:

- Allows better high and low level compatibility checking between the calling and terminating equipment
- Supports the V.120 protocol between BRI TEs over PRI
- Supports a greater range of Bearer Capability, which is the network data transmission rate
- Allows end users to support many terminals on the same BRI DSL, such as Group IV fax, data monitor
- Propagates existing IEs with existing encodings over tandem PRIs between BRI TEs

The affected IEs are:

Bearer Capability-BRI and PRI propagate octet 4ab without modification.

Called Party Subaddress – Meridian 1 decodes and saves the called party subaddress when it is received from PRI, passing it to the terminating BRI. The system also sends the subaddress to PRI when the originating BRI or PRI includes it.

Calling Party Subaddress – Meridian 1 decodes and saves the calling party subaddress when it is received fro PRI, passing it to the terminating BRI. The system also sends the subaddress to PRI when the originating BRI or PRI includes it.

Cause - BRI and PRI propagate octet 4 without modification.

High Layer Compatibility – Meridian 1 decodes and saves high layer compatibility information received from PRI and passes it to the terminating BRI. The system also sends the information element, without interpreting it, to PRI after receiving it from the originating BRI or PRI.

Low Layer Compatibility – Meridian 1 decodes and saves low layer compatibility information received from PRI and passes it to the terminating BRI. The system also sends the information element, without interpreting it, to PRI after receiving it from the originating BRI or PRI.

BRI/PRI supports these interfaces:

- Meridian 1 PRI
- Japan D70 PRI
- 4ESS and 5ESS PRI

Operating parameters

New IEs and IEs with new encodings are only supported when the RCAP is configured in overlay 17. Existing IEs and encodings are supported end-toend regardless of the RCAP value.

A call with new Bearer Capability encodings will only terminate to a BRI terminal. If the terminating terminal is not a BRI terminal, the call is blocked.

Voice calls are successful between BRI and PRI with no restrictions.

Feature interactions

The following feature interactions are unique to BRI/PRI basic data call interworking.

ISDN BRI Data Call—Added IEs (such as LLC and HLC) and the expanded set of supported data values for the Bearer Capability IE enhance BRI's ability to support a variety of circuit switched data calls.

ISDN PRI D-channel Error Reporting and Monitor – The DCH table supports the new IEs in the PRI call messages. The DCH monitor displays the new IEs and a label for monitor level 2.

Incoming Digit Conversion – If an incoming SETUP message with the new Bearer Capability encodings goes through incoming digit conversion, it must be translated to a BRI DN. If the terminating DN is not a BRI DN, the call will be blocked.

Network Alternate Route Selection – If an outgoing call contains a SETUP with a new Bearer Capability encoding, it can only be terminated on PRA/ISL trunks with RCAP configured. This means that at least one entry in the RLB must be PRA/ISL and have the DCH RCAP configured for BRI. NARS will continue to search the RLB until it finds RCAP=BRI. An outgoing call is blocked if RCAP is not configured, or if all trunks with RCAP configured are busy.

Feature packaging

BRI/PRI, as a feature, has no packaging requirements. However, the requirements for ISDN BRI and ISDN PRI must be met.

Feature implementation

Procedure 10-1

Use LD17 to configure far-end BRI support

Prompt	Response	Description
REQ	CHG	Change system data
TYPE	CFN	Configuration record
ADAN	CHG DCH X	
CTYP		
DNUM		
SIDE		
RLS	19	Release ID of the switch at the far end of the D-channel interface is Meridian 1
RCAP	BRI XBRI	Add far-end BRI support Remove far-end BRI support
		Valid only for IFC=SL1, D70, ESS4, ESS5

Procedure 10-2 Use LD22 to print the configuration record

Prompt	Response	Description	
REQ	PRT	Print system data	
RCAP	BRI	Far-end BRI support	
		Valid only for IFC=SL1, D70, ESS4, ESS5	

Feature operation

This feature operates in the background according to how the BRI TEs are configured and the RCAP value in overlay 17.

Issued:	93 10 31
Status:	Standard
X11 Release:	14

11-1

Calling Line Identification

Calling Line Identification (CLID) sends a telephone's designated number through the ISDN PRI network to the Digit Display on a receiving device. Both outgoing and incoming calls are supported. See Figures 11-1 and 11-2. The CLID display lasts for the duration of the call.

CLID display is supported over Meridian 1 to the following switches:

- Meridian 1 and SL-100
- DMS-100 and DMS-250
- Meridian 1 tandem through AT&T 4ESS and AT&T 5ESS

The following devices, if equipped with a Digit Display, can receive and display a CLID number:

- Attendant consoles
- Meridian 1 telephones with Digit Display
- Digital telephones (M2317)
- Meridian 1 Touch Sets (M3000)
- Meridian 1 Display telephones
- ASCII terminals with an Add-on Data Module (ADM)
- M2008, M2016S, M2216ACD, M2616 when equipped with displays

Display contents

Display contents are summarized below.

- If the CLID display is unavailable because the call was not routed on ISDN routes for the entire call, the trunk route access code and trunk route member number are displayed.
- For public networks, CLID displays the standard North American Numbering Plan 7 or 10-digit number, depending on the number dialed.
- For a private network over ESN, the CLID displays an "H" followed by an HLOC (Home Location Code) + xxxx, where xxxx = four-digit DN.
- For a private network over CDP, the CLID displays the LSC (Local Steering Code) followed by either:
 - the extension's trailing digits (forming the CDP DN) when CDP is equipped, or
 - the calling telephone's extension

See Figure 11-1 for digit display formats for CLID.

Outgoing calls

A telephone's Prime Directory Number (PDN) is assembled and sent out with the call SETUP message on the D-channel. For private network calls, the calling party number consists of either the Electronic Switched Network (ESN) location code and the DN or the Coordinated Dialing Plan (CDP) DN. For public network calls, it is the standard North American Numbering Plan 7 or 10-digit number.

For private network ESN calls, if the Prime DN is less than 4 digits, zeroes are appended to create a 4 digit DN. If it is more than 4 digits, the last four numbers are used to identify the DN.

For private network calls, the Listed Directory Number (LDN) is sent if CNTP is set to LDN in LD15 on public calls; otherwise, the PDN is sent. If PDN is set in LD15, then either the Listed Directory Number or Prime Directory Number is sent, depending on the Class of Service (COS) assigned to the telephone in LD10 (Single-Line Telephone Set Administration) or LD11 (Multi-Line Telephone Set Administration). Figure 11-2 shows CLID number displays.

Figure 11-1

÷

Digit Display format for Calling Line Identification

ISDN PRI description and administration 553-2901-100

Figure 11-2 CLID number displays

i

CLID with SID/ANI

AT&T can pass the Service Identifier (SID) and Automatic Number Identification (ANI) from the originating network switch to the Meridian 1.

The SID is the number provided by the user (for example, a Meridian 1 switch) in the address digits field of the Calling Party Number. The ANI number is a customer billing number stored at a local switch or within the AT&T network.

If a customer subscribes to the AT&T services, either SID or ANI information is delivered on all incoming calls. The user may request that SID or ANI be provided on either an exclusive or preferred basis. Whether SID or ANI is requested, Meridian 1 CLID display the digits passed in the Calling Party Number identification.

Note: AT&T's ANI is comparable to Northern Telecom's CLID.

CLID in CDR

If this feature is enabled, the CLID number is included in Call Detail Recording (CDR) records. This gives customers the calling telephone's id, even through a tandem node. This information allows customers to charge the calling party for services rendered in connection with an incoming call. For example, calls to an attorney can be accurately charged to the client.

The CLID information in the Q.931 call SETUP message is added to all applicable CDR message types, in both TTY message format and the compressed binary formats for downstream processing. If the CLID information is not included in the SETUP message, it cannot be printed.

In the TTY output, the CLID information is printed on the second line, as shown in Table 11-1. The field is always 16 characters: the actual CLID digits, followed by Xs to total 16. For detailed information on CDR records, see *Call Detail Recording description and formats* (553-2631-100).

In the Electronic Switched Network (ESN), calls made from mains through the node can be tracked on CDR at the node. This eliminates the need for CDR hardware and software at all mains and allows an accurate billing of callers using the node's trunks, even when the calls are made from the attached mains. See *System overview* (553-3001-100) for more information about ESN.

 Table 11-1

 Calling Line Identification number in the TTY output

Incoming Digit Conversion

Incoming Digit Conversion (IDC) is compatible with ISDN PRI. IDC allows the user to dedicate a translation table to a DID route so that the DNs received from the CO can be converted to related extension numbers within the Meridian 1. Each translation table is defined on a DID route basis. Digits dialed on ISDN calls with CLID are converted if IDC is active on that route.

Feature implementation

Basic PRI configuration must be performed before Calling Line Identification (CLID) is defined (see "Configuring PRI" on page 4-1.).

CAUTION

Third party software is not guaranteed if this feature is activated. If the Third party software does not recognize the CLID field, it may shut down.

To configure CLID and CLID in CDR, use the following procedures.

Procedure 11-1 Enable CLID in LD17

Prompt	Response	Description
CLID	YES	Enable CLID

Procedure 11-2 Configure CLID in LD15 (Part 1 of 2)

Prompt	Response	Description
REQ	NEW, CHG	Add or change a customer
TYPE	CDB	Customer data block
CUST	xx	Customer number (0-99)
ISDN	Yes, (No)	Change ISDN options
_PNI	1-32700	Private Network Identifier
_PFX1	хххх	Prefix (area) code for International PRI
_PFX2	хххх	Central Office Prefix for IPRA
_HNPA	100-999	Home Number Plan Area code
_HNXX	100-999 ′	Prefix for Central Office
_HLOC	100-9999	Home Location Code (ESN)

Procedure 11-2 Configure CLID in LD15 (Part 2 of 2)

Prompt	Response	Description
_LSC	xxxx	Local steering code
_CNTP	LDN, (PDN)	Default for Calling Line ID
_RCNT	0-(5)	Maximum inter-node hops in a network redirection call

ASSER

Procedure 11-3 Print CDR records on the TTY in LD17

Prompt	Response	Description
USER	CTY	Use the TTY for CDR records

Procedure 11-4 Allow CDR to print for the customer in LD15

Prompt	Response	Description	
CDR	YES	Allow CDR records to print	
CNTP	(PDN)	CLID displays the set's Prime Directory Number	
	LDN	CLID displays the customer's Listed Directory Number	
		Note: Attendant consoles have only a Listed Directory Number (LDN).	

Procedure 11-5 Allow CDR in the Trunk Route datablock in LD16

Prompt	Response	Description	
CDR	YES	Allow CDR	
ICOG	ICT	Print CDR information for CLID on incoming trunks	

Issued:	91 12 01
Status:	Standard
X11 Release:	14

Data Packet Network access

PRI connections to DMS-100 allow Meridian 1 users to access Data Packet Networks (DPNs) connected to the Central Office. The steps involved are listed below. Equipment configuration is shown in Figure 12-1.

- 1 In coordination with DMS-100 maintenance personnel, a Meridian 1 DN associated with a High Speed Data Module (HSDM) is specified as the port for DPN access.
- 2 Meridian 1 software initiates a hotline call through the specified HSDM to a High Speed Data Unit (HSDU) connected to the DMS-100. The HSDU communicates with the Meridian 1 HSDM through the T-Link version 2 protocol. This requires the QPC720 PRI card.
- 3 Data is sent from the PRI through the B-channel. The call is set up using standard ISDN D-channel messaging.
- 4 The HSDU and HSDM go through T-Link protocol exchange.
- 5 The DN of a Packet Assembler/Disassembler (PAD) output port is associated with the HSDM. The Meridian 1 user accesses the Data Packet Network by dialing the DN of the PAD.

12-1

Figure 12-1 Meridian 1 PRI to DMS-100 Data Packet Network

ISDN PRI description and administration 553-2901-100

,

92 08 31
Standard
14

Digital Trunk Interface replacement

Digital Trunk Interface (DTI) provides the means for transmitting digital voice and data between a network loop and a DS-1 digital carrier terminal. See Figure 13-1. DTI interfaces to DS-1/D3 digital carriers, which may use infrared, fiber optic, microwave radio, satellite link, or leased T1 facilities. See *Digital Trunk Interface/Computer-to-PBX Interface description* (553-2811-100) for a detailed description of the DTI feature.

The QPC720 PRI circuit card can replace the QPC472 DTI card for DTI applications. The QPC720 PRI can work with X11 release 5 and later software. However, with Extended Superframe (ESF) format, and DTI, the QPC720 PRI requires X11 release 14 software and above.

X11 release 15 and later software provides an option for the following recoveries:

- automatic recovery from bit error rate occurrences
- automatic recovery from loss of frame alignment occurrences
- automatic recovery from frame slips (free-run non-tracking mode only)
- automatic clock recovery after a red alarm (local alarm) condition
- channel recovery set to the same state as the far end (TIE trunks only)

Figure 13-1 Digital Trunk Interface communication

i

Feature implementation

Use the following steps to configure PRI as DTI replacement. Refer to "Configuring PRI" on page 4-1 for a complete discussion.

1 LD73 Digital Data Block

Set error detection thresholds and clock synchronization control. Required only when configuring PRI for the first time. Optional for subsequent configurations.

2 LD17 Configuration Record

Add a PRI loop. X11 RELEASE 17 AND EARLIER

OR

3 LD17 Configuration Record

Add a PRI loop. WITH X11 RELEASE 18 AND LATER

4 LD73 Digital Data Block

Change existing thresholds, or change tracking modes. This can be done any time after Procedure 2.

5 LD17 Configuration Record

Add a DCHI card, and the D-channel link. X11 RELEASE 17 AND EARLIER

OR

6 LD17 Configuration Record

Add a DCHI card, or an MSDL card and the D-channel link. WITH X11 RELEASE 18 AND LATER 7 LD15 Customer Data Block

Define a PRI customer. Required only when configuring a new customer. If a customer is already defined, skip this procedure.

8 LD16 Trunk Route Administration Configure PRI trunk routes.

9 LD14 Trunk Administration

Add PRI trunks.

1

Issued:	91 12 01	
Status:	Standard	
X11 Release:	14	

14-1

Electronic Switched Network interworking

The Electronic Switched Network (ESN) operates within ISDN, supporting Network Class of Service (NCOS) capability. The tables below describe which ESN features are available over ISDN and illustrate ESN capabilities over ISDN.

Network Class Of Service (NCOS) information is imbedded in SETUP messages, and provides the means to control a user's eligibility for the following:

- access routes
- access queuing
- receive Expensive Route Warning Tone (ERWT)
- access network speed call

When NCOS information, which includes Traveling Class of Service (TCOS) information, is sent to a DMS-100, the DMS switch can provide access to AT&T's Electronic Tandem Network (ETN).

For a general description of ESN operations and features, see *System* overview (553-3001-100) or X11 features and services (553-3001-305).

ESN translation

Currently, a Meridian 1 switch with a BARS or NARS package can have two (or one) separate ESN translators for handling BARS/NARS calls. NARS can have two translators and BARS can have only one translator (AC1). This is in addition to its standard translator which handles all other call types. Each NARS/BARS translator has its access code (ESN AC1/AC2) which itself is defined on the standard translator. The remaining digits, for example, NPA, NXX, LOC, and SPN, are defined on the NARS/BARS translator.

Therefore, a receiving switch must determine which translator to use and insert the needed NARS/BARS access code unless the receiving number is complete, that is, including proper NARS/BARS access code in its digit stream already. This can be done by configuring an ESN digit manipulation to insert the ESN access code in the sending switch.

To insert the needed BARS/NARS access code in the receiving switch, two route options in LD16 can be used:

- INST: An incoming route option that inserts the specified digits(s) to the incoming digit stream for all the calls received on that route.
- INAC: An incoming ISDN route option that inserts the needed NARS/ BARS access code to the incoming digit stream. The insertion is based on the Type of Number of the received Called Number Information Element, bypassing the digit insertion (INST) of the route. The AC2 option in LD15 provides a mapping between the incoming Type of Number and the desired translator. This is used to determine which NARS/BARS access code is inserted.

ESN access code configuration with X11 release 14 and earlier

With Meridian 1 ISDN network configurations prior to X11 release 14, the ESN access code is inserted in one of the following ways:

- The originating PBX is configured with Digit Manipulation Index (DMI, LD86) to insert and send the ESN access code.
- The receiving PBX inserts the ESN access code in the Route Data Block (RDB, LD16) under the INST (Insert) prompt.

ESN access code configuration with Package 148 and X11 release 15 and later

For Meridian 1 configurations of X11 release 15 and later which utilize ISDN networking features, ESN access code insertion must be performed on the receiving Meridian 1. The originating Meridian 1 MUST NOT use digit manipulation to insert and send the ESN access code to the terminating Meridian 1.

Therefore, in order to accomplish networking feature transparency (requiring Package 148), the ESN access code insertion MUST be performed in the receiving Meridian 1, either by means of the INST prompt (X11 release 14 and earlier) or the INAC prompt (X11 release 15 and later) in the LD16. Although the INST or the INAC prompt can be used in X11 release 15 and later, the INAC prompt is the recommended method.

When the PBX is upgraded from X11 release 14 to X11 release 15 or later, the above database conversion is required to allow networking applications (such as NRAG) to function properly.

Figure 14-1 summarize these database configuration rules. Figure 14-2 shows the ESN capability within an ISDN network.

i

Figure 14-1 INAC configuration rules

Table 14-1 ESN features available with ISDN

ESN features	X11 release 18 ISDN	
Network Class of Service	yes	
Network Control —NCOS —TCOS (ETN)	yes yes	
Network Alternate Route Selection NARS Access Codes Time of Day Routing Network Routing Controls Satellite Link Control Digit Screening Digit Manipulation Auto on-net to off-net overflow Auto on-net to off-net overflow Automatic Least Cost Routing Network Speed Call Automatic OCC Access Expensive Route Warning Tone	yes yes yes yes yes yes yes yes yes yes	
ESN Queuing		
Local queuing —Off-hook queuing —Call back queuing Network Queuing —Coordinated Call Back Queuing —Coordinated Call Back Queuing to Conventional Main	yes yes Yes (Note) Yes (Note)	
Network Authorization Codes	yes	
Coordinated Dialing Plan for up to 10 digits	yes	
Network Call Transfer	no	
Note: CCBQ and CCBQCM are available with Remote Virtual Queueing with X11 release 18 and later.		

1

Figure 14-2 ESN capability in the ISDN network

1
Feature implementation

ESN default call types

When an ISDN call is made, a default Electronic Switched Network (ESN) call type is set initially. The call type is set depending on the dialing method used, that is, how the call is made. Table 14-2 shows the ISDN default call types. Procedure 14-1 describes how to define the default call types.

Note: When a trunk access code is used to dial on an ISDN route, the caller dials all digits without waiting for subsequent dial tones.

Table 14-2	
Default Call	Types

Dial method	Default call type	Comment
Direct dial	UKWN (unknown)	Direct dial to trunks via access code
CDP (DSC/TSC)	CDP (Coordinated dialing plan)	Dial CDP number via DSC/TSC code
CDP (LSC)	UKWN	Dial CDP number via LSC code
ESN (LOC)	LOC (location code)	Dial NARS location code
ESN (HLOC)	UKWN	Dial ESN HLOC number
ESN (NPA)	NPA (national)	Dial ESN NPA number
ESN (NXX)	NXX (local)	Dial ESN NXX number
ESN (SPN)	SPN (special number)	Dial ESN SPN number

Procedure 14-1	
Respond to the following	prompts in LD86

Prompt	Response	Description
REQ	NEW, CHG	
CUST	0-99	Enter customer number
FEAT	DGT	Digit manipulation data block
DMI	1-255	Digit manipulation table index numbers for NARS/BARS
CTYP		Call type. Enter the call type to the manipulated digits. This call type must be recognized by the far end switch.
	(NCHG)	The call type will not be changed
	INTL	Special number in international format
	NPA	NPA
	NXX	NXX
	LOC	Location Code
	CDP	Coordinated Dialing Plan
	SPN	Special number
	UKWN	Unknown call type

i

ESN access code insertion

Procedures 14-2 and 14-3 describe how to automatically insert the needed NARS/BARS access code to the incoming digit stream. This is required for ISDN networking features such as Network Ring Again (NRAG) and Network Message Services (NMS).

ESN access code insertion is performed in the receiving switch either by the INST or INAC option in LD16. The INAC option is recommended. In other words, the called number may go through ESN digit manipulation which must not include the ESN access code in the sending switch. This rule applies to systems with X11 release 15 and higher.

Procedure 14-2 Enable INAC option in LD16

Prompt	Response	Description
REQ	NEW, CHG, END	
TYPE	RDB	Route data block
INAC	(NO), YES	Insert Access Code. Permit an ESN access code to be automatically added to an incoming ESN call from a private network. If INAC is YES, the digit insertion option (INST) is bypassed. This prompt only appears if the route type is a TIE trunk.

Prompt	Response	Description
REQ	NEW, CHG, END	
TYPE	CDB	Customer data block
AC2		Access Code 2. Enter call types (type of number) that use access code 2. Multiple responses are permitted. If a call type is not entered here, it is automatically defaulted to access code 1.
	NPA	E.164 National
	NXX	E.164 Subscriber
	INTL	International
	SPN	Special number
	LOC	Location code
ISDN	YES	
PNI	1-32700	Customer private identifier—unique to a customer. Within one network, use the same value for PNI in both the Customer Data Block (LD15) and the Route Data Block (LD16).

Procedure 14-3 Map NARS/BARS access code to the incoming call types in LD15

i

Private Network Hopoff

Private Network Hopoff is provided by the ESN feature. Private Network Hopoff allows ISDN callers to use the private network to complete public calls. The call is routed through the private network as far as possible before "hopping off" onto the public lines. See Figure 14-3.

Users select this service, on a per call basis, by dialing the private network facilities prefix digit, followed by the public network number. For example, the number 9 is often used as a private network facilities prefix digit before dialing a local number.

Figure 14-3 Private Network Hopoff

ISDN PRI description and administration 553-2901-100

Private Network Overflow

This service allows overflow from a private network onto public network facilities. See Figure 14-4. On outgoing calls over a DMS-100 PRI connection, the DMS provides network overflow when all of a customer's private trunks are busy.

For outgoing calls which encounter blocking (all B-channels are busy), the network provides the capability to overflow to alternate trunks. This is provided by the Electronic Switched Network (ESN) feature. This access can be restricted using a trunk or set class of service.

ISDN PRI description and administration 553-2901-100

1.

Issued:	91 12 01
Status:	Standard
X11 release:	14

Integrated Services Access

Integrated Services Access (ISA) is an ISDN PRI feature offered by Meridian 1 connecting to switches such as DMS-100 and DMS-250.

ISA allows multiple service routes to share the same common pool of B-channels. Unlike dedicated routes which require each service route to have its own trunks of the same trunk type, ISA trunks are shared among many service routes, and they can carry calls of different types. These call types can change on a per-call basis. In addition to taking on different trunk types, the service routes may also be uniquely configured for other features, such as Dialed Number Identification Services (DNIS), Incoming Digit Conversion (IDC), or Auto-Terminate.

Figures 15-1 and 15-2 compare dedicated service with ISA's multiple service routes sharing a common pool of B-channels.

AT&T's Call-by-Call nodal service offering is similar to Northern Telecom's DMS-250 ISA. Instead of multiple call/trunk types over a single ISDN PRI channel, AT&T offers services from the 4ESS Inter Exchange Carrier (IEC) such as MEGACOM, SDN, and ACCUNET.

Figure 15-1 Dedicated trunks

Figure 15-2 ISA trunks

ISDN PRI description and administration 553-2901-100

Establishing ISA routes

Basic PRI configuration must be performed before Integrated Services Access (ISA) is defined (see "Overview" chapter). ISA routes and trunks must be defined to access Northern Telecom's ISA functionality or AT&T's Call-by-Call Service.

You cannot configure trunks for the service route that also accesses the ISA master route. With a single PRI (23B + D) configuration, all 23 B-channels can be configured for the ISA master route.

ISA routes cannot be accessed directly, so they must be blocked in the following programs, if applicable:

LD19	Code Restriction
LD27	Alternate Route Selection (ARS)
LD86	Network Alternate Route Selection (NARS) and Basic
	Alternate Route Selection (BARS)
LD93	Tenant Services

Accessing the ISA master route

The caller dials the access code of a service route to access an ISA master route. This access can also be achieved through digit manipulation by BARS or NARS or by means of Direct trunk access (TARG) values in LDs 10, 11, and 16. A route is configured as an ISA type through service change in LD16. The ISA master route contains a list of B-channels over PRI that can be shared.

Different service route types such as TIE or WATS are created and associated with an ISA master route type. Service routes are not permitted to have Private trunks or B-channel members. To access call-by-call capability, the caller uses NARS/BARS or CDP. Automatic stepping from a service route to an ISA master route is performed and the ISA master route searches for an idle ISA channel. The caller is prevented from dialing the access code of an ISA master route directly.

These ISA configurations prompts are described below.

- the Network Service Facility (NSF) option
- the Min/Max function
- the Service Identifier (SID)

Network Services Facility option

This option is configured on the Meridian 1 to indicate whether it expects the Network Services Facility (NSF) Identification Element (IE) from the DMS. The NSF information dictates which service route the Meridian 1 will use to terminate an incoming call.

Northern Telecom connectivity to DMS provides Public, Private, INWATS, OUTWATS, TIE, and FX call types. When specifying COT or DID, the default is Public call type. The call types determine the NSF values. (NSF = NO yields Public call type.)

The values for the COT/DID service route (COTR), the WATS service route (WATR), and the TIE service route (TIER) are for incoming call termination only. Predefined NARS, BARS or CDP allows multiple outgoing routes. The COTR can be a route number for a Central Office DID/DOD route. It is used for public calls. For incoming public calls, if COTR is a Central Office route, it is routed to the attendant. If it is a DID/DOD route, it translates the last "n" digits (as predefined in LD15). For Private and TIE calls, the called number can be translated as defined for the service route.

With NSF = NO:

- COTR = all incoming DID/COT calls
- TIER = all incoming TIE calls

Only Public and TIE calls can be terminated. Because there is no Min/Max throttling, one service route may use all the trunks in the pool. If the NSF is sent from the Central Office, a master route can still be configured with NSF = NO and the NSF is ignored.

With NSF = YES:

- COTR = all incoming DID/COT calls
- WATR = all incoming WATS calls (prior to X11 release 17),
 OR = incoming WATS calls without SID (X11 release 17)

Different TIE and FX calls can be terminated to multiple service routes. With X11 release 17, there can be multiple INWATS routes. These routes are distinguished by the unique SID defined in the service route. This number must be coordinated with the DMS for correct call termination.

Minimum and maximum counter function

The minimum and maximum counter (Min/Max) function allows customers more control and the ability to manage call patterns: you may define a minimum number of B-channels for a service route and you may define a maximum number of calls allowed per service route.

The sum of all the Min values must be less than or equal to the number of B-channels in the master route. The Max values for each service route must be equal to or less than the number of B-channels in the pool less all Min values from other service routes.

The sum of all Min values for the service route cannot exceed the number of B-channels defined for the ISA master route.

When the NSF prompt is YES and the Max value is reached in a service route, the All Trunks Busy (ATB) counter is incremented. The ATB count is not incremented when NSF is NO.

The ATB value is provided during the printing of traffic reports. The ATB is pegged against individual service routes when the maximum number of B-channels reserved for that call type has been reached. The ATB counter of an ISA master route is also incremented when the last B-channel of the ISA master route is busied. This occurs whether the NSF prompt is YES or NO.

Service identifier

In addition to the call type (route type), each call is identified by a service identifier (SID) which is used by the Meridian 1 and the Central Office for routing. The SID prompt is available when the NSF prompt is set to YES. These service identifiers must be set up in coordination with the Central Office for call type delivery and routing purposes.

The Service Identifier allows a call type with multiple SIDs such as INWATS to go to prespecified Directory Numbers.

Pre X11 release 17, the SID defaults to the route number, and the value range is 0-127. With X11 release 17, the SID no longer has a default value. Also, the range of value SIDs is expanded to support 0-511.

ISA capability

Note: Support of ISA for DMS switches and Call-by-Call Service Selection for AT&T switches has been withdrawn for X11 software releases prior to X11 release 16. Therefore, X11 release 16 is the minimum release to support ISA capability.

X11 release 16

Basic ISA functionality includes the following:

- Incoming Digit Conversion (IDC) is supported for DID call type only.
- All INWATS calls terminate to the attendant console.
- ISA supports 2-way DID trunk types (as do all PRI connections to a central office.)
- A total of 127 SID routes is allowed for all trunk types per customer.
- Multiple routes may be defined.
- Calls are routed based on Service Identifier (SID) value.

Meridian 1 to DMS-100

WATS

- Only one INWATS route may be defined.
- All INWATS calls terminate to the attendant console.
- OUTWATS services are not limited to a single outgoing route.

COT or DID

- Only one incoming route may be defined, either COT or DID, but not both.
- DID trunk type supports 2-way traffic (inbound and outbound).
- More than one outgoing route may be defined.
- DID operates like a 2-way COT.

TIE

- Multiple routes may be defined.
- They are routed according to the Service Identifier (SID) value.

Note: In LD16, if NSF = NO, then only one TIE route may be defined.

FX

- Multiple routes may be defined.
- They are routed according to the Service Identifier (SID) value.

Meridian 1 to DMS-250

This includes basic ISA functionality as well as the following:

 Private call type is supported for DMS-250 interfaces to the Meridian 1 and are defined as TIE.

WATS

- Only one INWATS route may be defined.
- All INWATS calls terminate to the attendant console.
- OUTWATS services are not limited to a single outgoing route.

TIE

- Multiple routes may be defined.
- They are routed according to the Service Identifier (SID) value.

Note: In LD16, if NSF = NO, then only one TIE route may be defined.

FX

- Multiple routes may be defined.
- They are routed according to the Service Identifier (SID) value.

COT or DID

- Only one incoming route may be defined, either COT or DID, but not both.
- DID trunk type supports 2-way traffic (inbound and outbound).
- More than one outgoing route may be defined.
- DID operates like a 2-way COT.

Meridian 1 to 4ESS

Meridian 1 supports the following AT&T 4ESS nodal service types:

- ACCUNET, a T1 access service for both voice or data
- SDN, Software Defined Network, an AT&T virtual networking package
- MEGACOM 800, inbound domestic bundling
- MEGACOM, outbound domestic bundling
- WATB, banded WATS. The user may specify a band, such as Band 3.
- WATM. The user may specify wide area service exclusive to Band 1 through 9. For example, Band 5 means 0 to 5.
- LDS, Long Distance Service, including "World Connect" (outbound international)
- IWAT, regular 800 service
- I800, International 800, anything outside the U.S.

X11 release 17

In X11 release 17, ISA is enhanced to provide the following:

- Private, INWATS, FX and TIE call types received from an ISA master route terminate to an individual set with or without Incoming Digit Conversion (IDC) for the DMS and AT&T interfaces.
- ISA service routes allow an auto-terminate DN to be defined in the route data block. Calls can terminate to an ACD queue using Dialed Number Identification Services (DNIS) for the DMS and AT&T interfaces.
- Private call type is supported for the DMS interface on a per route basis. (Specify Private in LD16.)

- Service Identifier (SID) is supported with INWATS call types for the DMS interface.
- The Service Identifier (SID) value no longer defaults to route number. A unique value must be specified by the user.
- When printing the route data block for an ISA master route, all the associated service routes are printed after the new prompt, SVRT, in LD21. Figure 15-3 shows how SVRT in LD21 prints the ISA service routes configured in LD16.

Figure 15-3 LD21 SVRT prompt (X11 release 17)

LD16	LD16	LD16
<u>Prompt</u> ROUT 50 TKTP TIE ISAR YES RTN 60	Prompt Response ROUT 51 TKTP WAT ISAR YES RTN 60	Prompt Response ROUT 52 TKTP COT ISAR YES RTN 60
	LD21 Prompt Response ROUT 60 TKTP ISA SVRT 50	
Note: The prompt SVRT is configured in LD16, this	51 52 does not appear in LD16. V information is added automa	Vhen the route atically to the ISA
master route.		553-5142

Operating parameters

ISA supports ST, STE, NT, RT, XT, 21, 21E, 51, 61, 71, and 81 system types.

SL-100 and DMS products require BCS 30 or later for ISA connectivity to the Meridian 1.

The X11 release 17 ISA enhancements are based on the following features:

- Dialed Number Identification Services (DNIS) offered on X11 release 10 or above.
- Incoming Digit Conversion (IDC) for Direct Inward Dialing (DID) offered on X11 release 12 or above.

Characteristics of the X11 release 17 ISA enhancements are detailed below:

- The range of the Service Identifier (SID) for the Meridian 1 to DMS interface is from 0 to 511. Each SID received in the ISA trunks uniquely corresponds to a service route defined in LD16. Also, each service route uniquely corresponds to a SID in the DMS machine type.
- The range of the Service Parameter for the Meridian 1 to ESS interfaces is from 0 to 9 for the parameterized WATS band service. WATR and COTR depend on the operation of service routes.
- For Meridian 1 to DMS interfaces, if there is no Network Specific Facility Information Element (NSF) (IE) received in the ISA master route, Meridian 1 treats the call using the service route configuration defined for the COTR prompt in LD16. If the trunk type of the COTR is COT, all the calls terminate to the Meridian 1 attendant. If the trunk type of the COTR is DID, each call terminates to its DID number. Similarly, if the trunk type of the WATR is WAT, all the calls terminate to the Meridian 1 attendant. If the trunk type of the WATR is DID, each call terminates to its DID number.
- For the Meridian 1 to ESS interfaces, if there is no NSF IE received in the ISA master route, Meridian 1 treats the call using the ISA service route configuration which is defined as the ACCUNET service for the SRVC prompt in LD16. If the trunk type of the ISA service route is Direct Inward Dialing (DID), each call terminates to its DID number.

- If an INWATS call or Public call received in the ISA master route is intended to be terminated to the Meridian 1 attendant, either IDC can be used to convert the incoming called number of the attendant DN, or the incoming called number must match the Listed Directory Number (LDN) in the Customer data block. You can also terminate one service route per ISA route by programming the service route number at the COTR and WATR prompts.
- For the Meridian 1 to DMS interfaces, the minimum and maximum counter (Min/Max) function is on a per service route basis. For example, route 40 (call type of OUTWATS with SID 9) or route 45 (call type of OUTWATS with SID 13), can each reserve its own minimum B-channels and limit its maximum B-channels to be used in the ISA pools.
- Since AT&T is limited to one service type per service route in a given ISA master route, for the Meridian 1 to ESS interfaces, the Min/Max counter function is on a per service route basis. That is, AT&T supports only one Min/Max function for the service types in a given ISA master route, not a Min/Max per band. Configure only one set of the minimum and the maximum B-channels in LD16 for all the bands of the WATB service.
- For AT&T interfaces, only 9 possible services may be used per ISA master route. With Northern Telecom DMS products, there are 512 possibilities, one for each SID value.

Tables 15-1 and 15-2 illustrate the Min/Max function, assuming 23 ISA B-channels.

Table 15-1 Example of Min/Max function for Meridian 1 to DMS

Call Type	Meridian 1 to DMS interface (WATR = 30, COTR = 10, NSF = YES)	MIN	МАХ
Public	(rout 10, tkty DID, icog IAO)	10	13
Private	(rout 20, tkty TIE, sid 22, facy PRV, icog IAO)	1	3
INWATS	(rout 30, tkty WAT, icog ICT)	1	3
INWATS	(rout 35, tkty WAT, sid 30, icog ICT)	1	1
OUTWATS	(rout 40, tkty WAT, sid 9, icog OGT)	1	2
OUTWATS	(rout 45, tkty WAT, sid 13, icog IAO)	1	1
FX	(rout 60, tktp TIE, sid 60, facy TIE, icog IAO)	1	4
TIE	(rout 60, tkty TIE, sid 60, facy TIE, icog IAO)	2	3
TIE	(rout 65, tkty TIE, sid 65, facy TIE, icog IAO	2	3
	Total	20	
Note 1: See the Min/Max rules contained in this chapter.			
Note 2: Service types are dominant over call types with AT&T interfaces.			

i

Service	Meridian 1 to ESS interface	MIN	МАХ
ACCunet	(rout 10, tkty DID, icog IAO)	10	15
SDN	(rout 20, tkty TIE, icog IAO))	1	3
IWAT	(rout 30, tkty WAT, icog ICT)	1	3
WATB	(rout 40, tkty WAT, sprm 9, icog OGT)	1	2
WATM	(rout 45, tkty WAT, icog OGT)	1	2
LDS	(rout 70, tkty TIE, icog IAO)	2	3
1800	(rout 80, tkty TIE, icog IAO)	2	3
	Total	18	
Note: See the Min/Max rules contained in this chapter.			

Table 15-2 Example of Min/Max function for Meridian 1 to ESS

Feature interactions

Enbloc dialing—Enbloc dialing in ISDN PRI performs dialed digit analysis to determine the end of dialing before constructing the outgoing SETUP message. The Trunk Access Code applies to the service route, not to the ISA master route.

nB+D Primary Rate Interface – nB + D is an ISDN feature developed for Meridian 1 in X11 release 12. Meridian 1 allows 16 DS1 loops controlled by one Primary D-channel (on channel 24 of the first DS1 lop) and one backup D-channel (on channel 24 of the second DS1 loop). ISA can use the 382 Bchannels as the ISA pool of trunks.

AT&T 4ESS SDN Access – Software Defined Network (SDN) is a service offered by AT&T 4ESS for the virtual private network. SDN can be offered on dedicated channels or ISA channels.

Incoming Digit Conversion (IDC) – Part or all of the digits received in the DID route are converted and terminated at the existing internal DN in the Meridian 1.'With this enhancement, IDC applies to the incoming WATS route over the ISDN interface.

Dialed Number Identification Services (DNIS) – DNIS provides the last three or four digits of the dialed DN from DID or TIE trunk to be displayed in Meridian 1 set digit display when the DNIS call terminates on an ACD DN. DNIS is supported on the per route basis when using ISA feature. DNIS also applies to the INWATS service route over the ISDN interface.

Feature packaging

Table 15-3 shows the packages required for ISA. See X11 features and services (553-3001-305) for X11 release software packages and their dependencies.

Table 15-3

Package requirements for ISA enhancements

Package	Name of package	Mnemonic
117	Call-by-Call Service Selection Dependencies: 145, 146,149	CBC
145	ISDN Signalling	ISDN
146	ISDN Primary Rate Interface Dependencies: 75, 145, 19 [CLID]	PRI

Note 1: Package 149, IEC, is required for Inter-exchange carrier, that is DMS-250 and AT&T 4ESS.

Note 2: If Incoming Digit Conversion (IDC) is required (see Feature implementation), then Package 110, IDC for DID, is necessary. It is dependent on Package 49, New Flexible Code Restriction.

Note 3: If Dialed Number Identification Services (DNIS) is required (see Feature implementation), then Package 98, DNIS, is required.

Feature implementation

Configuring ISA routes

Basic PRI configuration must be performed before Integrated Services Access (ISA) is defined (see "Overview" chapter). ISA routes and trunks must be defined to access Northern Telecom's ISA functionality or AT&T's Call-by-Call Service.

To configure ISA, take the following steps:

- LD16 Route Data Block (Procedure 15-1) Define the ISA master route, before other route types.
- 2 LD14 Trunk Data Block (Procedure 15-2) Define the associated list of ISA trunks.
- 3 LD16 Route Data Block (Procedure 15-3) Define all service routes.

Procedure 15-1 Use LD16 to create an ISA master route (Part 1 of 2)

Prompt	Response	Description
REQ	NEW,CHG, OUT	
TYPE	RDB	Route Data Block
CUST	0-99	Customer number
ROUT	0-511	Route number
ТКТР	ISA	Create an ISA trunk route
		<i>Note:</i> Package 117, Call-By-Call Service, is required to define an ISA master route.
DTRK	YES	Digital trunk route
DGTP	PRI	Digital trunk type
ISDN	YES	ISDN option
MODE	PRA /	D-channel mode controlling the route (ISA master route)
PNI	1-32700	Customer's Private ID

ISDN PRI description and administration 553-2901-100

Use LD16 to create an ISA master route (Part 2 of 2)

Prompt	Response	Description
IFC	aaaa	Interface type: (D100), ESS4, ESS5, SL1, S100, D250
		<i>Note:</i> The IFC of an ISA master route and its associated service route must match.
NSF	(NO),YES	Network Service Facility (for TKTP = ISA and non-AT&T IFC. AT&T always has NSF.)
COTR	0-511	DID/Central Office route number Prompted if IFC = D100. Enter CO or DID route.
TIER	0-511	TIE route number Prompted if IFC = D100 and NSF = NO
WATR	0-511	WATS route number Prompted if IFC = D100 and NSF = YES
ICOG	IAO, ICT, OGT	Incoming and outgoing trunk, Incoming trunk, Outgoing trunk
SRCH	RRB	Round robin hunting for outgoing trunks
ACOD	хххх	Trunk route access code

1000

Procedure 15-2 Use LD14 to configure ISA trunks

Prompt	Response	Description
REQ	NEW, CHG, MOV, OUT	
TYPE	ISA	ISA trunk type
TN	loop ch	Terminal number addressuse loop number created in LD17
	0-159	PRI loop number
	1-24	PRI channel
CUST	0-99	Customer number
RTMB	0-511, 1-254	Route and Member number for SL-1 NT, RT, XT and
	0-127, 1-254	For all other machine types.
B-CHANN	EL SIGNALING	
TGAR	(0)-31	Trunk Group Access Restriction
CLS	aaa	Class of service options

Procedure 15-3 Use LD16 to configure ISA service routes (Part 1 of 2)

Prompt	Response	Description
REQ	NEW	Add an ISA service route
TYPE	RDB	Route data block
CUST	0-99	Customer number
ROUT	0-511	Route number
ТКТР	aaaa	Types of service route allowed with ISDN
DTRK	YES	Digital trunk route
ISDN	YES	ISDN option
_MODE	PRA	PRA master route for ISA

Use LD16 to configure ISA service routes (Part 2 of 2)

Prompt	Response	Description
IFC	aaaa	Interface type: (D100), ESS4, ESS5, SL1, S100, D250
		Note: The IFC of an ISA master route and its associated service route must match.
SRVC	(ACC)	Service for AT&T ESS connections: NNSF, ACC, I800, LDS, M800, MEG, SDN, IWAT, WATM, WATB Prompted if IFC = ESS4 or ESS5
		Note: NSF refers to the services provided on a Call-by-Call basis.
_SRPM	0-(9)	WATS band. Prompted only if SRVC = WATB.
ISAR	Yes, (No)	ISA service route
_RTN	0-511	Select route number of any configured ISA master route Prompted only when ISAR = YES.
_FACY	Yes, (No)	Facility for the call type Prompted when TKTP = TIE, ISAR = YES, and IFC = D100/D250/S100 TIE connection in the NSF IE Private connection in the NSF IE.
_SID	0-511	Service Identifier number.
_MIN	xx	Minimum number of channels reserved on the ISA master route
_MAX	xx	Max number of channels reserved on the ISA master route.
_PRIM	Yes, (No)	ISA route class of service
ICOG	IAO, ICT, OGT	Incoming and outgoing trunk, Incoming trunk, Outgoing trunk
ACOD	xxxx	Trunk route access code

Note: The Listed Directory Number (LDN0) value must be set in LD15, Customer data block, in order to terminate ISDN/DID incoming calls, such as ISA. See "Configuring PRI" on page 4-1.

Feature testing

Test each PRI trunk to ensure that the Meridian 1 completes an ISA call. Run the following test for each of the available call types: TIE, FX, COT, INWATS, OUTWATS, and DID.

Note: COT and DID are recognized as Public call types and they must be the same route. They can be used for incoming or outgoing routes.

To test ISA, use Steps 1 through 8.

- 1 Select a PRI to be tested.
- 2 Access LD60. Stat all pertinent B-channels
- 3 Set all the Min/Max values in all service routes to 1.
- 4 Make a test call on a trunk route that accesses the PRI being tested. Be sure the test call is to a valid destination.
- 5 Use LD80 to ensure a B-channel from the ISA pool is in use. Then:
 - Place the call on hold.
 - Make another call. You should receive an overflow signal (fast busy).
 - Repeat this procedure for every outgoing service route.
- 6 Disconnect both calls.
- 7 Ask the terminating end to place an incoming call for each incoming call type. Then:
 - Place the call on hold.
 - Ask the terminating end to place another call. They should receive an overflow signal (fast busy).
- 8 Disconnect both calls.

ISDN PRI description and administration 553-2901-100

i

Issued:	92 12 31
Status:	Standard
X11 release:	14

ISDN Signaling Link

ISDN Signaling Link (ISL) provides the capability to replace both digital and analog conventional trunk signaling with out-of-band ISDN D-channel signaling. The following applications are supported by ISL:

- Calling Line Identification (CLID)
- CLID in Call Detail Recording (CDR)
- Electronic Switched Network (ESN) interworking
- Network Call Redirection (NCRD)
- Network Ring Again (NRAG)
- Network Message Services (NMS)
- Network Call Party Name Display (NCPND)
- Network ACD (NACD)

When the D-channel is inactive, ISL trunk calls can automatically revert to conventional trunk signaling. This applies to both primary and backup D-channels.

ISL supports TIE and ISA trunk types with Meridian 1 to Meridian 1 connectivity.

The TIE lines and trunk used for the D-channel may be leased from the Central Office (CO). With leased lines, the function of the CO is simply to provide the trunk wire facilities between Meridian 1 systems for circuit switched connections.

16-1

The ISDN Signaling Link supports a uniform trunk hardware configuration. This configuration uses the QPC237 4-wire E&M TIE trunk card in place of other analog trunk cards (such as the QPC71 TIE trunk card or the QPC72 DID/DOD trunk card).

Note: If the QPC237 TIE trunk card is not used, backup D-channel is not available.

Figure 16-1 ISDN Signaling Link: shared mode

There are two modes of ISL operation:

- Shared mode: The DCHI supports ISDN PRI signaling and ISL trunks. The configuration is basically the same as the PRI D-channel, with the D-channel also supporting ISL trunks. See Figure 16-1.
- Dedicated mode: The DCHI does not support ISDN PRI signaling. The DCHI is reserved for ISL use. The D-channel can communicate with the far end by means of a dedicated leased line, dial-up modem, or DTI/PRI trunk. See Figure 16-2.

For ISL to use an ISA route, the ISA route must be identified as ISL in LD16. This is done by assigning the MODE prompt to ISLD.

When an ISL call utilizes a Call-by-Call Service, the D-channel associated with the ISA route for the Call-by-Call Service is used for signaling.

Note: In X11 release 15, the High Speed Data Module (HSDM) is used in place of both the Asynchronous/Synchronous Interface Module (ASIM) and the Add-On Data Module (ADM).

Figure 16-2

ISDN Signaling Link: dedicated mode configurations

ISDN PRI description and administration 553-2901-100

Reverting to conventional trunk signaling This feature handles ISL trunk calls by reverting to conventional trunk signaling when the D-channel is inoperative. This applies to the primary and backup D-channels as well as ISA.

When a primary or backup D-channel goes down:

- Established ISL calls remain established, regardless of the signaling method used.
- Transient ISL calls that are set up using conventional trunk signaling are not disturbed.
- Transient ISL calls that are set up by means of D-channel signaling are dropped. The user must reinitiate the call. Then conventional trunk signaling is used if the D-channel remains inactive.
- ISL channels are not marked maintenance busy.

There are two scenarios that can occur when a D-channel is re-established, one with backup D-channel and one without. When a backup D-channel re-establishes:

 There is no impact. The other D-channel simply recovers. Since ISL calls still using D-channel signaling (in existing software) can bypass the restart procedure.

When a D-channel re-establishes that does not have a backup:

1

- Transient and established ISL calls that are set up using conventional trunk signaling are not disturbed.
- Established ISL calls that are set up using D-channels are disconnected.
- To disconnect an established ISL call, the system uses the same signaling method that the call was setup with.

When the ISL D-channel goes down, the following scenario occurs. Since ISL trunks can convert to conventional trunk signaling, the ISL route (which is associated with a D-channel) is bypassed using conventional trunk signaling.

Feature implementation

There are two modes of ISDN Signaling Link (ISL) operation:

1 Shared mode

The DCHI supports ISDN PRI signaling and ISL trunks. The configuration is basically the same as the PRI D-channel, with the D-channel also supporting ISL trunks.

2 Dedicated mode

The DCHI does not support ISDN PRI signaling. The DCHI is reserved for ISL use. The D-channel communicates with the far end by means of a dedicated leased line, dial-up modem, or DTI/PRI trunk.

ISDN Signaling Link (ISL) supports Calling Line Identification (CLID) and CLID in Call Detail Recording (CDR), Electronic Switched Network (ESN) interworking, and Network Ring Again (NRAG) applications. The ISL service is supported in the uniform trunk hardware configuration. For call-by-call service, an ISA route must be established and identified with the ISL interface.

Configuring ISL

To configure ISL, perform the following steps:

 LD17 Configuration Record (See Procedure 16-1) Configure the D-channel for ISL use. X11 RELEASE 17 AND EARLIER

OR

- LD17 Configuration Record (See Procedure 16-2) Configure the D-channel for ISL use.
 X11 RELEASE 18 AND LATER
- 3 LD15 Customer Data Block (See Procedure 16-3) Define a PRI customer
- LD16 Route Data Block (See Procedure 16-4)
 Enable the ISL option on a per route basis, assign a D-channel for each route, and enable the ISL call-by-call service
- 5 LD14 Trunk Data Block (See Procedure 16-5)Assign a channel identification to each trunk with the ISL option.

1.

Configure the D-channel for ISL in LD17 (X11 release 17 and earlier) (Part 1 of 2)

Prompt	Response	Description
REQ	CHG	
TYPE	CFN	Configuration record
parm		
ISDN	YES, (NO)	
DCHI	1-15	DCHI port number (remove with Xnn)—only odd numbers allowed
BCHI	1-15	Back-up DCHI port number
USR		Change DCHI parameters
	PRA	D-channel for ISDN PRI only
	ISLD	D-channel for ISL in "dedicated" mode
	SHA	D-channel for ISL in "shared" mode, used for both ISDN PRI and
		Note 1: One of the above responses is mandatory and there is no default.
		Note 2: Package 147, ISDN Signaling Link, is required.
DCHL	0-159	PRI loop for DCHI, not prompted with D-channel in dedicated mode (D-channel does not require a channel on the PRI)
BCHL	0-159	PRI loop number for BCHI
OTBF	1-(16)-127	Number of output request buffers—use default (16)

i

Configure the D-channel for ISL in LD17 (X11 release 17 and earlier) (Part 2 of 2)

Prompt	Response	Description
DRAT		D-channel transmission rate
	56K	56 Kbps, default when LCMT (LD17) is AMI
	64KC	64 Kbps clear, default when LCMT (LD17) is B8S
	64KI	64 Kbps inverted HDLC (64 Kbps restricted)
		In X11 release 15 and later DRAT is not prompted when configuring ISL D-channels because the speed is controlled by the modem baud rate
PRI	loop ID	Not prompted if the D-channel is in dedicated mode (the D-channel does not require a channel on the PRI card)
ISLM	1-382	Number of ISL trunks controlled by the D-channel (no default value)
CLOK	(EXT), INT	D-channel clock type
		EXT = Source of primary clock is external to DCHI card. Normally, EXT is used with PRI/ISL.
		INT = Source of primary clock is internal to DCHI card. INT is used only during DCHI loop back testing, where one side is set to INT, the other side is set to EXT.

Configure the D-channel for ISL in LD17 (X11 release 18 and later) (Part 1 of 2)

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
USR	PRI, ISLD, SHA	D-channel mode
_ISLM	1-382	Number of ISL trunks controlled by the D-Channel
DCHL	0, 2, 4,159	PRI loop number for DCHI
OTBF	1-(32)-127	Number of output request buffers
_BPS	хххх	Baud rate for ISL D-channel on MSDL port (default 64000)
_PARM	R232,(R422) DCE, (DTE)	ISL D-channel interface and transmission mode (MSDL port only)
PRI	0-159 2-15	Additional PRI loops using the same D-channel, and interface ID
DRAT	(56K), 64KC, 64KI	D-channel transmission
IFC	aaa	Interface type: (D100), D250, ESS4, ESS5, SL1, S100
SIDE	NET, (USR)	Meridian 1 node type
RLS	хх	Release ID of the switch at the far end of the D-Channel
RCAP	aaa	Remote D-channel capabilities: MSL, NCT, ND1, ND2, RVQ
_CLOK	INT, (EXT)	Internal or external clock on ISL D-channels

ISDN PRI description and administration 553-2901-100

Configure the D-channel for ISL in LD17	' (X11 release 18 and later) (Part 2 of 2)
---	--

Prompt	Response	Description
LAPD	Yes, (No)	D-channel LAPD parameters
_T23	1-(20)-31	Interface guard timer (DCHI only)
T200	2-(3)-40	Retransmission timer
N200	1-(3)-8	Maximum number of retransmissions
N201	4-(260)	Maximum number of octets in information field
T203	2-(10)-40	Maximum time (in seconds) without frames being exchanged
_к	1-(7)	Maximum number of outstanding frames
ADAN	NEW BDCH 0-63	Add a backup D-channel
PDCH	0-63	Primary D-channel
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Physical port (odd) for D-channel, card number for MSDL
_PORT	0-3	Port number on MSDL card
BCHL	0,2,4,-159	PRI loop number for back-up D-channel
RCVP	Yes, (No)	Auto-recovery to primary D-channel option
ADAN	<cr>,****</cr>	Go on to next prompt or exit overlay
Procedure 16-3

Use LD15 to define a PRI customer (Part 1 of 2)

Prompt	Response	Description
REQ	NEW, CHG	Add or change a customer
TYPE	CDB	Customer data block
CUST	хх	Customer number (0-99)
LDN0	хххх х	Listed Directory Number 0 length This value must be set to terminate all incoming ISDN/ DID calls. Determines the number of digits to translate.
ANAT	xxxx x	Attendant billing number ANAT and ANLD combined must be 7 digits.
ANLD	XXXX X	ANI listed DN ANLD and ANAT combined must be 7 digits
AC2		Access Code 2 Enter call types (type of number) that use access code 2 This relates to ESN dialing plans. If you do not have a dialing plan, <cr> past this prompt. Multiple responses are permitted. If a call type is not entered here, it automatically defaults to access code 1.</cr>
	NPA NXX INTL SPN LOC	E.164 National E.164 Subscriber International Special number Location code Prompted only for NARS.
ISDN	Yes, (No)	Change ISDN options
_PNI	1-32700	Private Network Identifier (for CLID)
_PFX1	хххх	Prefix (area) code for International PRA (for CLID)
_PFX2	хххх	Central Office Prefix for IPRA (for CLID)
_HNPA	100-999	Home Number Plan Area code (for CLID)

i

Procedure 16-3 Use LD15 to define a PRI customer (Part 2 of 2)

Prompt	Response	Description
_HNXX	100-999	Prefix for Central Office (for CLID)
_HLOC	100-9999	Home Location Code (ESN) (for CLID)
_LSC	xxxx	Local steering code (for CLID)
_CNTP	LDN, (PDN)	Default for Calling Line ID (CLID)
_RCNT	0-(5)	Maximum inter-node hops in a network redirection call

Procedure 16-4 Use LD16 to enable the ISL option on a per route basis (Part 1 of 3)

Prompt	Response	Description
REQ	NEW	Add a PRI trunk route
TYPE	RDB	Type of data
CUST	0-99	Customer number
ROUT	0-511	Route number
тктр	ISL	Trunk route type:
ESN	Yes, (No)	ESN signalling
BRIP	Yes, (No)	ISDN BRI packet handler route
ISDN	Yes, (No)	ISDN PRI option
_MODE	ISLD	Mode of D-Channel that controls the route
_DCHI	1-15	DCHI port number Prompted if Mode = ISLD
_PNI	0-32700	Customer Private ID (unique to a customer)
_IFC	SL1	Interface machine type for this PRI route
_NCNA	(Yes), No	Network call name allowed

Procedure 16-4 Use LD16 to enable the ISL option on a per route basis (Part 2 of 3)

i

Prompt	Response	Description
_NCRD	(No), Yes	Network Call Redirection
_TRO	Yes, (No)	Trunk optimization allowed (denied) on the route
_NSF	Yes, (No)	Network Service Facility
_TIER	0-511	Incoming Tie route number
_CHTY	ABCH, (BCH)	Signaling type for B-channel digital routes
_CTYP	aaa	Call type for outgoing direct dialed Tie route
_INAC	Yes, (No)	Insert ESN access code to incoming private network call
_NCOS	(0)-99	Network Call Of Service
_CLS	aaa	Class of service restriction for tie route
_TGAR	0-31	Trunk group access restrictions
_IEC	000-999	Interexchange carrier ID
ΡΤΥΡ	aaa	Port type at far end
ICOG	IAO, ICT, OGT	Incoming and/or outgoing trunk
SIGO	aaa	Signaling arrangement
NEDC	ORG, ETH	Near end disconnect control
FEDC	ETH, FEC, JNT,(ORG)	Far end disconnect control
CPDC	Yes, (No)	Meridian 1 is the only controlling party on incoming calls
DLTN	Yes, (No)	Provide dial tone to the far-end
PSEL	TLNK, (DMDM)	T-link or DM-DM protocol selection
EQAR	Yes, (No)	Enable Equal Access on this route

Procedure 16-4 Use LD16 to enable the ISL option on a per route basis (Part 3 of 3)

Prompt	Response	Description
_GCR	(Yes), No	Use General Carrier Restriction for Equal Access calls
_NTOL	ALOW, (DENY)	Allow or deny North American toll calls (1+ calls)
_ITOL	ALOW, (DENY)	Allow or deny international toll calls (011+ calls)
_SCR	Yes, (No)	Use Selective Carrier Restriction for Equal Access calls
AUTH	Yes, (No)	Authcode to be prompted for incoming tie callers

Procedure 16-5 Respond to the following prompts in LD14

Prompt	Response	Description
REQ	NEW, CHG, MOV, OUT, END	
TYPE	TIE	Trunk type allowed
TN	loop ch	Use loop number created in LD17
RTMB	0-511 1-254	The route defined as an ISA route in LD16
CHID	1-382	Channel identifier for ISL channels (remove with Xnn)— must be coordinated with far end (no default value)

,

Feature testing

To verify the ISL, do the following:

,

- 1 Coordinate with far end personnel. Place a call over a Meridian 1 switch.
- 2 As you are dialing, the dialed DN appears on your telephone.
- 3 When the far end telephone is ringing, the CLID of your telephone is displayed on the far end telephone.
- 4 Both telephones continue to display the CLID when the far end goes off-hook.

i

Issued:	91 12 01
Status:	Standard
X11 release:	14

17-1

Integrated Trunk Access

Integrated Trunk Access (ITA) allows common digital transmission facilities (such as a T1 link) to be shared by:

- B-channel trunks (ISL/PRI)
- traditional A&B bit signaling trunks

This feature removes some trunks from PRI exclusive use, to share between PRI and traditional A & B signaling. ITA supports the following configurations.

- Meridian 1 to Meridian 1
- Meridian 1 to SL-100
- Meridian 1 to DMS-100
- Meridian 1 to DMS-250

Note 1: Channels must match for both signaling and routing.

Note 2: A separate Route Data Block (LD16) must be configured for A/B channels. While PRI is operational, create a RDB for the A/B channels. Then remove the PRI trunks in LD14. Create new trunks with the same TNs for the new route.

ISDN PRI description and administration 553-2901-100

i

Issued:	93 08 01
Status:	Standard
X11 release:	19

MWI Interworking with DMS

The Message Waiting Indication (MWI) feature allows a Message Center on either Meridian 1 or DMS-100 (Centrex) to exchange message waiting indicator information with phones serviced by either type of system on the network. Calls redirected to the Message Center can be from private or public network callers on either system. A caller served by Meridian 1 can use the Message Center on DMS. A caller served by DMS can use the Message Center (Meridian Mail) on Meridian 1.

MWI uses the non-call associated Facility messages on ISDN PRI for transporting the TCAP information.

The Meridian 1 and DMS systems can be connected directly or tandem to whichever system hosts the Message Center. When a caller from either system leaves a message on either system, the message waiting indicator is activated. When the receiver retrieves the message, the message waiting indicator is deactivated. The indicator is either a visual LED (Light Emitting Diode), icon, or an audible tone in the telephone handset.

Figure 18-1 shows a network in which Meridian 1 hosts the Message Center, which serves both Meridian 1 users and users of a DMS-100 in the same customer group.

Figure 18-2 shows a network in which DMS hosts the Message Center, which serves both Meridian 1 users and DMS users in the same or different enterprise groups.

Figure 18-1

Private corporate network with Meridian 1 hosting the Message Center

Figure 18-2 Private corporate network with DMS hosting the Message Center

ISDN PRI description and administration 553-2901-100

22.0

122.00

Operating parameters

MWI supports DMS-100 and SL-100 as tandem switches, but no non-Northern Telecom switches as tandems.

Call redirection to Meridian Mail is based on the Network Call Redirection (NCRD) features in X11 release 16. It is subject to the operating parameters of the NCRD features. Refer to the feature description for NCRD in "Network Call Redirection" on page 20-1.

MWI is based on the X11 release 16 Network Message Services-Meridian Mail (NMS-MM). Refer to the feature description for NMS in "Network Message Services" on page 21-1.

Only Meridian Mail is supported as the Message Center on Meridian 1.

Both DMS-100 (using BCS 36) and Meridian 1 can transport Facility messages for MWI and can be tandem switches. DMS-100 can tandem Facility messages from Meridian 1 to Meridian 1 for features such as Call Sender activated by Meridian 1 users of Meridian Mail. Other Facility messages that DMS-100 can tandem are for updating the voice mail softkeys of a M2317 or M3000 set.

MWI allows public and private numbers for the Original Called Number (OCN) in the Setup message during call forwarding and for the Directory Numbers (DN) in the ORIG and DEST Information Elements (IE) of the Facility message to toggle the MWI indicator. The OCN refers to the user's mailbox DN. The OCN must be unique in the Meridian Mail database. If the call forwarding DN to the Message Center is a private number, then the OCN constructed in the setup message will contain a private number. If the call forwarding DN to the Message is a public number, then the OCN constructed in the setup message will contain a public number.

If Meridian Mail is on Meridian 1:

- For Meridian 1 users, Meridian Mail provides the same functions as for the X11 release 16 NMS-MM users, if a private number is used.
- For DMS users, some Meridian Mail features may not be available.

If the Message Center is on DMS:

 If a set on Meridian 1 does not have a DID number, the call forwarding DN to the Message Center should be private. Thus, the set that cannot receive DID calls will still be able to use the Message Center services provided that the DMS Message Center supports private numbers for the mailbox DNs.

End-to-End in-band signalling is required for accessing Message Center features for a local or remote switch.

The call forwarding connection from the caller to the Message Center on another switch must be PRI/ISL or CCS#7. This is for passing the OCN from the caller's switch to the switch which hosts the Message Center for leaving voice messages and for transporting TCAP messages to toggle the MWI indicator.

Feature interactions

Multiple Customer – Serving multiple customers requires multiple Meridian Mail servers. MWI itself does not support multiple customers.

Multi Tenant – Meridian Mail Phase 8 supports Multi Tenant. Tenants from the same customer can use one or more Message Center servers. Tenants from different customers cannot use the same Meridian Mail. The customer controls tenant access to MWI using the sets that belong to the tenant.

Network Message Services, Meridian Mail – Although the Facility message for MWI uses a different TCAP format from that used for NMS, the X11 release 16 functions continue to operate. X11 release 19 Meridian 1 converts the message format when exchanging MWI Facility messages with earlier releases.

DCH Error Monitoring – The X11 release 17 DCH Error Monitoring monitors ISDN messages on a per feature basis. NMS is one of the features monitored through Service Identifier H7C. X11 release 19 supports a new Service Identifier for NMS, H.70, which DMS also supports. DCH Error Monitoring will print out the Facility messages for either Service Identifier H.7C or H.70. If the MWI RCAP for the D channel is added or deleted in LD17, DCH Error Monitoring will not work properly for the NMS feature until the D channel message monitoring is disabled and then enabled. *Trunk Optimization Before Answer* — There is no Trunk Optimization when the call is redirected to DMS, or answered by Meridian Mail. This applies to applications such as Auto Attendant.

ISDN/AP Link Recovery – ISDN/AP Link Recovery redirects the calls in the ACD queue to the ACD Night Forward DN when the ISDN/AP link goes down. This recovery is also available for calls in the Meridian Mail ACD queue on Meridian 1 when the AML link goes down.

Feature packaging

MWI Interworking depends on X11 release 19. See *X11 features and services* (553-3001-305) for X11 release software packages and their dependencies.

The package requirements for MWI are different for each node, as described next.

The originating node has Message Center users. Table 18-1 shows the originating node package requirements.

Package	Name of package	Mnemonic
219	Message Waiting Indication (if connected to DMS/BCS36 for interworking)	MWI
10	End to End Signalling	EES
40*	Basic ACD	BACD
45*	ACD package A	ACDA
46	Message Center	MWC
145	ISDN Signalling	ISDN
146 or	ISDN Primary Rate Access	PRI
147	ISDN Signalling Link (for Meridian 1 to Meridian 1)	ISL
148 /	ISDN Network Service	NTWK
175	Network Message Service	NMS
* This package is required only if ACD DN is used as the Message Center DN.		

 Table 18-1

 Package requirements for an MWI originating node

ISDN PRI description and administration 553-2901-100

The host node holds the Message Center. Table 18-2 shows the host node package requirements.

Table 18-2		
Packages required for	or an MWI	host node

Package	Name of package	Mnemonic
	X11 release 19 or above	
219	Message Waiting Indication (if connected to DMS/BCS36 for interworking)	MWI
10	End to End Signalling	EES
35	Integrated Message Service	IMS
40	Basic ACD	BACD
45	ACD package A	ACDA
46	Message Center	MWC
77	Command Status Link	CSL
145	ISDN Signalling	ISDN
146	ISDN Primary Rate Access	PRI
147	ISDN Signalling Link (for Meridian 1 to Meridian 1)	ISL
148	ISDN Network Service	NTWK
175	Network Message Service	NMS

i

The tandem node does not have Message Center users. Table 18-3 shows the tandem node package requirements

Package	Name of Package	Mnemonic
219	Message Waiting Indication (if connected to DMS/BCS36 for interworking)	MWI
145	ISDN Signalling	ISDN
146 or	ISDN Primary Rate Access	PRI
147	ISDN Signalling Link (for Meridian 1 to Meridian 1)	
148	ISDN Network Service	

Table 18-3Package requirements for an MWI tandem node

Feature implementation

Figure 18-3 shows the configuration requirements for MWI Interworking.

Procedure 18-1 Use LD17 to configure remote D-channel capability

Prompt	Response	Description
REQ	CHG	Change system data
TYPE	CFN	Configuration record
RLS	19, 36	Release ID of the switch at the far end of the D-channel interface. 19 is Meridian 1, 36 is DMS
RCAP	MWI XMWI	Add remote D-channel capabilities for MWI Remove remote D-channel capabilities for MWI

Figure 18-3 Configuration requirements for MWI Interworking

You can use one of two methods for configuring Meridian Mail users:

1 Use Procedure 18-3 to define an ACD DN as the Message Center DN.

Procedure 18-2 Use LD23 to configure a Message Center DN

Prompt	Response	Description
REQ	NEW, CHG	Add or change system data
TYPE	ACD	Automatic call distribution
CUST	xx	Customer number (0-99)
ACDN	хххх	ACD Directory Number
MWC	YES	ACD DN message center DN
NCFW	xx xx	Message Center DN:
		 a public DN (10 digits prefixed by an ESN access code)
		 if UDP is used, an ESN number prefixed by an ESN access code
		a CDP number
		Note: Do not define an agent for this ACD group to allow for the automatic call redirection to the ACD Night Call Forward DN where the Message Center DN is defined.

Use LD10 or LD11 to assign the user's DN for Call Forward No Answer, Call Forward Busy, or Hunt, to the ACD DN.

2 Use LD10 or LD11 to assign the user's DN for Call Forward No Answer, Call Forward Busy, or Hunt, to the Message Center DN.

The Message Center DN can be one of the following:

- a public DN (10 digits prefixed by an ESN access code)
- if UDP is used, an ESN number prefixed by an ESN access code
- a CDP number

Procedure 18-3 Use LD22 to print the configuration record

Prompt	Response	Description
REQ	PRT	Print system data
TYPE	CFN	Configuration record
RLS	xx	Release ID of the switch at the far end of the D-channel
RCAP	MWI	Remote D-channel capabilities
Note: The mnemonic "WMI" is printed for overlay 22.		

Feature operation

MWI performs two basic operations: 1) Activate the MWI at the caller's set; 2) Deactivate the MWI at the subscriber's telephone. Table 18-4 shows the sequence that activates the MWI. Table 18-5 shows the sequence that deactivates the MWI.

Table 18-4 When MWI is activated

Sequence	Caller	Receiver	Message Center
1	Calls receiver	Receiver not available	
2	Leaves a message		Records caller's message
3	Hangs up		Activates MWI on receiver's set

ISDN PRI description and administration 553-2901-100

Table 18-5 When MWI is deactivated

Sequence	Receiver	Message Center
1	Notices MWI	
2	Calls the Message Center	Plays messages
3	Clears the mailbox	
4	Hangs up	Deactivates MWI on receiver's set

Some of the failures that can occur and how MWI handles them are:

- AML/CSL link failure

If the AML/CSL link fails between Meridian mail and its host Meridian 1, calls are redirected to the ACD Night Call Forward DN for the ACD queue involved.

- D channel failure

If the D channel is out of service, the Facility message is lost. For Meridian Mail, a MWI CSL message is sent to the Meridian Mail server.

- Inconsistent data base

If the Facility message that toggles MWI cannot be delivered to the caller's set because the DN is invalid or MWI is not supported in the remote switch, a MWI CSL message is sent to Meridian Mail.

ISDN PRI description and administration 553-2901-100

ź

and the second second

Issued:	93 10 31
Status:	Standard
X11 release:	14

Network Call Party Name Display/ Network Name Delivery

Network Call Party Name Display (NCPND) provides a network-wide visual display of names and telephone numbers to both parties of a call. For telephones equipped with an alphanumeric display, NCPND provides the display of the calling party's name on the terminating telephone and the called party's name on the calling telephone. The name and number display last for the duration of the call. See Figure 19-1.

The sending of the names over the private network is an option set up on a per route basis. The name is provided by Calling Party Name Display (CPND) configured in each switch. For call redirections, a set option provides a display of the redirecting name instead of the calling name.

The following telephones and attendant consoles are supported:

- M2317 digital telephones
- M3000 Touchphone
- all Meridian Modular Telephone with digit display
- M1250 and M2250 attendant console

Network Name Delivery (NND) is the method used to send the names and numbers across the network. There are two NND methods available: ND1 and ND2.

of Flow

Figure 19-1 Network Call Party Name Display

ï

Operating parameters Network Name Delivery method 1

Network Name Delivery method 1 (ND1) is available in X11 release 14 and later. The following list describes ND1 operating parameters.

- Meridian 1 to Meridian 1 connections only are supported.
- For X11 release 14, ND1 supports name display for redirected calls by Call Forward All Calls.
- With X11 release 16, ND1 supports the name display for call redirection by Call Forward No Answer, Hunt and Call Pickup if the redirection is done across the network. See "Network Call Redirection" for configuration.
- If the called party is at a remote switch, the called party name is displayed on the caller's display only after the call is answered unless there was a redirection. (See the chapter on Network Call Redirection for a discussion of call redirection with X11 release 16 and later hardware.)
- A CPND enhancement allows the display of the redirecting name on the terminating telephone instead of the calling name by a service change option only if the first redirecting party is on the terminating switch.
- Prior to X11 release 16, ND1 supports the name display for call transfer only for a local transfer over PRI. In that case, the name is displayed on the terminating telephone.
- The maximum number of characters in a displayed name is 24.

Network Name Delivery method 2

Network Name Delivery method 2 (ND2) is available in X11 release 17 and later. ND2 provides network-wide name display in compliance with the Meridian Customer Defined Networking (MCDN) protocol. It allows interworking among Meridian 1s and a DMS-100/250 Central Office.

The following list describes the ND2 operating parameters.

- All DMS-100s must be equipped with BCS32 or later software and all Meridian 1s with a direct connection to the DMS-100 must be quipped with X11 release 17 or later.
- For Meridian 1 to Meridian 1, the maximum number of characters in a displayed name is 24. When connecting to a Central Office, 15 characters only are supported. Names exceeding this length are truncated.
- ND2 supports name delivery for Call Pickup, Call Transfer, Hunt and Call Forward All Calls/No Answer/Busy.
- A CPND enhancement allows the display of the redirecting name on the terminating telephone instead of the calling name by a service change option only if the first redirecting party is on the terminating switch.
- In all cases when the name is available, the called party name is displayed on the caller's display during the ringing phase. This is an enhancement over ND1 which displays names on connect.
- ND2 enhancements are not supported on connections to Meridian 1 using ND1. ND1 is applicable for X11 release 14 through 16. ND2 is recommended for X11 release 17 and up. The far ends must match.

Feature interactions

Refer to Calling Party Name Display in X11 features and services (553-3001-305) for CPND feature interactions.

Feature packaging

NCPND requires these packages.

95	Calling Party Name Display	CPND
145	ISDN Signalling	ISDN
146	ISDN Primary Rate Interface Dependencies: 75, 145, 19 [CLID]	PRI

Feature implementation

LD95 – Configure the Calling Party Name Display feature

Refer to Calling Party Name Display in *X11 features and services* (553-3001-305) to implement CPND.

LD16 - Enable NCPND for each required trunk route

NCNA	Yes, (No)	Allow or deny Network Call Name Display.
		To prevent hit-and-miss name display or the dropping of calls in networks whose nodes have BCSS31 or earlier or X11 release 16 or earlier, enter No. For example, where a X11 re- lease 17 Meridian 1 node has an adjacent DMS node with BCS31 or earlier, enter No.

LD17 – Indicate the remote capability (which Network Name Delivery protocol is supported by the remote node/switch on this DCH interface)

RCAP	ND1/ND2	Network Name Delivery method 1 (ND1) Network Name Delivery method 2 (ND2) (X11 release 17 and later with BCS 32 and later)

ISDN PRI description and administration 553-2901-100

i

Issued:	93 10 31
Status:	Standard
X11 release:	14

Network Call Redirection

Network Call Redirection (NCRD) provides Network Call Forward No Answer (NCFNA) and Network Call Forward All Calls (NCFAC) over an ISDN PRI or ISL network. Calls can also be transferred over the network, but the Calling Line Identification (CLID) display does not reflect the reason for the transfer.

With X11 release 16 and later software, Network Call Redirection (NCRD) incorporates these features:

	Network Call Forward Busy	NCFB
_	Network Hunt	NHUNT
_	Network Transfer	NXFER
-	Call Pick Up	PKUP
_	Call Forward by Call Type	CFCT

Network Call Redirection (NCRD) is based on standard Call Redirection which permits call redirection within a Meridian 1. NCRD redirects calls through more than one PBX over ISDN. The Calling Line ID (CLID) shows a name and network DN in place of the local DN.

On a system level, NCRD supports Meridian 1 to Meridian 1, SL-100, and DMS-100 connections. Private numbering plans, Uniform Dialing Plans (UDPs) in ESN and the Coordinated Dialing Plan (CDP) are supported by both network configurations.

If the calling party's numbering plan is any other type, then Call Forward by Call Type (CFCT) calls use Route Class Marks (RCLS) to determine call type—internal or external. The features interfacing with Network services also support expanded DNs.

Some redirected calls can pass through or tandem one switch. If a call is redirected several times, only one CFNA (or NCFNA) is allowed, unless the forwarding telephone has Second Level CFNA defined.

The following telephone types are supported by this feature:

- Meridian 1 Digit Display telephones
- 500/2500 telephones (for redirection only without display)
- Attendant telephones
- M2000 and M3000 digital telephones
- M2317 Digital telephones
- M2008, M2016S, M2216ACD, M2616 when equipped with displays

Note: A redirected call over PRI that ends on a busy telephone cannot activate the Network Ring Again (NRAG) feature.

NCRD terminology

There are four types of parties in a call redirection scenario:

- the originating party
- the originally dialed DN
- the redirecting party
- the terminating party

In a simple call redirection, a call is redirected once. When A calls B, and B redirects the call to C, the following parties are identified.

A is the originating party B is the originally called party and the redirecting party C is the terminating party

With further call redirection, the party's terminology changes:

A calls B	A is the originating party B is the originally dialed DN
B redirects the call to C	C is the redirecting party
C redirects the call to D	D is the terminating party

Originating party notification

An originating party with CLID services can display a reason for the call redirection. Figure 20-1 shows the format on a Digit Display for the originating party on an internal redirection.

Figure 20-1 Display format for NCRD: Originating party with CLID

Originally Terminating	Reason for	Terminating
called party DN party DN	redirection	party name

The "Reason for redirection" field shows why the call is redirected. The mnemonic displayed is assigned by the customer in LD95. See the chapter on configuring PRI for the procedure to program Network Call Redirection (NCRD). For a complete description of the prompts and responses available, see the *X11 input/output guide* (553-3001-400).

In addition, NCRD uses Q.931 notification messages to indicate that a transfer has occurred. An extra message helps update telephone and telephone displays to show the reason for call redirection. Also, the displays for Attendant extended calls are complete to all call parties.

Terminating party notification

The Digit Display for a terminating party with CLID allowed shows the reason for call redirection. Figure 20-2 is an example of the format for a terminating party on an internal call redirection.

Figure 20-2

Display format for NCRD: Terminating party with CLID

Calling Line ID	Originally	Reason for	Calling party
	called number	redirection	name

If the originating party information is not available, the redirecting party DN is displayed instead.

Tones on redirection

Tones returned to the originating party are determined by the reason for call redirection. Table 20-1 lists which call redirections return a tone and which tone they return.

All the items in this table relate to Network Services only. Most of these features have similar or exact applications in the regular PBX network, without ISDN functionality.

A redirection counter is transmitted with the call forwarding information. When the count meets the redirection counter maximum, there are two possible scenarios:

- Network Call Forward All Calls (NCFAC) If all call redirections are due to NCFAC, then the calling party receives overflow tone.
- Network Call Forward No Answer (NCFNA)
 If one of the redirections is due to NCFNA, then an attempt is made to re-ring the telephone that initiated the NCFNA.

and administration 553-2901-100

description and administration 553-2901-100

FAC intranode

or

NCFNA redirection

The following occurs in a NCFNA redirection scenario. See Figure 20-8.

- Station A generates an internode call to Station B which has Call Forwarding No Answer and forwards to Station C.
- The call is forwarded to Station C when the ringing (or alerting) phase times out.
- The terminating node sends a message to the originating node that contains the redirection number (Station C) and the redirection reason (NCFNA).
- When Station C answers the call, the terminating node generates a message to the originating node indicating this response.

Note: Sets A, B, and C must have a display in order to see a reason for redirection, or a name or Digit Display.

Figure 20-8 NCFNA

Tandem NCFNA redirection

The following occurs in tandem NCFNA redirection. See Figure 20-9.

- Station A generates an internode call to Station B which has Call Forwarding No Answer and forwards to Station C.
- The call is transferred to Station C when the ringing (alerting) phase times out.
- The message sent to the terminating node contains the terminating party number (Station C), calling number (Station A), original called number (Station B), original reason for redirection (NCFNA), and the redirection counter with a value of 1.
- The terminating node sends a message to the tandem node which relays the message to the originating node with the redirection number (Station C) and the reason for redirection.

Note: Sets A, B, and C must have a display in order to see a reason for redirection, or a name or Digit Display.

ISDN PRI description and administration 553-2901-100

Figure 20-9 Tandem NCFNA

Network Call Forward Busy

See Figures 20-10 through 20-13.

Figure 20-10 Remote NCFB

Figure 20-11 Internode NCFB

Figure 20-12 NCFB through a tandem node

ISDN PRI description and administration 553-2901-100

Figure 20-13 NCFB through a tadem node

ISDN PRI description and administration 553-2901-100

Network Hunt

See Figures 20-15 through 20-17.

Figure 20-14 Remote NHNT

Figure 20-15 Internode Hunting

1.

Figure 20-16 NHNT through a tandem node

ISDN PRI description and administration 553-2901-100

Figure 20-17 NHNT through a tandem node

Network Transfer

The originally dialed party can transfer a call over ISDN using Network Transfer (NXFER). As with regular call transfers, the incoming call is automatically placed on Hold while the transfer is being set-up. When the redirection is complete, the originally dialed telephone is automatically released. Refer to the figures in this chapter for examples of different Network Call Transfer (NXFER) scenarios.

Internal call redirections, where all parties are local on the same switch, do not show a reason for redirection on the Digit Display.

This function is not associated with Network Call Transfer, an ESN feature that operates only on analog or digital trunks.

See Figures 20-18 through 20-21.

Figure 20-18 NXFER internode call

Figure 20-19 NXFER remote node call

Figure 20-20 NXFER tandem node call

ISDN PRI description and administration 553-2901-100

į

Figure 20-21 NXFER tandem node remote call

ISDN PRI description and administration 553-2901-100

Network Call Pickup

Figure 20-22 Network Call Pick Up

والمتعادية والجوار والم

1

Feature implementation

The following procedures define the step-by-step procedures for the administration of these features within an ISDN environment.

Incoming calls can be redirected only if the trunk to trunk connection is already allowed. Refer to the X11 input/output guide (553-3001-400). These networking features are based on the regular features they are named after. For example NCFB is based on Call Forward Busy, and NCFNA is based on Call Forward No Answer. All the same operating parameters apply, refer to the X11 features and services (553-3001-305).

Follow the steps described here to implement features for Network Call Redirection:

- Network Call Forward Busy (NCFB)
- Network Hunting (NHNT)
- Network Transfer (NXFER)

To configure NCFNA, NHNT, NCFB, NXFER, use the following steps:

- 1 LD15 Configuration Record (Procedure 20-11) Forward calls to a forwarding DN.
- 2 LD16 Route Data Block (Procedure 20-2) Allow Network Call Redirection.
- 3 LD95 Call Party Name Display (Procedure 20-3) Display the reason calls are redirected.
- 4 LD95 Call Party Name Display (Procedure 20-4) Give each DN a name.
- 5 LD10 Single line telephone sets (Procedure 20-5) Enable the appropriate feature in the data block.
- 6 LD11 Multi-line telephone sets (Procedure 20-6) Enable the appropriate feature in the data block.

Note: Responses in parentheses are default values throughout the procedure.

Procedure 20-1 Respond to the following prompts in LD15

Prompt	Response	Description
REQ	CHG	
TYPE	CDB	Customer data block
CUST	0-99	Customer number
FNAD	FDN	Call forward no answer DID calls—Flexible CFNA DN
FNAT	FDN	Treatment for External CFNA calls (non-DID—when FDN is selected, CFCT handles the call
FNAL	FDN	Requests treatment for CFNA—when FDN is selected, DID calls are forwarded
RCNT	0-(5)	Maximum number of inter-node hops allowed in a network redirection call. This field must be set to greater than 0 for a network redirection to take place.
		Note: The RCNT prompt is only checked for redirected calls when the ISDN prompt is yes in LD15.

1

Prompt	Response	Description	
REQ	CHG		
TYPE	RDB	Route data block	
CUST	0-99	Customer number	
ROUT	0-511	Route number	
•			
srvc			
NCNA	YES, (NO)	Network Call Name is (is not) allowed	
NCRD	YES, (NO)	Network Call Redirection. Allows network call redirection messages to be sent (or blocks messages if NCRD= NO)	
		Note: Network Call Redirection can occur without answering YES to the NCRD prompt. This prompt only controls the sending of Network Call Redirection messages, not the actual redirection of the call. The message supplied when NCRD = yes provides the information for the CLID display. When NCRD is NO, the call is redirected without the CLID redirection information. It is appropriate to set NCRD = no when your network interfaces with a network that is equipped with an earlier version of ISDN than X11 release 14.	
TRO	YES, (NO)	Trunk Optimization	
		TRO economizes trunk use throughout the network as part of the NCRD feature.	

,

Procedure 20-2 Respond to the following prompts in LD16

and the second second

Prompt	Response	Description
REQ	CHG	
TYPE	CPND	Call Party Name Display data block
CUST	0-99	Customer number
ROUT	0-511	Route number
des		
RESN	YES	Allow display of reason for redirecting calls
CFWD	xxxx, (F)	Display mnemonic for (Network) Call Forward All Calls. Default is "F." Enter the mnemonic that represents NCFAC on a set's CLID display.
CFNA	xxxx, (N)	Mnemonic for (Network) Call Forward No Answer display. Enter the mnemonic that represents NCFNA on a set's CLID display. Default is "N."
HUNT	xxxx, (B)	Mnemonic for Network Hunting display
PKUP	xxxx, (P)	Mnemonic to allow Call Pickup display
XFER	xxxx, (T)	Mnemonic for Call Transfer display

Procedure 20-3 Respond to the following prompts in LD95

Procedure 20-4 Respond to the following prompts in LD95

ï

Prompt	Response	Description
REQ	CHG	
TYPE	NAME	Call Party Name Display name entry
CUST	0-99	Customer number
DIG	XXX XX	An existing Dial Intercom Group number (0-253) and member number (0-99)
NAME	aaaa	CPND name using ASCII characters. The DIG prompt is reprompted. Enter <cr> to get the DN prompt.</cr>
DN	хххх	DN of eligible type.

Procedure 20-5 Respond to the following prompts in LD10

Prompt	Response	Description
REQ	CHG	
TYPE	500	Enter set type
HUNT	xxxx	Hunt DN for internal calls
FTR	EFD xxx	External Flexible call forward DN
		Only allowed if LD15 is properly configured: FNAD = FDN FNAL = FDN FNAT = FDN
		If the DNXP package is equipped, up to 7 digits are allowed; otherwise, only 4 digits can be entered. Accepted only if CLS is MWA or FNA.
	EHT xxxx	External Hunt DN
		Only allowed if CLS = CFTA
		Same digits defined as above
	FDN xxxxxxx	Flexible Call Forward No Answer DN (cannot be an LDN).
		Same digits defined as above

Procedure 20-6 Respond to the following prompts in LD11

i

Prompt	Response	Description
REQ	CHG	
TYPE	хххх	Enter set type as appropriate
FDN	xx	Flexible CFNA DN where xx is the MCDN. The FDN value should include AC1/AC2 when applicable (up to 13 digits).
EFD	хххх	Network CFNA DN for External calls
HUNT	хххх	Network Hunt DN for calls with CLS = CFTD
EHT	хххх	Network Hunt DN for External calls.

Feature testing

To verify Network Call Redirection (NCRD), do the following:

- 1 Place a call from the Meridian 1 system over a PRI trunk to a digit display telephone at a far end facility. This far end facility must be on a different node.
- 2 To make sure that network redirection takes place, the first dialed number must be in an NCFNA or NCFAC condition.
- 3 Verify that the call is terminated correctly.

Note: In order to do steps 4 and 5, both ends must be equipped with X11 release 15 or later ISDN software.

- 4 Verify that the display of the calling party contains the following:
 - Originally called party DN (or redirecting DN)
 - Connected Party DN
 - Reason for redirection
 - Connected Party Name
- 5 Verify that the display of the connected party contains the following information:
 - Calling party DN
 - Originally called party DN (or redirecting DN)
 - Reason for redirection
 - Calling Party Name
- 6 Verify that the call can be released properly from either end.
- 7 Then have the far end place a call that is redirected. Then repeat steps 4 through 6.

Issued:	92 12 31
Status:	Standard
X11 release:	15

Network Message Services

Network Message Services (NMS) uses ISDN signaling capabilities to provide messaging services across an ISDN network. Meridian 1 systems interconnected with PRI or ISL can extend supported message services to all users within that network on a customer basis from a single, central location. Access to NMS and feature activation from the messaging system is transparent to the end user.

X11 release 15

For X11 release 15 and later, Network Message Services supports the Message Center (MC) feature. NMS-MC supports centralized manual message centers that use attendant consoles, Meridian 1 telephones, or ACD telephones as answering positions.

X11 release 16

A second distinct application, NMS-Meridian Mail (NMS-MM), is introduced to provide end-user and calling party access to centralized Meridian Mail services across the network.

NMS functions common to both applications are described here and details specific to each are described later in this chapter. Differences between Message Center and Meridian Mail functions are described under their headings below.

Within NMS operations, there are direct message calls and indirect message calls:

- Direct calls are initiated by the user accessing the Message Center to receive messages. Access is allowed by dialing the message facility directly or using the Message Waiting Key (MWK).
- Indirect calls occur when a redirection feature directs the call to a Message Center so the caller can leave a message.

An NMS call has two components: basic PRI call signaling and transaction signaling. The PRI portion of the call is supported by ISDN PRI or ISL and Network Call Redirection (NCRD) – subject to the requirements for PRI calls and the NCRD feature. NMS always uses non-call-associated, connectionless Transaction Signaling messages to turn on/off user set Message Waiting Indication (MWI) and to transport call information for certain Meridian Mail features, including Call Sender (that is, the transport of connectionless signaling information across the ISDN network).

There are three types of network nodes supporting NMS:

- originating node. For direct calls, the originating node is the PBX where the calling party resides. For indirect calls, the originating node is the node where the originally dialed party resides.
- tandem node. This switch can pass transaction signaling messages on to the next PBX. Stations on a tandem node do not have access to Network Message Services functionality.
- terminating node. This is the PBX where the Message Center or Meridian Mail server resides, and where the call terminates.

NMS supports Coordinated Dialing Plans (CDPs) and Uniform Dialing Plans (UDPs). All nodes must conform uniformly to the adopted dialing plan. NMS does not support mixed CDP-UDP across a network and limits CDP support to Distant Steering Codes.

Table 21-1 summarizes the packaging requirements for NMS.

Additional documentation

For network applications, you should have the Northern Telecom Publications (NTPs) supporting ISDN listed in the front of this document. There are additional sets of NTPs supporting the ACD D package, and ACD-MAX applications. Consult with your Northern Telecom representative for a complete list of supporting NTPs.

For NMS applications that use ACD, refer to these NTPs.

Automatic Call Distribution basic features description (553-2671-100)

Automatic Call Distribution advanced features description (553-2671-101)

Automatic Call Distribution ACD management reports (553-2671-102)

Automatic Call Distribution ACD load management commands (553-2671-103)

Network ACD description and operation (553-3671-120)

Network Message Services—Message Center

Network Message Services-Message Center (NMS-MC) allows a caller transparent access to a centralized message center over an ISDN PRI/ISL network.

These Message Center configurations are supported:

- ACD Message Center
- DN Message Center
- Attendant Message Center

For these types of Message Centers, the Message Indication Key (MIK) on a message taker's set is used to turn on Message Waiting Indication at a user telephone. The Message Cancellation Key (MCK) is used to turn off Message Waiting Indication.

The NMS-MC supports direct and indirect NMS-MC access across ISDN. Direct access is initiated by dialing the Message Center DN or pressing the Message Waiting Key (MWK). Indirect access occurs when a call is presented to the NMS-MC by any of the call redirection features supported by Network Call Redirection (NCRD) including

- Network Call Forward All Calls
- Network Call Forward No Answer.
- Network Call Forward Busy
- Network Hunting

See the NCRD section in this document for further details.

Network Message Services—Meridian Mail

NMS-MM provides transparent access to the Meridian Mail system across the network. NMS-MM operates only between system machines supported by a single Meridian Mail server facility. Users on remote nodes configured as part of the NMS-MM server base have access to all the Meridian Mail features available on the local switch.

See the NCRD chapter when you consider the redirections which apply to your particular environment. Since Message Center support is on a customerby-customer basis, configure your network accordingly. See *Message Center description and operation* (553-2691-100). In Meridian Mail applications, different network PBXs (nodes) must be configured with the same Meridian Mail server for proper messaging support. See the Meridian Mail suite of NTPs.

Direct calls for NMS-MM are initiated by dialing the message facility directly or pressing MWK on a properly programmed telephone. Functionality mimics current operations, including Auto-log in with a user's password. See the appropriate NTP listed above for description of call functions.

Indirect calls are presented to the Meridian Mail server from call redirection services. NMS-MM relies on Network Call Redirection (NCRD) to provide the originally dialed and calling party numbers to the Meridian Mail server for message processing. NMS-MM supports Off-net Access through direct dialing.

Operating parameters

The following list describes the NMS operating parameters:

- PRI or ISL is needed for both direct and indirect Message Center calls.
- The NMS DN must be unique and still be able to be reached by means of PRI or ISL from all NMS users in the network, and vice versa.
- NMS supports Meridian 1 to Meridian 1 connections only.
- The local NMS-MM DN defined in each node must also be configured in the Meridian Mail server data base, in the VSDN table.
- In-band End-to-End Signaling (EES) is required for NMS-MM at terminating and originating nodes.
- NMS-MM requires X11 release 16 NCRD interworking to provide full service.
- NMS-MM requires Meridian Hospitality Voice Services package to provide link recovery enhancements for Meridian Link ISDN/AP.
- NMS-MM does not support international dialing.
- Only one Message Center DN can be defined for a telephone. Multiple Message Center types are not supported.
- The NMS does not support Trunk Steering Codes (TSCs).

Software – For complete functionality each node requires X11 release 16 or later software.

Feature interactions

Listed here are differences in networking applications which may impact Network Message Services operations.

Network Call Redirection (NCRD) – Indirect access to the NMS-Meridian Mail (NMS-MM) application is based on the NCRD package which is broken down into the following areas:

 Call Forward All Calls and Call Forward No Answer (X11 release 14) and Call Forward Busy, Network Call Transfer, and Network Hunting (X11 release 16) provide the base for NMS indirect access.

- Attendant Extended Call presents the same information to Meridian Mail as Network Call Transfer except that the DN Update message is sent to the NMS-MM when the attendant releases from the call. The connected party number is updated only when the attendant is released.
- NMS does not support incoming calls from CO Loop Start trunks because X11 release 14 NCRD does not redirect these calls. Calls that come into the switch from CO Loop Start trunk cannot be redirected to another trunk by means of attendant extension or call redirection; these calls are blocked when redirection is activated.

Barge-in Attendant – The attendant can barge-in a NMS-MM call at the terminating PBX. During barge-in, the user cannot use features that require switch effort, such as the Call Sender feature.

Trunks – When a call is presented to the NMS-MM by means of a non-PRI or ISL trunk, the call is treated as an external call even if it is an on-net call. The external greeting is applied and the message is announced as from an external number.

Meridian Hospitality Voice Services – NMS-MM requires the Meridian Hospitality Voice Services (MHVS) package in X11 release 16 to provide Meridian Link ISDN/AP protocol recovery treatment for link applications. All calls to the ACD Night Call Forward (NCFW) DN are redirected to the Meridian Mail server when the ISDN/AP link fails. Call treatment in NMS-MM is identical to the NCFW treatment. See the appropriate ACD NTP listed in this chapter.

ISDN requires that the network be equipped with either Coordinated Dialing Plan (CDP) or a Uniform Dialing Plan (UDP) throughout, but it does not support a mixture of both.

NMS does not support the following packages and options.

Packet Transport Equipment Meridian Mail (MP) Multiple Message Center interworking

Feature packaging

Table 21-1 shows the packages NMS-Message Center requires per node. Table 21-2 shows the package requirements per node for NMS-Message Mail. See *X11 features and services* (553-3001-305) for X11 release software packages and their dependencies.

Name	Mnem.	No.	Orig.	Tandem	Term.
End-to-End Signaling	EES	10	Х		Х
Basic Automatic Call Distribution *	BACD	40	x		х
Automatic Call Distribution Package A *	ACDA	45	х		х
Message Center	MWC	46	х		Х
ISDN Signaling	ISDN	145	х	х	Х
ISDN Primary Rate Access	PRA	146	х	х	х
OR					
ISDN Signaling Link	ISL	147	х	х	х
Advanced Network Services	NTWK	148	х	х	Х
Network Message Services	NMS	175	х		х
* These packages may not be required for your	particular Me	essage Cer	nter applicat	ion.	

Table 21-1 Required feature packages for each NMS-Message Center node

Table 21-2

Required feature packages for each NMS-Meridian Mail node

Name	Mnem.	No.	Orig.	Tandem	Term.
End-to-End Signaling	EES	10	x		Х
Integrated Mcssage Service	IMS	3 5			х
Basic Automatic Call Distribution *	BACD	40	х		Х
Automatic Call Distribution Package A *	ACDA	45	х		X
Message Center	MWC	46	х		Х
Meridian Link ISDN/AP	IAP3P	77			х
IISDN Signaling	ISDN	145	х	х	х
ISDN Primary Rate Access	PRA	146	x	х	х
OR					
ISDN Signaling Link	ISL	147	х	x	х
Advanced Network Services	NTWK	148	x	х	х
Network Message Services	NMS	175	х		х
* These packages may not be required for your particular Message Center application					

Feature implementation

For a description of all the prompts and responses for system software, see *X11 input/output guide* (553-3001-400).

Package 175, NMC, introduced in X11 release 15, was renamed NMS in X11 release 16 to cover both Meridian Mail and Message Center.

NMS operates only between Meridian 1 systems. NMS-MCs are configured on a customer-by-customer basis. NMS-MM operates only between machines supported by the same Meridian Mail server facility. *Note:* In X11 release 15 and later, Network Message Services require ESN access code insertion. The configuration of ESN access code insertion is shown in Procedure 21-3 in this chapter. Also see "Electronic Switched Network interworking" on page 14-1.

To configure NMS, use Procedures 21-1 through 21-7. refer also to Table 21-3 for NMS DN information.

Note: All these procedures apply to both NMS-MM and NMS-MC except for Procedure 21-5 which is Meridian Mail only.

Procedure 21-1 Use LD17 to define the software release of each switch at the far end of each D-channel in the NMS network (X11 release 17 and earlier)

Prompt	Response	Description
REQ	NEW, CHG	
TYPE	CFN	Configuration database
ISDN	YES	
DCHI	1-15	D-channel to the far end
RLS	хх	Enter the X11 release of the far end. The minimum release for NMS-MC is 15, and for NMS-MM is 16.

Procedure 21-2

Use LD17 to define the software release of each switch at the far end of each D-channel in the NMS network (X11 release 18 and later)

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	CHG DCH 0-63	Change D-channel information
RLS	xx	Enter the X11 release of the far end. The minimum release for NMS-MC is 15, and for NMS-MM is 16.

Procedure 21-3 Use LD15 to enable Message Services

Prompt	Response	Description
REQ	CHG	
TYPE	CDB	Customer Data Block
ОРТ	MCI	Message Center is included. This prompt must be set to include the message center feature for both the user's telephone and the message center.

Procedure 21-4 Create an ISDN transport signaling database in LD16

Prompt	Response	Description
REQ	NEW, CHG	
TYPE	RDB	Route Data Block
CUST	хх	Customer number or range of customer numbers
ROUT		Route number
ISDN	YES	ISDN option
INAC	(NO),YES	Insert Access Code. INAC = YES is required for ISDN network features. This prompt only appears if the route type is a TIE trunk.
PNI	1-32700	Customer private identifier—unique to a customer. This is the private identifier of the target switch and must be the same number used for PNI in LD15 for remote customer. Matches PNI in LD16 at remote to PNI in LD15 at local site.
NCRD	YES	Network Call Redirection
TRO	YES	Trunk Route Optimization allowed (denied) on the route.

,

Procedure 21-5 Use LD23 to define Meridian Mail ACD group in the remote switch (NMS-MM only)

Prompt	Response	Description
REQ	aaa	Action request: NEW, CHG, PRT, END
TYPE	ACD	Automatic Call Distribution data block
CUST	хх	Customer number, 0-99
ACDN	xxxxxxx	The Meridian Mail DN
MWC	YES	Message Center services
MAXP	1	Maximum number of agent positions
NCFW	XX	Night Call Forward DN, where xx is the NMS-DN. If network DN, include AC1/AC2.

Note: Do not define any ACD agents for this ACD group to allow automatic redirection to the ACD Night Call Forward DN (NFCW).

Procedure 21-6 Use LD11 to define Network Message Services DN for each telephone

1.

Prompt	Response	Description
REQ	CHG	
FDN	xx	Flexible Call Forward No Answer NMS-DN. See Note below.
EFD	xx	Call Forward by Call Type - External No Answer to NMS-DN.
EHT	хx	Call Forward by Call Type - External Hunt to NMS-DN
HUNT	x	Hunt to NMS-DN
KEY	xx MWK xx	Message Waiting Key, where xx i s the NMS-DN. See Note below.
Note: The NMS-DN may be the local or the network ACD DN.		

Procedure 21-7 Use LD10 to define Network Message Services DN for each telephone

Prompt	Response	Description
REQ	CHG	
FTR	FDN xx	Flexible call forward no answer NMS-DN, xx is the NMS-DN. The NMS-DN may be the local or the network DN. If network DN, include AC1/AC2.

Table 21-3 Network Message Services DN (applies to both NMS-MC and NMS-MM)

Call type	Network Message Services DN (NMS-DN)	Number of digits
Private call using Uniform Dialing Plan (UDP)	ACC + LOC + XXXX	8 to 9
Private call using Coordinated Dialing Plan (CDP)	DSC + XX	10 maximum
Public numbering plan	ACC + (1) + NPA + NXX + XXXX ACC + (1) + NXX + XXXX	14 maximum

Feature testing

To verify NMS-MM, do the following steps:

- 1 Coordinate with far end personnel. Place a call to a busy station at the far end over a PRI trunk.
- 2 Let the call forward to the Network Message Services and leave a message.
- 3 Verify that the message waiting lamp is lit on the called station.
- 4 Log on to Meridian Mail and listen to the message.
- 5 Use the Call Sender command to call the person who left the message.
- 6 Verify all Meridian Mail features are available by the far end user.

ISDN PRI description and administration 553-2901-100

i

Issued:	92 12 31
Status:	Standard
X11 release:	14

22-1

Network Ring Again

Network Ring Again (NRAG) provides Ring Again capability within the PRI/ISL network. NRAG allows a caller at location A, encountering a busy destination at location B anywhere in the ISDN PRI network, to press the Ring Again key and be notified when the busy station becomes idle.

NRAG operates in "free notification" mode. This means the terminating switch determines when the called party becomes idle and notifies the originating switch.

For Meridian electronic and digital sets, the caller's phone emits a buzz from the speaker and the Ring Again lamp flashes. To call the station, the caller presses a DN key and then the Ring Again key on the phone—the call is made automatically.

For 500/2500 sets, the caller's phone provides short bursts of ringing as a station-idle notification. To call the station, the caller lifts the phone's receiver during the ringing period—the call is made automatically.

When more than one caller activates NRAG on a terminating station, the calls are queued on a first-come, first-served basis. When the called station becomes idle, only the first caller in the queue is signaled. The second caller in the queue is signaled only after the Queue Advance Timer (4 seconds) expires. Once NRAG has been activated, the Called Party status is monitored until one of the following events occurs:

- The line is idle and a new call set-up can be tried.
- The call is deactivated when a customer defined timer expires.
- The call is manually deactivated by the caller.

NRAG requires a number of timers to control the feature functions on both the originating and terminating switches. Tables 22-1 and 22-2 show the values defined and which timers are used by the Meridian 1.

Table 22-1 Originating Switch Timers

Timer code	Description	Duration
T2	Period for unanswered recall notify	30 seconds
Т5	Message Response Timer	4 seconds
Т6	Duration Timer	30 minutes
TR2	Recall Suspend Option Timer	9 minutes
Note: TR2 not applicable to Meridian 1		

Table 22-2 Terminating Switch Timers

Timer code	Description	Duration
Τ7	Duration Timer	30 minutes
GT	Guard Timer	6 seconds
QAT	Queue Advance Timer	4 seconds
Note: GT is not applicable to Meridian 1.		
X11 release 14

With X11 release 14, NRAG capability is extended to 500/2500 telephone types. (With X11 release 13, NRAG functions for Meridian 1 electronic and digital telephones only.)

X11 release 15 and later

NRAG is compatible with the following systems:

- Meridian 1
- SL-100
- DMS-100

ï

- DMS-250 supported as a tandem switch only

Note: SL-100, DMS-100 and DMS-250 support private numbering plans only.

Refer to Figure 22-1 for an NRAG configuration.

Figure 22-1 Network Ring Again configuration

,

Operating parameters

The following list describes the NRAG operating parameters:

- The interfaces must be Meridian 1 or DMS. NRAG is not supported for AT&T connections.
- The call must be PRI end to end.
- The calling and called party number provided for the PRI call must be within the same dialing plan.
- NRAG is supported with the Uniform Dialing Plan (UDP), typically with 3-digit location codes and 4-digit Directory Numbers.
- NRAG is supported in Coordinated Dialing Plan (CDP) networks with up to 4-digit directory numbers if the Distant Steering Codes do not exceed 2 digits. X11 release 14 and earlier support only up to 6 digit CDP. X11 release 15 and later support up to a 10-digit CDP.
- The appropriate package, such as NARS, BARS CDP, or ISDN, must be equipped.
- NRAG supports Private/TIE trunks but not public call types.
- The Calling Line Identification (CLID) for ACD sets is the ACD DN instead of ACD POS ID.
- NRAG is not compatible with an Add-On Data Module (ADM) trunk route.
- NRAG does not support Tandem TIE Trunk networks using Direct Trunk Access Codes or Trunk Steering Codes.
- NRAG is not supported for calls using a Trunk Access Code.
- NRAG, like Ring Again, is not supported on modem routes.
- NRAG cannot be invoked for a redirected call, a blocked call, or a modified call (for example, conference, transfer, or attendant calls).

The following features are not supported by NRAG:

- Call Redirection
- Trunk Group Busy Indication
- Flexible and Coordinated Call Back Queuing
- Network Facilities Blockage (Main CBQ)
- ACD Queue calls
- Attendant Console calls
- Maintenance Busy Mode
- Direct Inward System Access
- Directed Call Pickup

Feature interactions

Make Set Busy – NRAG can be originated by a station in the Make Set Busy (MSB) mode. It can also be activated against a station in the MSB mode, assuming no Call Forward All Calls DN.

Do Not Disturb – Ring Again originating from a station with Do Not Disturb (DND) active is supported; however, NRAG cannot be activated against a terminating station which has DND activated.

Call Waiting/Camp-On – If Call Waiting or Camp-On is active on the terminating station, no notification will be sent to the originating party until the terminating station becomes idle.

Call Forward All Calls—If the originating station activates Call Forward All Calls (CFAC) after activating NRAG, NRAG can still be received.

.

Data calls-NRAG is supported for data calls.

Calling Line Identification – NRAG is supported only if the Calling Line Identification (CLID) uses the prime DN.

Incoming Digit Conversion—If there is any conversion done to the called DN, NRAG is not supported.

CDP and NARS – For networks with CDP and NARS using the same route, turn off INAC and insert a DMI when needed.

Feature packaging

The option number for NRAG is 148 (NTWK). Table 22-3 shows the packages required for this feature. Consult the X11 features and services (553-3001-305) for X11 release software packages and their dependencies.

Package	Name of package	Mnemonic	
75	PBX Interface for DTI/CPI	PBXI	
145	ISDN Signalling	ISDN	
146	ISDN Primary Rate Interface	PRI	
OR	Dependencies: 75, 145, 19 [CLID]		
147	ISDN Signalling Link Dependencies: 145	ISŁ.	
Note 1: Package 75 is not required for ISL (Package 147), unless ISL is over DTI.			
Note 2: NRAG requires ISDN option Package 145 with 146 or 147.			

 Table 22-3

 Package requirements for Network Ring Again

Feature implementation

X11 release 14 added a new prompt, PNI, to LD15 to enter the Private Network Identifier value per customer. X11 release 14 also added the PNI prompt to LD16 along with a second new prompt to enter the NRAG service timer per route. For a description of the prompts and responses for Meridian 1 software, see the *X11 input/output guide* (553-3001-400).

The duration timer for Network Ring Again (NRAG) controls the amount of time between placing the call on Ring Again and timeout.

Note: In X11 release 15 and later, Network Ring Again (NRAG) requires ESN access code insertion. The configuration of ESN access code insertion is provided in "Check Numbering Plan enhancement interaction" on page 22-9.

Configuration

All NRAG database configuration must be checked point to point, regardless of whether NRAG is activated point to point or it tandems through an intermediate node. Within one network, use the same value for customer private identifier (PNI) in both the Customer Data Block (LD15) and the Route Data Block (LD16) in all systems.

Check Numbering Plan enhancement interaction

If a Meridian 1 switch is running X11 release 15 or later and is interfacing with a X11 release 15 or later, then the originating switch must not use the digit manipulation (DMI) to insert the ESN access code. The ESN access code must be inserted at the terminating node. See example in Table 22-4.

Table 22-4 Inserting ESN access code

Originating Switch	Terminating Switch
X11 release 15 and above	X11 release 15 and above
LD86: DMI = 0	LD16: INAC = YES

By default, making INAC = YES always inserts AC1. However, if your switch is receiving Public call types such as NXX or NPA over the same PRI route as the terminating switch, and you need to insert AC2, you must specify these call types under the AC2 prompt in the customer data block. For example, LD15: AC2 = NXX NPA.

Note 1: For X11 release 14 and earlier, use INST in LD16. For X11 release 15 and later, use INAC.

Note 2: The terminating PBX must Insert Net Access Code (INAC).

See Figure 22-2 for a summary of these rules.

Figure 22-2 Database conversion

Release identification

For Meridian 1 software load from X11 release 15 and later, the configuration record in LD17 must contain the Release ID of the corresponding switch. For DMS interfaces, it must contain the correct BCS load. For example, LD17:

RLS_ID = 15 (Meridian 1 interface). RLS_ID = 28 (DMS interface).

Refer to X11 input/output guide (553-3001-400) for minimum compatible releases.

NARS calls

If NRAG is to be activated on a NARS call, verify that the Home Location Code is defined in the Customer Data block in LD15. For example,

LD15: HLOC = 646.

Coordinated Dialing Plan call

,

Follow these steps for a Coordinated Dialing Plan (CDP) call:

- 1 Check LD87 for all local steering codes and distant steering codes.
- 2 Check the ESN data block for the following prompts:

LD86: CDP = YES/NO

MXSC = Maximum number of Steering Codes NCDP = Number of digits in CDP DN

Implementation procedures

Follow these steps to configure Network Ring Again:

 LD17 Configuration Record (Procedure 22-1) Set the software release ID of the far end. X11 RELEASE 17 AND EARLIER

OR

- LD17 Configuration Record (Procedure 22-1) Set the software release ID of the far end. X11 RELEASE 18 AND LATER
- LD15 Customer Data Block (Procedure 22-3)
 Set up Private Network Identifier (PNI) mapping between call type translator HLOC, LSC, HNPA or HNXX for proper CLID construction.
- 3 LD16 Route Data Block (Procedure 22-4) Set up duration timer (NRAG), Private Network Identifier (PNI), insertion of ESN access codes (INAC).

Procedure 22-1 Use LD17 to define the software release ID (X11 release 17 and earlier)

Prompt	Response	Description
REQ	CHG	
TYPE	CFN	Configuration data block
ISDN	YES	
DCHI	1-15	D-channel number
RLS	хх	This is the current software release of the far end. If the far end has an incompatible release of software, it prevents the sending of application messages. The minimum X11 release is 14, the minimum BCS release is 28.

Procedure 22-2 Use LD17 to define the software release ID (X11 release 18 and later)

i

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
RLS	xx	Release ID of the switch at the far end of the D-Channel

Procedure 22-3

Respond to the following prompts in LD15

Prompt		Response	Description
REQ		NEW, CHG, END	
TYPE		CDB	Customer data block
	•		
AC2			Access Code 2. Enter call types (type of number) that use access code 2. Multiple call types can be entered. Default is to access code 1.
		NPA	E.164 National
		NXX	E.164 Subscriber
		INTL	International
		SPN	Special number
		LOC	Location code
ISDN		YES	Change ISDN options
PNI		1-32700	Customer private identifier—unique to a customer. Within one network, use the same value for PNI in both the Customer Data Block (LD15) and the Route Data Block (LD16) in all PBXs.
	HNPA	100-999	Area code for the Meridian 1 system
	HNXX	100-999	Prefix for the Central Office
	HLOC	100-999	Home location code (NARS)
	LSC	1-9999	1- to 4-digit Local Steering Code established in the Coordinated Dialing Plan (CDP). The LSC prompt only appears if user has a 5- or 6-digit dialing plan.

Prompt	Response	Description
REQ	NEW,CHG,OUT	
TYPE	RDB	Route data block
CNTL	(NO),YES	Changes to controls or timers
TIMR .		
	NRAG (30)-240	Network Ring Again duration timer (T6 and T7 timers)—time is in minutes. Currently, only a value of 30 minutes is supported.
	Note: Package 148, Advanced ISDN Features, is required.	
INAC	(NO), YES	Insert Access Code. Permit an ESN access code to be automatically added to an incoming ESN call from a private network. If INAC is YES, the digit insertion option (INST) is bypassed. This prompt only appears if the route type is a TIE trunk.
PNI	1-32700	Customer private identifier—unique to a customer. Within one network, use the same value for PNI in both the Customer Data Block (LD15) and the Route Data Block (LD16) in all PBXs.

1

Procedure 22-4 Respond to the following prompts in LD16

Feature testing

To verify NRAG, perform the following steps:

- 1 Coordinate with far end personnel. Place a call to a busy station at the far end over a PRI trunk.
- 2 Verify that the calling terminal can activate NRAG and that any Ring Again indicator lamps are lit.
- 3 When the far end call disconnects, verify that the calling terminal is notified.
- 4 Verify indication that the far end has disconnected.
- 5 Initiate NRAG capabilities.
- 6 Calling party answers.
- 7 Disconnect.

Note: Verify this procedure against different terminal types.

Issued:	93 10 31
Status:	Standard
X11 release:	18

23-1

Remote Virtual Queueing

Remote Virtual Queueing (RVQ) allows you to perform queueing type functions on a busy trunk route (B-Channel) in your ISDN network. This feature is similar to the ESN features Coordinated Call-Back Queueing (CCBQ), and Call-Back Queueing to a Conventional Main (CBQCM). Prior to operating RVQ, you must have a working knowledge of the ESN features. Refer to *Electronic Switched Network description* (309-3001-100) for a complete description of these features.

Remote Virtual Queueing (RVQ) is supported on a private ISDN PRI/ISL network only.

When an outgoing network path is unavailable, Remote Virtual Queueing (RVQ) provides call back queueing. RVQ repeatedly scans ahead on the ISDN trunk to be sure the entire path from origination to termination is available. When a path becomes idle, you are notified and can ring the path again to terminate the call.

Figure 23-1 Remote Virtual Queueing example

ISDN PRI description and administration 553-2901-100

Operating parameters

In addition to the function offered by CCBQ and CBQCM, RVQ provides the following:

- There is no limit to the number of nodes in the ISDN network that RVQ searches.
- The originating node has control of the call.

RVQ is supported in a private ISDN PRI/ISL network only. Any trunk other than an ISDN PRI or ISL trunk is considered a Non-RVQ Compatible (NRC) trunk. NRC trunks include analog trunks, T1 trunks, or public trunks. NRC also includes trunks connecting to a non-Meridian 1, non-ISDN, or Pre-Release 18 node.

The originating, tandem, and terminating nodes must run X11 release 18 or later software, and include all the required packages (refer to Feature packaging in this module).

Meridian Modular, 500/2500, SL-1, and Meridian digital telephones can activate and receive RVQ calls.

- Data terminals are supported.
- Attendants cannot activate RVQ.
- RVQ is activated only by telephones with Ring Again allowed.
- AUTHCODE is supported on the first tandem node only.
- Trunk Access codes are not supported.
- ACD DNs are supported as a terminating DN.
- Attendants are supported as terminating stations.

The RVQ retry timer is set for each NCOS. Setting a specific NCOS with a low retry timer searches for more connections more often. The lower the timer, the greater the chance to connect the call.

The maximum total amount of time RVQ searches for available paths is 30 minutes. The countdown begins as soon as the originator activates the Ring Again key.

Only one RVQ Ring Again attempt per set at a time is allowed. If Ring Again is pressed again, after activating it for RVQ, the most recent number dialed is the one attempted.

RVQ does not check the terminating telephone's status. The dialed DN may be invalid or busy. Once the path is available, the RVQ call can reach the dialed DN. It is possible the dialed telephone is busy, and Network Ring Again may be used if enabled. The tone indicating the trunks are busy is a fast busy tone. A busy DN is indicated by a standard busy tone.

RVQ searches throughout Meridian 1 networks only. Off-net trunks paths cannot be checked beyond the first NRC trunk.

RVQ is a virtual queueing feature. Each RVQ call is independent of another. It does not operate by first in first out policy. The first caller to initiate RVQ is not necessarily the first person connected.

It may take up to 30 seconds for notification to reach the originator. The network path is reserved while RVQ notifies the caller. In a private network, the path is reserved from the originating node to the terminating node. Otherwise the path is reserved up to the first NRC trunk.

RVQ supports Uniform Dialing Plan (UDP), and Coordinated Dialing Plan (CDP). For NRC trunks, the E.164 public numbering plan is supported.

RVQ supports the following trunk types:

- Private network ISDN trunks
 - TIE
 - COT
 - Direct Outgoing Dial (DOD)
 - WATS
 - ISA
 - FEX

RVQ supports only Meridian 1 machines in a private ISDN PRI/ISL network. A non-Meridian 1 machine functioning in tandem with a Meridian 1 machine is treated as a Non-RVQ Compatible (NRC) trunk. NRC trunks

- COT
- Direct Outgoing Dial (DOD)
- WATS
- FEX
- ISA
- TIE

RVQ is cancelled if the originating node system initializes.

If the originating node performs a cold start, RVQ is cancelled.

RVQ from a Conventional Main (RVQCM) requires a special configuration. See the Feature implementation discussion in this module.

With RVQ, callers cannot activate Ring Again to refuse expensive routes after the Expensive Route Warning Tone (ERWT) is given.

When using RVQ from a Conventional Main (RVQCM), the originating node seizes the same TIE trunk group that was used to initiate RVQCM for the callback. Thus, these trunk groups must be two-way (incoming/outgoing) and configured for far end disconnect.

Conventional mains must provide answer supervision on TIE trunks connected to the originating node. The system must also permit transmission or repetition of telephone dial pulses for RVQCM operation. This feature cannot be used with systems that operate in senderized mode. Operation may require adjustment of the interdigit timeout on systems that employ simulated cut-through operation.

Multiple callback queues are allowed per trunk group for the Conventional main by dialing any digits (up to 7) based on the availability of Meridian 1 call registers.

When utilizing RVQCM, do not call forward the calling telephone when awaiting callback. If the telephone is forwarded, it is possible that the TIE trunk will not be released at the end of the call.

Feature interactions

Coordinated Call-Back Queueing – CCBQ and RVQ can both be enabled on a single machine.

Call-Back Queueing to a Conventional Main – CBQCM and RVQ can both be enabled on a single machine.

Direct Inward System Access - DISA DNs are not supported by RVQ.

Make Set Busy - RVQ can be originated by, and terminated on an ACD DN in Make Set Busy mode.

Network ACD – If a target agent is available on a remote node, RVQ cannot be activated if the busy trunk is found on its way to the target node.

Network Call Redirection – RVQ does not guarantee connection if the terminating telephone call forwards to a telephone on another node. When a terminating telephone call forwards to another node, that node is a redirected node. RVQ cannot search between terminating and redirected nodes.

Network Ring Again – Network Ring Again (NRAG) is activated only when the terminating telephone or console is busy. If both the network path and the terminating telephone are busy, RVQ is activated first. When the path is available, but the telephone is busy, then NRAG can be activated. Off Hook Queueing - RVQ and Off Hook Queueing (OHQ) are compatible in a system. If OHQ is configured, it is implemented by leaving the handset off hook. RVQ is implemented by pressing the Ring Again key. Choosing one or the other method activates the specified feature.

Feature operation

RVQ supports private ISDN PRI/ISL networks, non-RVQ compatible (NRC) blocked trunks, and conventional mains (RVQCM). RVQ supports Meridian 1 machines only. A non-Meridian 1 machine working in tandem with a Meridian 1 is treated as a Non-RVQ Compatible (NRC) trunk.

RVQ on a private network

RVQ is supported for Meridian 1 machines, running X11 release 18 on an ISDN PRI/ISL network only. RVQ follows this checklist before starting.

- The first tandem node must be a Meridian 1 node, running X11 release 18 or later software.
- The originating node's Network Class of Service (NCOS) must allow Call Back Queueing (CBQ).
- At least one route in the initial set of the route list must allow CBQ.
- The system has CBQ allowed at the Network Control Block.

Figure 23-3 RVQ configuration example on a private network

When the checks are complete, activate RVQ by pressing the Ring Again key. As soon as the key is pressed, the retry timer begins. When the retry timer expires, RVQ checks the path again. When a blocked path occurs, RVQ scarches the network to ensure that the entire path will be clear once the blockage disappears. The total amount of time RVQ will spend on a search is 30 minutes.

The retry counter controls the number of times the initial set is checked before RVQ searches the extended set. The extended set search includes all the trunks in both the initial and extended sets.

Tandem nodes must recognize the RVQ messages and pass them on to another tandem or terminating node.

RVQ with NRC trunks

RVQ searches the path until it reaches the first Non-RVQ Compatible (NRC) trunk. RVQ notifies the originator when that trunk is available, but cannot search beyond it. It is possible that the path may be blocked beyond the NRC trunk, and the call cannot go through.

Any trunk other than an ISDN PRI or ISL trunk is considered an NRC trunk. NRC trunks include analog, T1, or public trunks, as well as trunks connecting to a non-Meridian 1, non-ISDN, or non-X11 release 18 node.

When an NRC trunk is busy, RVQ follows this checklist before implementing RVQ.

- First tandem node must be a Meridian 1 node, with X11 release 18 or later.
- Originating node's NCOS must allow Call Back Queueing (CBQ).
- At least one route in the initial set of the route list must allow CBQ.
- The system has CBQ allowed at the Network Control Block.

When the checks are complete, activate RVQ by pressing the Ring Again key. As soon as the key is pressed, the retry timer begins. When the retry timer expires, RVQ checks the path again. The total amount of time RVQ will spend on a search is 30 minutes. The retry counter controls the number of times the initial set is checked before RVQ searches the extended set. The extended set search includes all the trunks in both the initial and extended sets. Only the first NRC trunk is checked. RVQ cannot search beyond that trunk, even if the subsequent trunks are ISDN PRI/ISL.

RVQ on a conventional main (RVQCM)

A conventional main call is one that comes from a non-Meridian 1 system into the private network through a TIE trunk to a Meridian 1 node.

When the conventional main call enters the network, the default NCOS is assigned to the TIE trunk to determine RVQCM eligibility. Use Authcode last to upgrade the NCOS if necessary.

When a conventional main call is blocked, RVQ checks the following at the first Meridian 1 node to ensure RVQCM can be activated. The Meridian 1 node is considered the Originating node, and controls the call.

- The tandem and terminating nodes must be Meridian 1 nodes, running X11 release 18 or later software.
- The originating node's Network Class of Service (NCOS) must allow Call Back Queueing (CBQ).
- At least one route in the initial set of the route list must allow CBQ.
- The system has CBQ allowed at the Network Control Block.
- The incoming TIE trunk allows CBQ.

Figure 23-5 RVQCM example with a conventional main

ISDN PRI description and administration 553-2901-100

RVQCM is offered to the conventional main caller with a special offer tone (3 beeps). To accept RVQ, enter the calling number. After the same special confirmation tone (3 beeps) is heard, hang up. The originating node begins the retry timer and search process. When the retry timer expires, RVQ checks the path again. The maximum total amount of time RVQ will spend on a search is 30 minutes. When the path is free, the originating node calls the caller back (at the number entered). The phone rings, the same special callback tone (3 beeps) is heard, and the call is connected. RVQCM cannot be cancelled from the conventional main once started.

If the calling telephone is busy, or does not answer the callback, the RVQ callback is placed in a 5 minute suspense state. After 5 minutes have passed, RVQ attempts the callback again. If the calling telephone is still busy, or does not answer, RVQ is cancelled.

The retry counter controls the number of times the initial set is checked before RVQ searches the extended set. The extended set search includes all the trunks in both the initial and extended sets.

Note: The calling number is accepted only if the database has been configured to accept the given number of digits. If not, or if the caller does not hang up, overflow tone is given, and the call is disconnected. RVQCM does not verify that the dialed DN is valid or free.

Once started, RVQ cannot be cancelled from the convention main. Operating parameters relating to Call Back Queueing for Conventional Mains (CBQCM) also apply to RVQCM as follows. Refer to the *Electronic Switched Network description* (309-3001-100) for complete discussions of CBQCM.

Users at Conventional Mains cannot activate Ring Again to refuse expensive routes after the Expensive Route Warning Tone (ERWT) is given.

The node seizes the same tie trunk group that was used to initiate RVQCM for the callback. These trunk groups must be two way (incoming/outgoing).

Conventional Mains must provide answer supervision on tie trunks connected to the node. These switches must also permit transmission, or repetition of telephone dial pulses for RVQCM operation. This feature cannot be used with systems that operate in senderized mode. Operation may require adjustment of the interdigit timeout on systems that employ simulated cut-through operation. Multiple callback queues are allowed per trunk group for the Conventional Main by dialing up to 7 digits (any digits are allowed) based on the availability of Meridian 1 call registers.

CAUTION

Conventional Mains must not allow RVQCM callback calls to be modified by call transfer or call forward to an outside line. Call modifications like this can result in the tie trunk not being released at the end of the call.

Operating RVQ from a digital telephone

The following lists the steps required to activate RVQ from any Meridian digital, Meridian Modular, or SL-1 telephone.

- 1 Place a call to a DN on another node.
- 2 Hear overflow tone (fast busy) indicating a busy trunk along the call path.
- 3 Press the Ring Again (RGA) key. The RGA lamp lights, and the tone stops. If the lamp remains dark, RVQ may not apply.
- 4 Go on-hook.
- 5 The RGA lamp fast flashes, and a 1 second buzz indicates the path is available. If you are on another call, you hear the Ring Again tone.
- 6 Go off-hook (or press a DN key), and press the RGA key to connect the call. If the RVQ notice is not answered within 16 seconds, the RVQ notice stops, and the request is cancelled.

If the terminating telephone is busy, you hear regular busy tone. You may activate Network Ring Again (NRAG) at this point.

Cancel the RVQ request at any time by pressing the RGA key. The associated lamp goes dark.

Operating RVQ from a 500/2500 telephone

The following lists the steps required to activate RVQ from any 500/2500 telephone.

- 1 Place call to a DN on another node.
- 2 Hear overflow tone (fast busy) indicating a busy trunk route along the call path.
- 3 Switchhook flash, and hear special tone (3 beeps).
- 4 Dial the Ring Again SPRE or FFC, and hear confirmation tone. If RVQ is not enabled, intercept treatment is given.
- 5 Go on-hook.

The RVQ search takes place only when the telephone is idle. RVQ searches only while you are on-hook. However, the timer runs while you are on-hook, or off-hook for a maximum of thirty minutes.

- 6 Special ringing cadence indicates the path is available.
- 7 Go off-hook to connect the call. If the RVQ notice is not answered within 16 seconds, the RVQ notice stops, and the request is cancelled.

Cancel the RVQ request at any time by going off hook and entering the Ring Again deactivation SPRE or FFC.

Operating RVQCM from conventional main telephone

The following lists the steps required to activate RVQCM from a conventional main telephone.

- 1 Place call to a DN on a Meridian 1 node.
- 2 Hear special dial tone (3 beeps), or RAN if configured, indicating a busy trunk along the call path.
- 3 Dial the calling DN, and hear the same special tone (3 beeps).
- 4 Go on-hook.
- 5 The phone rings when the originating node calls back.
- 6 Go off-hook, hear the same special tone (3 beeps). Stay off-hook, and the call is connected. If the RVQ notice is not answered within the time set in LD87 (CBTL prompt), the RVQ notice stops, and the request is cancelled.

RVQ cannot be cancelled from a conventional main telephone, but may time-out after 20 seconds.

If the calling telephone is busy, or does not answer the callback, the RVQ callback is placed in a 5 minute suspense state. After 5 minutes have passed, RVQ attempts the callback again. If the calling telephone is still busy, or does not answer, RVQ is cancelled.

Feature packaging

Remote Virtual Queueing (RVQ) is package 192. It requires the following packages as well. Refer to *X11 features and services* (553-3001-305) for a complete list of package dependencies.

- Main Network Queueing package 38
- Flexible Call Back Queueing package 61
- Digital Trunk Interface package 75
- ISDN signalling package 145
- ISDN PRI package 146 or ISL package 147
- Network Queueing Main package 38
- Advanced Network Services package 148 (for NRAG capability)

Feature implementation

All nodes supporting RVQ must have it enabled. Perform these procedures to configure RVQ on the originating node, and to check for RVQ on the tandem and terminating nodes.

RVQCM configuration begins with Procedure 23-5.

Prompt	Response	Description
REQ	CHG	Change
CUST	nn	Customer number
FEAT	NCTL	Network Control
SCBQ	YES	Call Back Queueing allowed
NCOS	nn	Network Class of Service number. The originating telephone must have the same value.
ОНQ	YES, (NO)	Off Hook Queueing allowed (not allowed) for this NCOS Both RVQ and OHQ can be enabled on a system. Only one can be activated at a time.
CBQ	YES	Call Back Queueing allowed for this NCOS
RETT	2-(10)-30	Time between searches (seconds) The maximum total search time is 30 minutes.
RETC	4-(5)-16	Number of times RVQ searches the initial set before moving on to the extended set.

Procedure 23-1 Use LD87 to configure RVQ

ISDN PRI description and administration 553-2901-100

Procedure 23-2	
Use LD86 to configure the	Route List Block for RVQ

Prompt	Response	Description
REQ	CHG	Change
CUST	nn	Customer number
FEAT	RLB	Route List data block
RLI	nn	Route List Index
ENTR	nn	Route List entry number
ROUT	nnn	Route number
DMI	nnn	Digit Manipulation table
OHQ	YES, (NO)	Off Hook Queueing allowed (not allowed) for this NCOS Both RVQ and OHQ can be enabled on a system. Only one can be activated at a time.
CBQ	YES	Call Back Queueing allowed

Procedure 23-3 Use LD16 to configure the routes for RVQ

Prompt	Response	Description
REQ	CHG	Change
TYPE	RDB	Route datablock
CUST	nn	Customer number
ROUT	nnn	Route number
ISDN	YES	ISDN PRI option
OHQ	YES, (NO)	Off Hook Queueing allowed (not allowed) for this NCOS
		Both RVQ and OHQ can be enabled on a system. Only one can be activated at a time.
CBQ	YES '	Call Back Queueing allowed for this NCOS

ISDN PRI description and administration 553-2901-100

Procedure 23-4 Use LD17 to be sure the remote nodes have RVQ enabled

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
СТҮР	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
RCAP	RVQ	Remote D-channel capabilities. If this is not enabled, the trunks are considered NRC

a Contration and

Procedure 23-5 Use LD87 to configure RVQCM

Prompt	Response	Description
REQ	CHG	Change
CUST	nn	Customer number
FEAT	NCTL	Network Control
SCBQ	YES	Call Back Queueing allowed
CBTL	10-(20)-30	Call Back Time Limit CBTL should be set at 20 seconds or more to allow sufficient time to notify the caller. If this timer expires without receiving answer supervision, it is considered call-back no answer.
NCOS	nn	Network Class of Service number
OHQ	YES, (NO)	Off Hook Queueing allowed (not allowed) for this NCOS
		Both RVQ and OHQ can be enabled on a system. Only one can be activated at a time.
CBQ	YES	Call Back Queueing allowed for this NCOS
RETT	2-(10)-30	Time between searches (seconds) The maximum total search time is 30 minutes.
RETC	4-(5)-16	Number of times RVQ searches the initial set before moving on to the extended set.

i

Procedure 23-6

Use LD86 to configure the Route List Block for RVQCM

Prompt	Response	Description
REQ	CHG	Change
CUST	nn	Customer number
FEAT	RLB	Route List data block
RLI	nn	Route List Index
ENTR	nn	Route List entry number
ROUT	nnn	Route number
DMI	nnn	Digit Manipulation table
OHQ	YES, (NO)	Off Hook Queueing allowed (not allowed) for this NCOS
		Both RVQ and OHQ can be enabled on a system. Only one can be activated at a time.
CBQ	YES	Call Back Queueing allowed

44655

ISDN PRI description and administration 553-2901-100

Procedure 23-7 Use LD16 to configure the routes for RVQCM

i

Prompt	Response	Description
REQ	CHG	Change
TYPE	RDB	Route datablock
CUST	nn	Customer number
ROUT	nnn	Route number
ISDN	YES	ISDN PRI option
CNTL	YES, (NO)	Change control timers
FEDC	ETH	Far end disconnect control Must be ETH (either end) for RVQCM
DLTN	YES	Provide dial tone to the far end
OHQ	YES, (NO)	Off Hook Queueing allowed (not allowed) for this NCOS
		Both RVQ and OHQ can be enabled on a system. Only one can be activated at a time.
CBQ	YES	Call Back Queueing allowed for this NCOS

Procedure 23-8

Use LD17 to be sure the remote nodes have RVQCM enabled

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
СТҮР	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
RCAP	RVQ	Remote D-channel capabilities. If this is not enabled, the trunks are considered NRC

i

Issued:	93 10 31
Status:	Standard
X11 release:	14

Software Defined Network access

AT&T's Software Defined Network (SDN) provides the equivalent of a private network. The network is controlled by customized call-processing specifications stored in the AT&T network, rather than at customer sites. To access SDN, the customer uses access lines from their location to the AT&T network. See Figure 24-1.

Figure 24-1 Access to Software Defined Network

SDN can transmit voice, data, or graphics. Analog transmission to 9600 bps and 56 Kbps or 64 Kbps clear end-to-end digital data transmission are supported.

Feature implementation

Routes defined for access to AT&T services, such as SDN, must be TIE trunk routes. Use Procedures 24-1 and 24-2 to configure access to SDN service.

Note: The tariff is currently approved for ISDN as of 1992.

Procedure 24-1	
Use LD17 to define the AT&T interface	(X11 release 17 and earlier)

Prompt	Response	Description
REQ	CHG	
TYPE	CFN	Configuration data block
ISDN	YES	
_IFC	ESS4, ESS5	AT&T 4ESS or 5ESS
		Note: Package 149, Inter-exchange Carrier (IEC), is required to select interface to AT&T 4ESS.
Procedure 24-2		
--	--	
Use LD17 to define the AT&T interface (X11 release 18 and later)		

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
USR	PRI, ISLD, SHA	D-channel mode
PRI	0-159 2-15	Additional PRI loops using the same D-channel, and interface ID
IFC	aaaa	Interface type: (D100), D250, ESS4, ESS5, SL1, S100

Procedure 24-3 Use LD16 to configure a TIE route for SDN access.

Prompt	Response	Description
REQ	NEW,CHG,OUT	
TYPE	RDB	Route data block
CUST	0-99	Customer number
ROUT	0-511	Route number
ТКТР	TIE	TIE trunk route
ISDN	YES	
_IFC	ESS4, ESS5	AT&T 4ESS or 5ESS
_SRVC	SDN	Software Defined Network

ISDN PRI description and administration 553-2901-100

,

Issued:	92 12 31
Status:	Standard
X11 release:	14

25-1

Software Release ID

Software Release ID uses the D-channel connection of your switch to identify the software release of an adjoining switch. This feature identifies the software release of the NRAG, NACD, NMS and NCRD features. The software release ID can be requested for all direct connections to the Meridian 1. However, the Software Release ID cannot be obtained for switches in a tandem configuration. The information provided by the Software Release ID depends on the interfacing switches. That is, a Meridian 1 switch provides an X11 release number and a DMS-100 switch provides a BCS number. See Table 25-1.

Table 25-1Software Release ID information

ISDN feature	DCH interface type	Supported release
NRAG	Meridian 1, SL-100, DMS-100, DMS-250	Release 12 & above BCS 26 & above
NACD	Meridian 1 DMS-100, DMS-250	Release 15 & above BCS 29 & above
NMS-MC	Meridian 1	Release 15 & above
NMS-MM	Meridian 1	Release 16 & above
NCRD	Meridian 1, SL-100, DMS-100	Release 16 & above BSC 28 & above

Note: If the interface is changed, the release ID is also changed. The release ID must then be reconfigured.

This feature prevents software incompatibility between two switches. Different applications are supported by different releases, and for most of the ISDN applications, operations are invoked by sending messages back and forth. To prevent software incompatibility, the following occurs. The release ID of the connecting D-channel is checked before data is sent through the ISDN interface. If the connecting switch does not have the software to handle the feature requested, an application message is not sent. Instead, an error message is printed.

Table 1 shows the relationship between, the ISDN application, equipment and the Release ID (X11 or BCS) at the far end.

Note: The Release ID information is required and supported for connection to Northern Telecom equipment only. For connections to AT&T ESS4/5 set RLS = 1.

Feature implementation

The Software Release ID feature is configured in LD17.

Procedure 25-1	
Respond to the following prompts in LD17 (X11 release 17 and earlier)	

Prompt	Response	Description
REQ	NEW,CHG	
TYPE	CFN	configuration data block
ISDN	YES	
DCHI	1-15	D-channel number
RLS	xx	This is the current software release of the far end. If the software is incompatible, it prevents the sending of application messages. Refer to X11 input/output guide (553-3001-400) for details concerning required releases.

Procedure 25-2 Respond to the following prompts in LD17 (X11 release 18 and later)

i

Prompt	Response	Description
REQ	CHG	Change
TYPE	CFN	Configuration Record
ADAN	NEW DCH 0-63	Add a primary D-channel (can also CHG and OUT DCH)
CTYP	DCHI, MSDL	Card type
DNUM	0-15	Device number: physical port (odd) for D-channel on DCH, physical card address for MSDL
_PORT	0-3	Port number on MSDL card
RLS	ХХ	Release ID of the switch at the far end of the D-Channel. Refer to <i>X11 input/output guide</i> (553-3001-400) for details concerning required releases.

ï

92 12 31
Standard
17

26-1

T309 Timer

The T309 timer provides a 90-second wait interval after a D-channel failure before the B-channels are cleared. When the D-channel is re-established before T309 expires, a STATUS ENQuiry message is sent by the network side. The user side responds with a STATUS message to report the status of the queried channel. If the call state matches, the call is preserved; otherwise, a RELease message is sent to the user side, clearing the call. If the user side does not respond with the STATUS message before the T322 timer expires, the call is cleared.

If T309 expires before the D-channel is re-established, indicating that there is a serious problem with the link, Meridian 1 clears all calls internally and sends a global RESTART when the D-channel is re-established.

For a Meridian 1 to Meridian 1 interface, the T309 timer is not used. The Meridian 1 keeps active calls established as long as possible and lets B-channel users decide when a call is to be dropped. The Meridian 1 specified as network side sends the STATUS ENQuiry message on all active calls when the D-channel is re-established.

Operating parameters

Prior to X11 release 17, the Meridian 1 does not support the T309 and sending the STATUS ENQuiry message for North American interfaces. All active calls are cleared with a global RESTART whenever a D-channel is reestablished.

The compatibility checking by means of the STATUS ENQuiry message might leave some channels with mismatched states, which are cleared only when trying to reuse the channel.

T309 is dependent on both network and user sides. If a side does not have a Timer T309, it sends a global RESTART when D-channel is re-established.

AT&T 4ESS and 5ESS do not clear transient calls when the D-channel fails. If T309 expires, the calls are not cleared until the D-channel is reestablished or the call is cleared by the far end.

Feature interactions

Integrated Services Access – Integrated Services Access (ISA) tracks the number of active calls. Prior to X11 release 17, the counter for active calls is reset when the D-channel comes back. With the implementation of T309, active calls are preserved if the ninety seconds does not expire; the counter for active calls is not reset since active calls need to be tracked during the D-channel failure and reset.

Feature packaging

The T309 and STATUS ENQuiry message are included in basic ISDN PRI/ISL functionality. No additional packages are required.

Feature implementation

The T309 timer is preset at 90 seconds and cannot be service changed.

Issued:	92 12 31
Status:	Standard
X11 release:	14

Trunk Optimization (before answer)

Trunk Optimization before answer (TRO) enhances routing on PRI and ISL routes for redirected calls. Trunk Optimization before answer (TRO) occurs when a direct call is made from the originating to the redirection telephone, from Meridian 1 to Meridian 1 machines.

Trunk Optimization before answer (TRO) only operates when Network Call Redirection is also enabled in your system.

TRO applies to the following call redirections:

- Network Call Forward All Calls (NCFAC)
- Network Call Forward No Answer (NCFNA)
- Network Hunting (NHNT)

With supporting network call redirection features enabled on each node, TRO can work as shown in Figure 27-1.

Case 1

The originating telephone A calls a remote telephone B over a PRI/ISL route (1), and due to Network Call Forward All Calls (NCFAC), Network Call Forward No Answer (NCFNA), or Network Hunting (NHNT), the call is forwarded to telephone C over route (2).

When TRO is enabled at switch B, messages are sent from the redirecting node (B) to the originating node (A)with the following information:

- redirection number
- redirection reason
- redirection counter

If the originating node does not support Trunk Optimization, the node sends a message rejecting TRO, and the call proceeds on the current route. The redirecting node then cancels TRO routing.

If Node A has TRO enabled, and has a first choice route member available, and the redirection counter does not exceed the limit, the system sends back a message accepting TRO. The redirecting node sends a message to release the connection, the originating node sends a message confirming that the original connection (1) is dropped. The originating node also establishes a direct connection to Telephone C over route 3.

In this case, the switch routes 1 and 2 are available for additional calls.

Case 2

The originating telephone A calls remote telephone E over PRI/ISL routes (3 and 5), and due to Network Call Forward All Calls (NCFAC), Network Call Forward No Answer (NCFNA), or Network Hunting (NHNT), the call forwards to telephone C over a PRI/ISL route (5). When Node A accepts the TRO request, node A establishes a direct connection to node C over route 3. In this case, both connections over route 5 are dropped, and available for other calls.

Figure 27-1 Trunk Optimization examples

Operating parameters

TRO is only supported before the call is answered.

TRO must be supported on all the nodes involved, by responding YES to the TRO prompt in the Route Data Block (RDB), LD16. Also, each telephone redirecting the call must have a Call Forwarding/Hunting feature allowed. The TRO operation is not supported if the originating telephone and the redirection telephone reside on the same node.

Trunk routes targeted for optimization must be listed in the Route List Index (RLI entry 0).

Only ISDN PRI/ISL trunks are supported. If an analog or digital trunk (not controlled by a D-Channel) is used between the originating and redirecting node, TRO does not operate. The call continues on the original path.

Trunk Optimization operates independently of the telephone type used for a call. TRO works for both voice and data calls between Meridian 1 machines.

Only Meridian 1 to Meridian 1 connections are supported. Non-Meridian 1 switches can operate as tandem switches if they can send along the TRO messages.

When the call is redirected, a 2 second timer begins within the redirecting system, waiting for a responding message from the originating node. If the timer expires, the call continues along the original path, and TRO does not operate.

Carefully analyze traffic estimates for all routes targeted for TRO to ensure that enough trunks and routes are available for all routing possibilities.

TRO is not supported with mixed dialing plans. Use caution when implementing TRO on a network using UDP and CDP at the same time. Because location codes are not used between CDP locations, TRO may direct calls to the wrong location. Duplicate CDP DNs at other TRO locations may cause TRO to redirect the call to the wrong DN.

In Figure 27-1, assume Nodes A and B share a CDP numbering plan, and Nodes C, D, and E share a second CPD numbering plan. If TRO is desired between the two CDP groups, then NO DN from EITHER CDP network can be duplicated in the other CDP network.

Trunk Optimization *is not supported* for the following call types.

- DID trunk call at Node A goes to Telephone B on Node B, that has NCFAC, NCFNA, NHNT to Telephone C
- DID trunk call from Node A to Telephone A, that has NCFAC, NCFNA, NHNT to Telephone B, having NFAC, NCFNA, NHUNT to Telephone C
- telephone D calls Telephone B, which is NCFAC, NCFNA, NHUNT to Telephone C when Node D is connected by non-ISDN link to Node C
- when the attendant extends a DID or Incoming trunk call to Telephone B and releases, and Telephone B is CFNA to Telephone C. After three rings, the call is forwarded, but not optimized, to Telephone C.

If the attendant remains with the call, TRO functions.

- telephone A uses Transfer or Conference to Telephone B when Telephone B has NCFAC, NHUNT, NCFNA to Telephone C
- calls to Meridian Mail auto attendant functions are not optimized because the call is viewed as answered.
- if redirecting the call increments the network redirection counter beyond the limits
- AUTOVON calls
- ACD Night Call Forward calls
- ACD Interflow calls

Feature Interactions

With the exception of those discussed here, call redirection features are not affected or supported.

Attendant calls – Attendant extended calls can allow or restrict TRO as shown in the following.

- Telephone A, a DID trunk, or an incoming trunk calls the attendant, and the attendant extends the call to Telephone B, which has NCFAC, NHUNT to Telephone C. The call is optimized to Telephone C.
- A DID trunk, or an incoming trunk call to the attendant is extended to Telephone B, and the attendant does not release the call. Telephone B has NCFNA to Telephone C. After three rings, the call forwards to Telephone C, and the attendant releases the call. The call is optimized to Telephone C.

BARS/NARS – BARS/NARS operation is not changed. BARS/NARS is used to determine route availability to terminate the optimized call. Only Uniform Dialing Plan (UDP), and Coordinated Dialing Plan (CDP) are supported by TRO. Direct Trunk Access codes are not supported.

Call Party Name Display – When a call is optimized, the name or number may not appear on the receiving party's display.

Class of Service—It is important to program redirecting telephones with Class of Service (CLS) to allow call redirection.

Dialed number display – Calls modified by Network Call Redirection and TRO may affect the display results on the answering telephone. The dialed number/name will not appear on the called telephone's display, despite having it allowed.

Network Call Forward by Call Type (NCFCT) – Prior to X11 release 16, call type treatment (Internal or External) is determined by the Route Class of Service (RCLS) prompt in LD16, associated with the incoming trunk route. With X11 release 16 and later, for calls containing CLID in the setup message, the RCLS prompt is superseded by the numbering plan type identified within the setup message. Incoming trunk calls answered at node A prior to entering the Tie trunk link using call modification contain a CLID as a result of the call modification, and may result in Internal call treatment at the terminating node.

Refer to the Network Call Redirection discussion in this document. Be sure to consider this feature when configuring your network.

Network Call Redirection (NCFAC, NCFNA, NHNT) – TRO depends on Network Call Redirection (NCRD) messages over the D-channel. Be sure to allow NCRD for all routes targeted for TRO calls. When a call is redirected using TRO, the redirection information is passed to the originating node. The redirection is suspended, and a direct connection is established. If a route is not available when the call is placed, the call may be blocked.

Network Call Transfer – Trunk Optimization does not operate for Network Call Transferred calls. Station and attendant extended calls do not utilize TRO.

Network Message Service – TRO occurs when Meridian Mail Call Sender is activated. No optimization takes place when through dialing or operator revert features are used because the calling DN is not provided to Meridian Mail with these features. When a call is optimized, the original called party information is included in the a setup message of the call. This is the way Meridian Mail determines the intended receiver.

Feature packaging

TRO is packaged as an ISDN feature in Advanced Network Services (NTWK), package 148.

Feature implementation

Trunk optimization is configured in LD16.

Prompt	Response	Description
REQ	CHG	
TYPE	RDB	Route data block
CUST	0-99	Customer number
ROUT	nnn	Route number 0-511 for NT, XT, 61, 71, and 81 0-127 for ST, 21, STE, 21E
DTRK	YES, (No)	Digital Trunk Route Must be Yes to prompt ISDN
ISDN	YES, (No)	ISDN option
NCRD	YES, (No)	Network Call Redirection. Allows network call redirection messages to be sent (or blocks messages if NCRD =no). Must be Yes to prompt TRO.
TRO	YES, (No)	Trunk Optimization

Procedure 27-1 Respond to the following prompts in LD16

ISDN PRI description and administration 553-2901-100

Glossary This chapter lists, by alphanumeric order, the acronyms, abbreviations, and initializations used in this document. A/B A and B bit signaling AC Access Code ACB Automatic Call Back ADM Add-On Data Module AIM Asynchronous Interface Module AMI Alternate Mark Inversion ANI Automatic Number Identification ASE Application Service Element AR Automatic Recall

B8ZS	Bipolar 8 Zero Substitution (provides 64 Kbps clear channel capability)
BARS	Basic Alternate Route Selection
BC	Rearer Canability
всн	ibearer Capability
BISI	B-channel
BBA	Busy Idle Status Indication
	Basic Rate Access
BRI	Basic Rate Interface
CALLATTR	Call Attribute table or index
CARRMTC	Carrier Maintenance
CBC	Call-by-Call Service
СВQ	
сс	Call-back Queuing
ССВО	Central Controller
	Coordinated Call-back Queuing

CCITT	International Telegraph and Telephone Consultative Committee
CDN	Called Party Number
CDP	Coordinated Dialing Plan
CDPA	
CDR	Called Party Address
	Coordinated Detail Recording
СЕВ	Call Forward Busy
CFD	Call Forward Don't Answer
CFI	Call Forward Intragroup
CFU	Coll Forward Universal
CGN	Call Folward Universal
CGPA	Calling Number
	Calling Number Address
CHID	Channel Identifier
CLID	Calling Line Identification
CHID CLID	Channel Identifier Calling Line Identification

CLLI	
U = = 1	Common Language Location Identifier
	Common Lunguage Location Mentilier
CO	
	Central Office
COS	
	Class of Service
СОТ	
	Central Office Trunk (Meridian 1 only)
CDB	
	Call Processing Ducu
	Can Flocessing Busy
CPF	
	Called Party Free
CDU	
CFU	Control Dromonic - II. it
	Central Processing Unit
CPV	
	Command Protocol Violation
CP	
Ch	
	Call Reference
CRC	
	Cyclic Redundancy Check
0107070	
CUSINIWK	
	Customer Networking
D2/D3/D4	
	Channel banks which handle A0 bit signaling
	······································
DCH	
	D-channel Handler, D-channel interface on the MSDL card

Glossary

GL-4

ISDN PRI description and administration 553-2901-100

1.

DCHI	D-channel Interface on the QPC747 DCHI card
DDD	Direct Distance Dialing
DID	Direct Inward Dialing
DISA	Direct Inward System Access
DMI	Digit Manipulation Index
DMS	Digit Manipulation System
DNATTR	Directory Number Attributes
DND	Do Not Disturb
DNGRP	Di tota Nuclea Casar
DOD	Directory Number Groups
DPC	Direct Outward Dialing
DPN	Destination Point Code
DRAM	Digital Packet Network
	Digitally Recorded Announcement

DSL	Digital Subscriber Loop	
DTCI	ISDN Digital Trunk Controller	AVE AL
DTI	Digital Trunk Interface	
DTRID	Terminating Transaction Identifier	
DU	Data Unit	
E.163	Telephony Numbering Plan	
E.164	North American public dialing plan	
ERWT	Expensive Route Warning Tone	
ESF	Extended superframe format	
ESN	Electronic Switching Network	
ETN	Electronic Tandem Network	
FDL	Facility Data Link	
FNPACONT	Foreign Numbering Plan Area Control table	

112424 - 11.09

FPS	
	Frame Pattern Sequence
EV	
	Foreign Exchange trunk
	r ofergit Exchange trunk
GNCT	
	Generalized No Circuit Treatment
GT	
	Guard Timer
0770	
GIIO	
	Guard Timer Time Out
GTT	
	Global Title Translations
	Home Numbering Plan Area Control table
IAC	
	ISDN Access Controller
IAM	
	Initial Address Message
	-
IBN	Interneted Duringer Natural
	Integrated Business Network
IBNRTE	
	IBN Routing Table
IBNTO	
	IBN Trunk Outgoing
IBNTI	
	IBN Trunk Incoming

IBNT2	
	IBN Trunk 2-way
IBNXLA	IBN Translation Table
IE	Information Element
IEC	Interexchange Carrier
IFC	Interface Type
IID	Interface Identifier
INWAT5	Inward Wide Area Telephone Service
ISA	Integrated Services Access
ISDN	
	Integrated Services Digital Network
ISL	
	ISDN Signaling Link
ISO	International Standards Organization
ISUP	
	ISDN User Part
ITA	
	Integrated Trunk Access

KSETLINE	Keyset Line table
LAPD	Link Access Procedure on the D-channel
LATA	Local Access and Transport Area
LDN	Listed Directory Number
LEC	Listed Directory Number
LEN	Local Exchange Carrier
LINEATTR	Line Equipment Number
	Line Attributes table
	Location Code
LICALLS	Logical Terminal Calls table
LTAP	Logical Terminal Access Privilege
LTCALLS	Logical Terminal Calls table
LTCLASS	Logical Terminal Class table
LTDATA	Logical Terminal Data table

LTDEF	Logical Terminal Definition table	
LTGRP	Logical Terminal Group table	3655 g
LTID	Logical Terminal Identifier	
LTKEY	Logical Terminal Key	
LTMAP	Logical Terminal Map table	
LTNUM	Logical Terminal Number	
MADN	Multiple Appearance Directory Number	
MAP	Maintenance and Administration Position	
MBG	Multiple Business Group	
MCDN	Meridian Customer Defined Networking	
MDC	Meridian Digital Centrex	
MSB	Make Set Busy	
MSDL	Multi-purpose Serial Data Link card (NT6D80)	1430.
	man parpose serai Dan Lini ene (110200)	- X.Š

ISDN PRI description and administration 553-2901-100

MSGBTE	
	Message Route
NACD	Network ACD
NARS	Natural Altamata David Calastian
NFWD	Network Alternate Route Selection
	Network Call Forward
NCFB	Network Call Forward Busy
NCFNA	Network Call Forward No Answer
NCOS	
NOND	Network Class of Service
NCPND	Network Call Party Name Display
NCT	Network Call Transfer
NCTE	
ΝΛΠΤ	Network Customer Terminating Equipment
	Network Authorization Code
NETID	Network Identifier
NETNAME	
	Network Name

NHNT		
	Network Hunt	
NMS		174 B 33.
	Network Message Services	
NN	National Number	
NINTNRAG		
	Non-interworking Network Ring Again	
NMRTNRAG		
	No Message Route Network Ring Again	
NPA	Numbering Plan Area	
NDI	Numbering Fian Alea	
1171	Numbering Plan Indicator	
NRAG		
	Network Ring Again	
NSF	Natwork Specific Eacility	
NGO	Network Specific Facility	
	Network Speed Call	
NSIG		
	Network Signaling	
NXFR		
0.414	INELWORK CALL ITANSIER	
UAM	Operations, Administration, and Maintenance	1000

OFRT	Office Routing table
оно	
OPC	Off-hook Queuing
	Originating Point Code
OSI	Open Systems Interconnection
OTRID	
PI	Originating Transaction Identifier
	Progress Indicator
PBX	Private Branch Exchange
PDN	Primary Directory Number
РНІ	Timary Directory Number
	Packet Handler Interface
Ы	Progress Indicator
PIC	Preferred Inter-LATA Carrier
PNI	
DDI	Private Number Identifier
ותק	Primary Rate Interface

PSTN	
	Public Switched Telephone Network
PTS	
	Per Trunk Signaling
PUB	
	Public (call type)
PVN	
	Private Virtual Network
PVT	
	Private (call type)
ΡX	
	PBX trunks
Q.921	
	CCITT recommendation for Layer 2 of ISDN
Q.931	
	CCITT recommendation for Layer 3 of ISDN (protocol for D-channel messages)
ΟΔΤ	
	Queue Advance Timer
RAGT	
	Reserve Agent Timer
RAN	
	Recorded Announcement
ROSE	
	Remote Operations Service Element
	Route Identification Index

أرادين ورجهة الروائي فالجار الججا والجاري والمراجع والمتعادية والمحاد والم

ISDN PRI description and administration 553-2901-100

ţ

SSP	
	Service Switching Point
STDPRTCT	
	Standard Pretranslator Control Table
STINV	
	Signaling Terminal Inventory Table
STP	
	Signal Transfer Point
SWERB	
	Software Error
TARG	
	Trunk Group Access Restrictions
ТСАР	Transaction Comphilities Application Dest
	Transaction Capabilities Application Part
TCOS	
	Traveling Class of Service
TEI	
	Terminal Endpoint Identifier;
	Terminal Equipment Interface
TFMI	
	Traffic Mix Information
THOUGRP	
	Thousands Group table
TIË	
	Terminal Interexchange line or trunk
TNI	
I IN	Transit Number

ISDN PRI description and administration 553-2901-100

TNCOS	Terminal Number Class of Service
TNS	Transit Natwork Salastar
то	Tansit Network Selector
TON	Time Out
ION	Type of Number
TRKGRP	Trunk Group table
TRKSGRP	T
TRO	I runk Subgroup table
	Trunk Route Optimization (before answer)
UDP	Uniform Dialing Plan
VF	Voice Frequency
VFG	
VIRTGRPS	Virtual Facility Group
	Virtual Facility Groups Table
WAIS	Wide Area Telecommunications Service
XLAIBN	Translate call as private network call

۰.

XLAIEC		
	Interexchange Carrier translation	
XLALEC		-
	Local Exchange Carrier translation	
XLARTE		
	Translation Route	

Index

Numerics

4ESS and 5ESS (AT&T). See AT&T 4ESS and 5ESS systems

A

acronyms. See glossary analog trunks, 2-3, 16-1 ANI (Automatic Number Identification), 11-5 AT&T 4ESS and 5ESS systems, 6-1, 7-16 with Basic Call Service, 9-1 with BRI/PRI Basic Call Interworking, 10-2 with Calling Line Identification, 11-1 correlation data unavailable, 6-1 Meridian 1 compatibility, 7-16 AT&T Call-by-Call nodal service, 15-1 AT&T SDN (Software Defined Network), 15-13, 24-1-24-3

В

B7 coding, 3-7 B8ZS coding, 3-7 Backup D-channels cable requirements, 7-25-7-26 capacity, 8-2 described, 2-11, 8-1, 8-3 features, 8-5-8-7 hardware requirements, 7-23 ISL operation, 16-5 operating parameters, 8-4-8-5 *See also* D-channels Basic Call Interworking (BRI/PRI), 10-1-10-4 Basic Call Service, 9-1-9-6 B-channels described, 2-1 dynamic allocation, 2-12 hunt settings for, 3-13 sharing, 15-1, 17-1 bit error rate, 3-9 BRI/PRI Basic Call Interworking, 10-1–10-4

С

cable requirements, 7-25-7-26 Call-by-Call (AT&T) nodal service, 15-1 calls basic transmission. See Basic Call Service: BRI/PRI (Basic Call Interworking) for data transmission, 12-1-12-2 for digital voice and data transmission, 13-1-13-4 displaying names of calling and called parties, 19-1-19-5 foreign. See FX (Foreign Exchange) trunks identifying. See CLID (Calling Line Identification) managing patters, maximums and minimums per route, 15-5 message handling. See MWI (Message Waiting Indication); NMW (Network Message Services) multiple route sharing. See ISA (Integrated Services Access) network switching. See ESN (Electronic Switched Network) queueing. See RVQ (Remote Virtual Queueing)

ISDN PRI description and administration 553-2901-100

redirecting. See NCRD (Network Call Redirection); NMS (Network Message Services); TRO (Trunk Optimization before answer) reringing. See NRAG (Network Ring Again) setting and modifying types, 4-1-4-2 See also signaling card compatibility and Mcridian 1, 7-19-7-20 carrier system compatibility, 7-3 CDR (Call Detail Recording), 11-5 charging calling parties, 11-5 CLID (Calling Line Identification), 11-1-11-8, 16-1 configuring backup D-channels, 8-8-8-9 CLID, 11-7 ISA routes, 15-15-18 ISL, 16-6-16-14 MWI, 18-7-18-10 NRAG, 22-8-22-15 PRI, 4-1-4-5 X11 ISDN software, 7-2 consoles supported by Calling Party Name Display, 19-1 correlation tables described, 6-1-6-2 for Meridian 1 to DMS-100 switches, 6-10-6-14 for Meridian 1 to DMS-250 switches, 6-15-6-18 for Meridian 1 to Meridian 1 switches, 6-3-6-9 for Meridian 1 to SL-100 switches, 6-1 COTs (Central Office trunks), 2-2 supported by ISA, 15-4, 15-6, 15-8 supported by RVG, 23-3, 23-4 CPND (Calling Party Name Display), 19-1

D

database correlations. See correlation tables data rate parameters, 3-12 data transfers between ISDN PRI and ISDN BRI, 10-1-10-4 **D**-channels adding interfaces, 4-14-4-18 cable requirements, 7-25-7-26 described, 2-1 failure wait intervals with T309 timers, 26-1-26-2 interactions with backup D-channel, 8-5-8-6 in ISL, 2-8, 16-1, 16-5, 16-7-16-10 operating mode restrictions, 3-7 port and loop numbers for, 3-13 requirements, 7-19, 7-22, 7-23 See also Backup D-channels DCH database correlations. See correlation tables DCHI cards adding, 4-14-4-18 testing, 5-8-5-12 dedicated mode (ISL operation), 2-8, 16-3, 16-4, 16-6 DID (Direct Inward Dial) trunks, 2-2, 15-4, 15-6, 15 - 8digital trunks, 2-3, 16-1 digital trunks], 13-1-13-4 direct dial call type, 4-2 directory assistance special number service, 9-3 displaying calling lines. See CLID (Calling Line Identification) call party names (NCPND), 19-1-19-5 DMS-100. See Meridian 1 to DMS-100 switches DMS-250. See Meridian 1 to DMS-250 switches DNIS (Dialed Number Identification Services), 15-14 DOD (Direct Outgoing Dial) trunks/call types, 23-3, 23 - 4DPN (Data Packet Network) access, 12-1-12-2 DTI (Digital Trunk Interface) replacement, 13-1-13-4

E

EAS (Equal Access Service), 9-3–9-4 echo canceller, 7-21 emergency (911) special number service, 9-3 enbloc dialing, 15-13

ISDN PRI description and administration 553-2901-100
error detection, 3-8–3-12 ESF (extended superframe formats), 3-4–3-6 ESN (Electronic Switched Network) access code configuration, 14-2–14-4 features, 14-1, 14-5–14-6 implementation, 14-7–14-10 Private Network Hopoff and Overflow, 14-11–14-12 supported by ISL, 16-1 translation, 14-2 ESS (AT&T). See AT&T 4ESS and 5ESS systems

F

facility database correlations. See correlation tables failure wait intervals with T309 timer, 26-1–26-2 FEX trunks, supported by RVG, 23-3, 23-4 foreign calls. See FX (Foreign Exchange) trunks four-wire transmission mode, 2-3 frames alignment monitoring, 3-10 described, 2-3 formats, 3-2–3-3 slip monitoring, 3-11–3-12 superframe formats, 3-2–3-3, 3-4–3-6 FX (Foreign Exchange) trunks/call types, 2-2, 15-4, 15-7, 15-12

Η

hardware compatibility and Meridian 1, 7-10-7-17 required for ISDN, 7-19-7-26

I

IDC (Incoming Digit Conversion), 11-6, 15-13 IEC (Inter-Exchange Carrier), 9-3 inband signaling, 2-4 Integrated Services Digital Network. See ISDN (Integrated Services Digital Network) interface protocols, 3-14 INWATS ("800" service) calls, 2-2, 15-4, 15-6, 15-12 ISA (Integrated Services Access) described, 2-12, 8-5, 15-1-15-2 feature implementation and route configuration, 15-15-15-18 feature interactions and packaging, 15-13-15-14 feature testing, 15-19 operating parameters, 15-10-15-13 route establishment and access, 15-3-15-5 supported by RVG, 23-3, 23-4 X11 release 16 capabilities, 15-6-15-8 X11 release 17 capabilities, 15-8-15-9 ISDN (Integrated Services Digital Network) described, 2-1 engineering guidelines, 7-1-7-26 hardware requirements, 7-19-7-26 network interfaces, 2-2, 2-6-2-10 references and guides, 1-2-1-3 signaling and protocols, 2-4-2-6 See also Meridian 1; PRI (Primary Rate Interface) ISDN (Integrated Services Digital Network) software packages Basic Call Service, 9-1-9-6 BRI/PRI Basic Call Interworking, 10-1-10-4 CLID (Calling Line Identification), 11-1-11-8 dependencies and compatibilities, 7-7-7-17 DPN (Data Packet Network) access, 12-1-12-2 DTI (Digital Trunk Interface) replacement, 13-1-13-4 ESN (Electronic Switched Network) interworking, 14-1-14-12 ISA (Integrated Services Access), 15-1-15-19 ISL (ISDN signaling link), 16-1-16-15 MWI (Message Waiting Indication), 18-1-18-11 NCRD (Network Call Redirection), 20-1-20-36 NRAG (Network Ring Again), 22-1-22-16 RVQ (Remote Virtual Queueing), 23-1-23-20 SDN (Software Defined Network) access, 24-1-24-3 TRO (Trunk Optimization before answer), 27-1-27-8

ISL (ISDN signaling link) described, 16-1–16-5 feature implementation and configuration, 16-6–16-14 feature testing, 16-15 interface, 2-8, 2-10 ITA (Integrated Trunk Access), 2-11, 17-1

J

Japan D70 PRI supported for BRI/PRI Basic Call Interworking, 10-2

Κ

Kpbs. See data rate parameters

L

LD10 for NCRD configuration, 20-34 LD11 for NCRD configuration, 20-35 LD14 for ISA configuration, 15-17 for ISL configuration, 16-14 for PRI configuration, 4-24-4-25 LD15 for ISL configuration, 16-11-16-12 for NCRD configuration, 20-30 for NRAG configuration, 22-11, 22-14 for PRI configuration, 4-19-4-20 LD16 for AT&T SDN interface configuration, 24-3 for ISA configuration, 15-15-15-16, 15-17-15-18 for ISL configuration, 16-12-16-14 for NCRD configuration, 20-31 for NRAG configuration, 22-15 for PRI configuration, 4-21-4-23 for RVQ configuration, 23-15, 23-19 for TRO configuration, 27-8 LD17 for AT&T SDN interface configuration, 24-2, 24-3 for backup D-channel configuration, 8-8-8-9

and far-end BRI support, 10-4 for ISL configuration, 16-7-16-10 for MWI configuration, 18-7 for NMS configuration, 21-9 for NRAG configuration, 22-11, 22-13 for PRI configuration, 4-8-4-11, 4-14-4-18, 4-26, 4-27 for RVQ configuration, 23-16, 23-17, 23-20 for Software Release ID configuration, 25-2. 25 - 3LD22 for BRI/PRI support, 10-4 for MWI configuration, 18-10 LD23 for MWI configuration, 18-9 LD73 for PRI configuration, 4-6-4-7, 4-12-4-13 LD86 for NRAG configuration, 22-11 for RVQ configuration, 23-15, 23-18 LD87 for NRAG configuration, 22-11 for RVQ configuration, 23-14 LD95 for NCRD configuration, 20-32-20-33 line encoding, 3-7 line rates, 7-2 loops adding, 4-6-4-11 configuring, 4-1-4-2 testing, 5-2-5-8, 5-13-5-16 loss and level plans, 7-4-7-6

М

memory and ROM requirements, 7-24 Meridian 1 advantages, 2-4 correlation tables for Meridian 1 switches, 6-3-6-9 and ISDN, 2-1, 7-2 software packages and hardware compatibility, 7-7-7-17 See also PRI (Primary Rate Interface)

ISDN PRI description and administration 553-2901-100

Meridian 1 to DMS-100 switches and Basic Call Service, 9-1 and CLID (Calling Line Identification), 11-1 compatibility, 7-14-7-15 correlation tables, 6-10-6-14 and data packet network access, 12-1-12-2 D-channel failure wait interval, 26-1-26-2 and Integrated Services Access, 15-6-15-7 and Integrated Trunk Access, 17-1 and Message Waiting Indication, 18-1, 18-3 and Network Name Delivery, 19-4 and Network Ring Again support, 22-3 and 64K Clear Data feature, 9-5-9-6 Meridian 1 to DMS-250 switches and Basic Call Service, 9-1 and CLID (Calling Line Identification), 11-1 correlation tables, 6-15-6-18 D-channel failure wait interval, 26-1-26-2 and Integrated Services Access, 15-7-15-8 and Integrated Trunk Access, 17-1 and Network Name Delivery, 19-4 and Network Ring Again support, 22-3 Meridian 1 to Meridian 1 switches correlation tables, 6-3-6-9 and Integrated Trunk Access, 17-1 and Network Name Delivery, 19-3, 19-4 and Network Ring Again support, 22-3 and 64K Clear Data feature, 9-5-9-6 Meridian 1 to SL-100 switches, 6-1 and Basic Call Service, 9-1 and CLID (Calling Line Identification), 11-1 compatibility, 7-14-7-15 and Integrated Trunk Access, 17-1 and Message Waiting Indication, 18-3 and Network Ring Again support, 22-3 and 64K Clear Data feature, 9-5-9-6 Meridian Mail. See MWI (Message Waiting Indication) message services. See MWI (Message Waiting Indication); NMS (Network Message Services) MHVS (Meridian Hospitality Voice Services), 21-6 modems, 7-21

MSDL (Multi-purpose Serial Data Link) cards adding, 4-17–4-18 loopback testing, 5-13–5-16 MWI (Message Waiting Indication) described, 18-1–18-2 feature implementation and configuration, 18-7–18-10 features, 18-4–18-7 operating parameters, 18-3 operation, 18-10–18-11

Ν

NACD software release identification, 25-1 nB + D PRI, 2-7, 2-9, 15-13 NCOS (Network Class of Service), 14-1 NCPND (Network Call Party Name Display), 19-1-19-5 NCRD (Network Call Redirection) with TRO (Trunk Optimization before answer), 27-1-27-8 configuration scenarios, 20-6-20-14 described, 20-1-20-2 feature implementation and configuration, 20-29-20-35 feature testing, 20-36 Network Call Forward Busy, 20-15-20-18 Network Call Pickup, 20-28 Network Hunt, 20-19-20-22 Network Transfer, 20-23-20-27 with NMS Meridian Mail, 21-5-21-6 originating/terminating party notification, 20-3-20-5 software release identification, 25-1 network interfaces with AT&T's SDN, 24-1-24-3 described, 2-2 release 17 & 18 features, 7-18 supported by ISL, 16-1 types, 2-6-2-10 networks displaying call party names (NCPND), 19-1-19-5 See also NCRD (Network Call Redirection) NMS (Network Message Services) described, 21-1-21-3 feature implementation procedures, 21-8-21-12 feature interactions and packaging, 21-5-21-8 feature testing, 21-13 Meridian Mail access, 21-4, 21-6 Message Center configurations supported, 21-3-21-4 operating parameters, 21-5 software release identification, 25-1 NND (Network Name Delivery), 19-1, 19-3-19-4 NRAG (Network Ring Again) described, 22-1-22-4 feature implementation and configuration procedures, 22-8-22-15 fcature interactions and packaging, 22-6-22-7 feature testing, 22-16 operating parameters, 22-5-22-6 software release identification, 25-1 NRC (Non-RVQ Compatible) trunks, 23-2, 23-8 NSF (Network Services Facility), 15-4 numbering plans with Basic Call Service, 9-3

0

options (system models). See system options out-of-band signaling, 2-4, 9-1, 16-1 OUTWATS calls, 2-2, 15-4, 15-6, 15-12

Ρ

PBX models and services available, 2-2-2-3 PBX-to-Public Exchange trunks, 2-2 port loss and level plans, 7-4-7-6 PRI (Primary Rate Interface) configuring, 4-1-4-5 defining customers, 4-19-4-20 defining trunk routes, 4-21-4-25 described, 2-4-2-5 error detection, 3-8-3-12 parameter and protocol coordination, 3-1-3-14 service verifications, 5-1-5-16 testing, 5-1-5-7 types, 2-6–2-7, 2-9 See also ISDN (Integrated Services Digital Network; Meridian 1 PRI database correlations. See correlation tables Private call types with ISA, 15-4, 15-12 Private Network Hopoff and Overflow, 14-11–14-12 prompts and responses. See correlation tables; "individual LDnn programs" protocol layers. See correlation tables protocols for signaling, 2-6 PSTN (Public Switched Telephone Network), 9-3 PTS (per-trunk signaling), 2-4 Public call types with ISA, 15-4, 15-12

Q

queueing functions. See RVQ (Remote Virtual Queueing)

R

releases identifying, 25-1-25-3 17 and 18. See X11 release 17; X11 release 18 responses. See correlation tables; "individual LDnn programs" ring again feature. See NRAG (Network Ring Again) ROM requirements, 7-24 **RVQ** (Remote Virtual Queueing) described, 23-1 feature implementation and configuration procedures, 23-14-23-20 feature interactions and packaging, 23-5-23-6, 23-13 feature operation, 23-6-23-13 operating parameters, 23-2-23-4

S

SDN (Software Defined Network -- AT&T), 15-13, 24-1-24-3 shared mode (ISL operation), 2-8, 16-2, 16-3, 16-6 SID (Service Identifier), 11-5, 15-5, 15-6

signaling backup channels for, 2-11 described, 2-4-2-5, 7-3 protocols, 2-6 replacing conventional with out-of-band D-channel, 16-1 trunk sharing, 15-1, 17-1 See also calls; trunks signaling link. See ISL (ISDN Signaling Link) 64K Clear Data feature, 9-5-9-6 SL-100. See Meridian 1 to SL-100 switches slip monitoring, 3-11-3-12 software packages and dependencies for Meridian 1, 7-7-7-9 See also "features by name"; releases Software Release ID, 25-1-25-3 superframe formats, 3-2-3-3, 3-4-3-6 switches correlation tables for coordinating, 6-1-6-2 supporting Basic Call Service, 9-1 See also Meridian 1 to X switches symmetric interface protocols, 3-14 system compatibilities for X11 ISDN software, 7-2 system options 21, 51, 61, 71, and 81 supported for ISA, 15-10 supported for ISDN, 7-2 system options ST, STE, NT, RT, and XT, 15-10

Т

T-1 carriers, 2-3 T1 links compatibility, 7-2 sharing, 17-1 T309 Timers, 26-1–26-2 telephone models supported by Calling Party Name Display, 19-1 *See also* calls test equipment, 7-21 testing

DCH, 5-8-5-12 ISA features, 15-19 ISL features, 16-15 MSDL loopbacks, 5-13-5-16 NCRD features, 20-36 NMS features, 21-13 NRAG features, 22-16 PRI, 5-1-5-7 TIE trunks/call types, 2-2, 15-4, 15-7, 15-12 supported by ISL, 16-1, 16-2 supported by RVG, 23-3, 23-4, 23-9 timers, 26-1-26-2 timeslots, 2-3 tones on call redirection, 20-4-20-5 transmission modes and characteristics, 7-3-7-6 TRO (Trunk Optimization before answer), 27-1-27-8 trunks described, 2-2 NRC (Non-RVQ Compatible), 23-2, 23-8 sharing, 15-1, 17-1 types supported, 7-4 See also signaling 23B + D PRI, 2-6-2-7 two-wire transmission mode, 2-3

U

user to network interface protocols, 3-14

V

voice-grade channels and data, 2-3, 9-2 voice transmission requirements, 7-4

W

WATS (Wide Area Telecommunications Services) trunks, 2-2, 15-6, 23-3, 23-4

Х

X11 release 14 and Network Ring Again support, 22-3, 22-8, 22-9, 22-10 X11 release 15 and Network Message Services support, 21-1 and Network Ring Again support, 22-3, 22-8, 22-9, 22-10, 22-11 X11 release 16 ISA capabilities, 15-6-15-8 and Network Message Services support, 21-1 X11 release 17 and AT&T SDN support, 24-2 backup D-channel configuration, 8-8 database correlations, 6-6, 6-8, 6-12, 6-17 and digital trunk interface replacement, 13-3 ISA capabilities, 15-8-15-9 ISL configuration procedures, 16-6-16-8 NRAG configuration procedures, 22-12, 22-13 PRI configuration procedures, 4-5, 4-8-4-9, 4-14-4-16, 4-26 Software Release ID configuration, 25-2 system types supported, 7-2

X11 release 18 and AT&T SDN support, 24-3 backup D-channel configuration procedures, 8-9 database correlations, 6-7, 6-9, 6-13, 6-17 and digital trunk interface replacement, 13-3-13-4 ISL configuration procedures, 16-9-16-10 NRAG configuration procedures, 22-12, 22-13 PRI configuration procedures, 4-4-4-5, 4-10-4-11, 4-17-4-18, 4-27 Software Release ID configuration, 25-3 system types supported, 7-2 X11 release 19 support for MWI, 18-5, 18-8

Υ

yellow alarms, 3-8

i

SL-1 ISDN Primary Rate Interface

Description and administration

Copyright © 1989 Northern Telecom All rights reserved. Information subject to change without notice. Release 8.0 Standard October 31, 1993 Printed in the U.S.A.

SL-1 Feature Group D

Description and operation

Publication number: 553-2901-102 Product release: X11 release 17 Document release: 1.0 Document status: Standard Date: December 1, 1991

© 1991 Northern Telecom

All rights reserved.

1000 m

Revision history

December 1,1991

This is a new document issued for X11 release 17.

Co	nte	nts
----	-----	-----

Introduction Packaging Related documentation	1 3 4
Description	5
Local network and end office switching	5
Originating features	5
Domestic dialing plan	6
Presubscription	6
Service Access Code	6
ANI	7
Signaling protocol	7
Carrier test lines	7
Outpulsing	8
Terminating features	8
LEC test lines	8
Interface protocol	8
Direction	8
Signaling protocol	9
Terminating protocol	9
Exchange Access North American Signaling (EANA)	9
Carrier classification	10
Call categories and pulsing formats	11
EANA protocol specifications	14
LEC-to-Carrier pulsing	14
	14
Alternative arrangements	15
	10
Terminating protocol example	17 18

Feature Group D 553-2901-102

iii

Hardware MF senders MF receivers Feature interactions Access restriction Barge-In Call Detail Recording (CDR) Calling Line ID (CLID) Call Party Disconnect Control (CPDC) Call Party Disconnect Control (CPDC) Call Party Name Display (CPND) Customer Controlled Routing (CCR) Digit Display Direct Number Identification Service (DNIS) Incoming Digit Conversion (IDC) ISDN PRI and ISL Network Alternate Route Selection (NARS) Network Call Redirection (NCRD) Malicious Call Trace (MCT) Minor Alarm Private line service Traffic measurements Trunk Group Distinctive Ringing Trunk Verification from a Station (TVS)	19 19 20 23 23 27 27 28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 30 30
Feature operation	31
Example of using the FGD feature	3 I 0 1
How to initiate a can	31
	ა∠ 20
Local termination	J∠ 24
Calls inside World Zone 1 (7 digits)	24
Calls inside World Zone 1 (10 digits)	24
Calls inside World Zone 1 (0+ and 0-)	35
Information digits screening for incoming calls	37
FGD call intercept	39
Incoming test calls (7 and 3 digits)	39
Authorization Gode prompting	40
LEC trunk grouping and ANI provision by call category	41
LEC trunk grouping	41
ANI provisions	41

List of terms	71
LD32 - Network peripheral equipment diagnostics	70
LD30 - Network and signaling diagnostics	70
Commands Description	68
LD 34 - Tone and digital switch	67
Maintenance and diagnostics	67
Engineering guidelines	55
Implementation	55
MF Receiver guidelines	48
Transitional configurations	47
Parameters	47
Operating parameters	47
Transmission characteristics	46
CDB records	40
Outgoing test calls	40 15
ANI number display devices	45
ANI display	44
ANI digits as Calling Line ID (CLID)	44
Invalid ANI treatment	43
Partial ANI digits	43
10 ANI digits	42
ANI digits screening	42

1

1.

vi Contents

Introduction

The purpose of Feature Group D (FGD) interface is to provide access to corporate networks from off-net sources.

Feature Group D defines interconnection rules between the Local Exchange Carrier (LEC) and an Interexchange carrier (Carrier) like AT&T, or MCI.These rules provide Equal Access (EA), which determine the same level of service and quality of transmission for all carriers. This guarantees that all carriers are processed equally.Generally, Feature Group D (FGD) provides the following:

- routing interLATA calls from telephones presubscribed (individual calling customers have the option to designate one Carrier to whom interLATA calls should be routed) to the carriers Point of Termination (POT)
- routing all calls prefixed by the Carrier Access Code to the carrier selected by the user
- passing dialed digits, Automatic Number Identification (ANI) digits, and other information to the Carrier for billing, screening, routing, and other call services

Equipping Meridian 1 switches with Feature Group D (FGD) allows the network owner to operate as an Interexchange Carrier (Carrier), subject to Local Exchange Carrier (LEC) regulations.

A typical Feature Group D (FGD) configuration is shown in Figure 1.In this case, the corporate network contains Meridian 1 switches.

Figure 1 Configuration example

Packaging

Feature Group D (FGD) package number 158, must be ordered with the following required packages:

- Basic Alternate Route Selection (BARS), package 57
 - Network Alternate Route Selection (NARS), package 58, is recommended to support greater flexibility and translation capability
- Network Class of Service (NCOS), package 32
- Basic Routing (BRTE), package 14

The packages listed below are required for additional optional capabilities:

- Call Detail Recording Expansion (CDRE), package 151, provides Automatic Number Identification (ANI) information in the records.
- Digit Display (DDSP), package 19 allows Automatic Number Identification (ANI) display.
- Network Authorization Code (NAUT), package 63, provides Network Authorization functions.
 - NAUT requires Basic Authorization Code (BAUT), package 25, and Charge Account (CAB), package 24.
- Automatic Trunk Maintenance (ATM), package 84, allows Automatic Trunk Maintenance capabilities.(ATM cannot be invoiced on trunks controlled by "D Channel".)
 - ATM requires Tone Detector (TDET), package 65.
- ISDN Primary Rate Interface (PRI) package 146, or ISDN Signaling Link (ISL) package 147, is required to provide Automatic Number Identification (ANI) digits as Calling Line Identification (CLID).
 - ISDN Signaling (ISDN), package 145, is required for either PRI or ISL.

Related documentation

Refer to the following documents for additional information:

- X11 features and services (553-3001-305)
- X11 input/output guide (553-3001-400)
- Meridian Customer Defined Networking Network Software Services (NSS) reference manual (555-8001-115)
- Call Detail Recording Description (553-2631-100)
- Traffic measurement (553-2001-450)

Description

Local network and end office switching

A *calling customer* is the Local Exchange Carrier (LEC) customer that requests an end-to-end connection (originating call.) A *called customer* is the LEC customer with whom the calling customer wants to speak (terminating access call).

The Local Exchange Carrier (LEC) for FGD has two levels.

- The End Office is where the calling customer lines are connected.
- The Access Tandem is where the switching system (any switch that provides FGD features) distributes traffic among the end offices that use the tandem within the LATA.

Access to FGD can be either directly from an end office or through an access tandem.Services provided for direct and tandem access are the same since calling customer differences are not noted.

Originating features

A calling customer can place only Domestic call types, known as call categories. A Domestic call originates and terminates within World Zone 1 (WZ1).

Note: Currently, the customer may not dial outside the North American Dialing Plan.Certain locations outside of the continental United States, but still within World Zone 1 (WZ1), may require international dialing and are not supported under the domestic dialing plan.For example, the Caribbean is within WZ1 but requires international dialing capabilities.Therefore, the calling customer in this particular location cannot use the plan.

Domestic dialing plan

Use the following sequence for Domestic calls through FGD.

(10XXX) + (0/1) +7/10D		
Legend:		
() Parenthesis	Indicates the numbers within the parenthesis may not be required for dialing.	
/ Slash	Indicates either one or the other may be used.	
10XXX	Designates that the call be handled by the Carrier network.	
0	Requests Northern Telecom Dial 0 services.	
1	May be required for some 7 or 10 digit calls.For example, a 1 may indicate 10 digit dialing.	
7/10D	Represents the 7 or 10 directory number for the Called Customer.	

Presubscription

A presubscription Carrier is a designated Carrier which the Calling Customer selects to route Domestic calls without a 10XXX designator.By dialing the 10XXX code, you can override this presubscribed Carrier.

Service Access Code

Service Access Codes (SACs) are Number Plan Area (NPA) codes assigned for special use.Normally NPA codes are used to identify specific geographical areas.However, some NPA codes within the North American Numbering Plan (NANP) are designated as SAC codes to indicate generic services or access capability.

Currently four NPA codes are designated as SAC codes: 610, 700, 800, and 900.Each is associated with a specific service or access capability:

- 610 SAC is assigned to Canada for TWX service
- 700 SAC is reserved for the Carrier
- 800 SAC is assigned for toll-free numbers
- 900 SAC is reserved for special services such as pay-subscription.

Further, SACs provide the option to assign access capability to the LEC and Carrier network.SACs subdivide into categories that define the Carrier identification requirements.

Ancillary Carrier identification (10 digit translation)

Access this category by dialing (1) + SAC-NXX-XXXX.Do not enter the 10XXX access code.The full 10 digits are translated to determine the Carrier.

Embodied Carrier identification (6 digit translation)

Access this category by dialing (1) + SAC-NXX-XXXX.Do not enter the 10XXX access code.The 6 digits (SAC-NXX) are translated to determine the Carrier.

External Carrier identification

Access this category by dialing (10XXX) + (0/1) + SAC-NXX-XXXX. The Carrier is determined by the 10XXX access code. If the 10XXX is not dialed, the presubcribed Carrier routes the call.

ANI

For billing and screening purposes, the Carrier can have ANI digits precede the called party address. The ANI will include two information digits, followed by the Calling customer's area code and billing number. If the billing number is not available, the ANI digits are followed by the area code only.

Signaling protocol

FGD can use the following signaling protocols for originating (LEC to Carrier) calls.

- Exchange Access North American (EANA)
- Terminating protocol for test calls only

Carrier test lines

The only test lines supported by FGD are those supported by the Meridian 1 system. For a complete description of the carrier test lines, refer to *Transmission Testing Capabilities* (553-2001-325).

Outpulsing

Exchange access signaling is implemented with overlap signaling or outpulsing.

Terminating features

Only test calls are supported for outgoing FGD calls.

LEC test lines

The following types of test lines may be provided by the LEC.

- balance (100 type)
- nonsynchronous or synchronous
- automatic transmission
- data transmission (107 type)
- measuring (105 type)
- loop around
- short circuit
- open circuit

Interface protocol

Direction

Trunks are characterized according to the direction that supervisory and address signals are applied.

- A one way outgoing trunk from the LEC carries the originating calls.

Note: One way outgoing trunks, from the LEC to the Carrier, do not provide Carrier test capability.

- A one way incoming trunk carries terminating calls.
- A two way, both incoming and outgoing, carries both originating and terminating calls.

Signaling protocol

The signaling protocols supported are Terminating protocol for outbound test lines only and Exchange Access North American (EANA) signaling.

Terminating protocol

In addition to the originating signaling protocol, there is one terminating protocol for line tests as follows:

- 1 The Carrier seizes a trunk to the LEC and applies a connect (off-hook) signal to the trunk.
- 2 The LEC responds with a wink-start signal which informs the Carrier that the LEC is ready to receive the address field.
- 3 On receipt of this wink-start signal from the LEC, the Carrier will MF outpulse the address field.
- 4 The LEC screens and translates the address field. If the terminating call is delivered to the appropriate end office, the LEC completes the call to the proper called customer. A Carrier may have to establish more than one POT to obtain access to an entire LATA.
- 5 When the called customer answers, answer supervision (off hook) is passed to the Carrier from the LEC. The time that the off hook signal is received by the LEC is recorded by Automatic Message Accounting (AMA) as the customer answer time.
- 6 When the call is over, the disconnect sequence is initiated. The time that the on-hook signal is received is recorded by AMA as the disconnect time.

Exchange Access North American Signaling (EANA)

Exchange Access North American Signaling (EANA) signaling consists of two fields: the identification field, and the address field.

- The Identification field contains the calling customer's identification number, or ANI digits.
- The Address field contains the called number.

This arrangement allows the identification field (ANI digits) to be pulsed to the Carrier before the called number. With the addition of overlap pulsing, which initiates pulsing to the Carrier before the customer has completed dialing, post-dialing delay is minimized. The originating call process follows:

- 1 After the customer receives all but the last four digits of the called number, the LEC initiates actions to seize a trunk to the Carrier.
- 2 The Carrier responds to the trunk seizure with a wink-start signal when ready to receive pulsing. The time that the wink-start signal is received is recorded by Automatic Message Accounting (AMA) as the Carrier connect time.
- 3 After receiving the wink-start signal from the Carrier, the LEC starts MF outpulsing the identification field.
- 4 When both customer dialing and outpulsing of the identification field are completed, the LEC outpulses the address field.
- 5 When the Carrier receives all the pulsing information, it responds with an acknowledgment wink.
- 6 After receiving the acknowledgment wink, the LEC connects the talking path from the calling customer to the Carrier.
- 7 After the called customer answers, the answer off-hook signal is sent from the Carrier to the originating LEC. The time that the off-hook signal is received is recorded by AMA as the customer answer time.
- 8 When the call is completed, the disconnect sequence is initiated. The time that the on-hook signal is received is recorded by AMA as the disconnect time.

Carrier classification

Interexchange Carrier (IC) provides connections between LATAs and serving areas where the calling and called customers are located in World Zone 1.

International Carrier (INC) provides connections between a customer located in the contiguous 48 United States and a customer located outside World Zone 1.

Consolidated Carrier (IC & INC) are carriers that provide connections as described in both of the above.

When calls are being forwarded to Carriers using exchange access signaling, the protocol is influenced by the classification of the receiving Carrier.The IC and IC & INC receive calls destined for customers located in World Zone 1 with EANA signaling.

Call categories and pulsing formats

The call categories are based on the information dialed by the originating customer. Table 1 identifies the applicable call categories for FGD switched access service.

Table 1 Call categories

Customer dials	Call category		
10XXX)+(1)+(NPA)+NXX+XXX (Inside WZ1) 1+ NPA is in area covered by North American Numbering Plan			
(10XXX)+0+(NPA)+NXX+XXXX (Inside WZ 1) 0+ - NPA is in area covered by North American Numbering Plan			
(1)+SAC+NXX+XXXX 1+(Embodied SAC)			
(10XXX)+(1)+SAC+NXX+XXXX	1+(External SAC)		
(10XXX)+(0)+SAC+NXX+XXXX	0+(External SAC)		
95Y+XXXX y = 8 or 9	Test (7 digits)		
10X	Test (3 digits)		
Legend:			
() = variable inclusion whole contents may not be required NPA = area code in North American Numbering plan NXX = end-office code in North American Numbering plan SAC = service access code WZ = World Zone			

Table 2 shows the protocols available for each call category depending on the Carrier classification.

Table 2 Interface protocols

Call category	IC	IC & INC	
(Inside WZ1) 1+	EANA	EANA	
(Inside WZ1) 0+	EANA	EANA	
10XXX+0	EANA	EANA	
1+(Embodies SAC)	EANA	EANA	
1+(External SAC)	EANA	EANA	
0+(External SAC)	EANA	EANA	
Test	EANA	EANA	
Legend:			
IC = Interexchange Carrier IC & INC = Consolidated Carrier EANA = Exchange Access North American Signaling OS-1 = Operator Services Signaling - Inside World Zone 1 OS-0 = Operator Services Signaling - Outside World Zone 1			

. .

Tables 3 and 4 summarize the pulsing formats by call category for EANA and terminating protocols, respectively.

Table 3 Access North American signaling

Call category	Identification field	Address field
(Inside WZ 1) 1+	KP+(II+3/10D)+ST	KP+(NPA)+NXX+ XXXX+ST
(Inside WZ 1) 0+	KP+(II+3/10D)+ST	KP+0+(NPA)+NXX +XXXX+ST
10XXX+0	KP+(II+3/10D)+ST	KP+0+ST
1+(Embodied SAC)	KP+(II+3/10D)+ST	KP+SAC+NXX+X XXX+ST
	KP+(II+3/10D)+ST	KP+SAC+NXX+X XXX+ST
0+(External SAC)	KP+(II+3/10D)+ST	KP+0+SAC+NXX+ XXXX+ST
Test (7D)	none	KP+95Y+XXXX+S T
Test (3D)	none	KP+10X+ST
Legend: II = 2-digit code for ANI information 3/10D = 3 or 10 digit Y = 8 or 9 3D = 3 digits 7D = 7 digits		

Table 4 Terminating protocols

Call category	Address field
IC calls to directory numbers within LATA	KP+(NPA)+NXX+XXX+ST
IC calls to Directory Assistance Service (555+1212)	KP+(NPA)+555+1212+ST
IC calls to LEC Test Lines -see note 1	KP+95Y+XXXX+ST - Y=8 or 9 or KP+10X+ST
<i>Note:</i> End-office codes other than 95Y can some areas.	be used with LEC test lines in

EANA protocol specifications

LEC-to-Carrier pulsing

The format restrictions on the pulsing combinations for calls in the (Inside WZ 1) 1+ and (Inside WZ 1) 0+ categories are:

Identification field	Address field
KP+(II+3/10D)+ST	KP+(0)+7/10D+ST

The format restrictions on the pulsing combinations are:

- The first digit in the identification field after KP is never 1.
- The start pulse at the end of the identification sequence is not primed.
- The 7/10 D in the address field conforms with the NANP.

Variations

Identification Field – When ANI is being provided, the structure of the identification field is:

- KP+(II+3/10D)+ST

The variations in the field are:

- Information digits (II)

Table 5 is the default table that shows the digit pair default assignments.

Information digits	Explanation
00	Regular line
01	4- and 8-party
06	Hotel/Motel
07	Coinless
10	Test call
12 - 19	cannot be assigned because of conflicts with 1NX used as first digits in international calls
20	AIOD listed directory number sent
27	Coin
95	Test Call
	1

Table 5 Information digits (II)

Alternative arrangements

ANI - The Carrier may elect to receive ANI or not to receive ANI.

The ANI digits are the full 10-digit billing number, including the numbering plan area (NPA), except when the calling line's billing number cannot be identified. When calling line's billing number cannot be obtained, a 3-digit NPA, associated with the originating end office, is sent.

Without ANI, the basic format of the pulsing stream received by the Carrier is as follows:

- KP+ST+KP+(0)+7/10D+ST

The identification field without ANI, is reduced to KP+ST.By eliminating ANI, the two information digits (II) are also eliminated.

Time limits

Wink-Start — The Carrier returns the wink-start signal within 3.5 seconds (CSWT) of the trunk seizure.

Wink-Start Guard — The end of the wink-start signal must not occur before 210 ms (CSWT) after receipt of the incoming seizure signal. The Carrier must be prepared to receive MF pulses 35 ms after the end of the wink-start signal. The LEC waits for 50 ms (BSWT) after the end of the wink-start signal before initiating MF pulsing.

Acknowledgment Wink — The Carrier responds with the acknowledgment wink between 200 ms (CSWT) and 3.5 seconds (CSWT) after receipt of the complete address field. The Carrier should not attempt to use the talking path for communication with the calling customer before returning the acknowledgment wink.

Answer – The Carrier provides an on-hook state continuing for at least 250 ms (CSWT) between the acknowledgment wink and the steady off-hook signal indicating called party answer.

EANA protocol example

Tables 6 and 7 show examples of several originating calls using EANA protocol.

Table 6 EANA protocol - customer dials a World Zone 1 number

Situation Customer dials (10990)+(1)+815+NXX+XXXX Trunk group uses exchange access North American signaling protocol			
Interfa	ce interactions		
LEC Customer finishes dialing all but last 4 digits	POT	Meridian 1	
Seize	>	Wink	
Identification field KP+00+212+555+XXXX+ST	>		
Customer finishes dialing			
Address Field KP+815+NXX+XXXX+ST	>	Acknowledgement Wink	
LEC connects talking path			
Disconnect		Answer Disconnect	
Interpretation Class of service of calling line is Regular (II=00). Billing number of calling line is 212+555+XXXX. Dial 0 calling service are not requested (1+call). Called number is 815+NXX+XXXX.			

Terminating protocol example

Table 7 shows an example of a call to a LEC test line using the FGD Terminating Protocol.

Table 7 Terminating protocol - carrier call to a LEC test line

Situation Carrier's craftsperson to connect to a LEC test line Trunk group uses terminating signaling protocol				
Meridian 1	РОТ	LEC		
Seize	>			
	<	Wink		
Address Field				
KP+95Y+XXXX+ST	>			
	<	Answer		
Test				
Disconnect	>			
		Disconnect		
Interpretation				
Requests connection of incoming trunk to text line 95Y+XXXX, where Y=8 or 9. Carriers should note that office codes other than 95Y can be used with LEC test lines in some areas.				

Hardware

This section describes the Meridian 1 hardware requirements for FGD.

Trunks

Any trunk hardware supporting EAM, EM4 or LDR line signaling can be used for FGD trunks including digital channels.

MF signaling

FGD trunks need MF tone receiving hardware for incoming calls and MF tone sending hardware for outgoing calls.

MF tone sending is provided by the existing MF loop or by the Meridian 1 Conference/TDS card.

MF tone receiving is provided by a new OPC 916 MF Receiving Card (MFRC).

MF senders

For the non-Meridian 1 environment, the existing MF-loop provides MF sending capability. In a Meridian 1 environment, the MF sending capability of the Conference/TDS card is used. The generic abbreviation MFS is used throughout this document to denote both kinds of senders.

The Meridian 1 feature provides support for Conference/TDS and MF-loop coexistence and coordinated operation:

- Both MF-loops and Conference/TDS loops are eligible when MF sending is needed for an outgoing trunk.(This was needed for CAMA and CCSA type trunks only prior to the present feature).
- Both MF loops and Conference/TDS loops can serve Meridian 1 and/or non-Meridian 1 trunks.
- The MF sending services provided by the Meridian 1 feature is used for terminating calls on FGD trunks. Only terminating test calls are supported.

MF receivers

A new MF Receiver Card (MFRC) is available - the QPC916. The MFRC is used to service incoming calls on all current FGD trunks.

General description

Each MFRC contains two independent MF receivers that use digital signal processing technology. The card can be plugged into any standard EPE shelf. Table 8 provides the MFR specifications:

Table 8 MFR specifications

Parameter	Limits	Conditions		
1.General:				
— # of receivers	2			
— coding	U Law			
2.Input frequencies (HZ)	700	Unless otherwise noted.		
	900	hi tone: -7 dbm		
	1100	lo tone: -7 dbm		
	1300	Freq: nominal		
	1500	Noise: -25 dbm, white		
	1700	Signal duration: 50 ms Pause duration: 50 ms		
 3.Frequency discrimination: must accept 	+/- (1.5%+5Hz)	Noise: -30 dbm		
4.Input level:				
— must accept	0 to -25 dbm per tone			
 must reject 	below -35 dbm per			
	tone			
5.Signal duration:				
— must accept	>30 ms	All signal except KP		
— must reject	<10 ms	0		
— must accept (KP)	>55 ms	KP signal		
— may accept (KP)	>30 ms	KP signal		
— must reject (KP)	<10 ms	KP signal		
6.Signal interruption				
 ignore interruption 	<10 ms	After minimum length signal has been received		
7.Time Shift between two frequencies:				
— must accept	<4 ms			
Coincidence between the two				
frequencies:				
— must reject	<10 ms			
8.Inter-digit pause		A pause means:		
— must accept	>25 ms	signal <-35 dbm		
9.Max dialing speed	10 digits per second	ĺ		
continued				

Table 8 MFR specifications (continued)

Parameter	Limits	Conditions	
10.Tolerance to twist: — must accept	<6 db	One tone relative to the other tone.	
11.Reception in presence of disturbances:			
12.Error rate in presence of white noise	< 1/2500 calls	Nominal freq: -23 dbm/tone On/Off = 50/50 ms Signal to noise ratio = (- 20 db all digits each call) - (10 digits)	
13.Immunity to impulse noise error rate	< 1/2500 calls	Nominal freq: -23 dbm/tone On/Off = 50/50 ms Signal to noise ratio = - 12 db ATT Digit simulation test tape #291m from pub. 56201 Duration: 1 hour	
14.Power lines:			
— error rate	< 1/2500 calls	60 Hz signal at -9 dbm or 180 Hz signal at -22 dbm	
15.Third freq:			
 must accept in the 			
presence of third freq. If it is:	< -28 db	Below each frequency	
Note: Digit is accepted if there are only 2 valid frequencies.			
Feature interactions

The following paragraphs describe the interactions between the listed features and Feature Group D only.For a complete explanation of these features, see *X11 features and services* (553-3001-305).

Access restriction

FGD trunks must have Answer Supervision and Disconnect Supervision.

Outgoing FGD trunks are supported for testing purposes only.

Incoming FGD trunks have Unrestricted Access (UNR) with the following limitation:

 FGD trunks cannot terminate to FR1 TIE trunks or FR1 stations because they are, by definition, denied access to and from the exchange network.

Table 9 shows the access summary from FGD trunks for the listed functions.

Access summary from FGD trunks

	Conference, Privacy release, Mixed sets	Hunting, Direct Access	Night Posting, Call Pickup, TAFAS, Call Forward	Attendant extended	Hold, Call Transfer
WATS	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
FX	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
CCSA UNR TO SRE	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
CCSA FRE	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
CCSA FR1	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
CCSA FR2	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
DID	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
со	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
		-	– continued —		

Access summary from FGD trunks (continued)

	Conference, Privacy release, Mixed sets	Hunting, Direct Access	Night Posting, Call Pickup, TAFAS, Call Forward	Attendant extended	Hold, Call Transfer
TIE UNR TO SRE	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
TIE FRE	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
TIE FR1	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
TIE FR2	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
STN UNR TO SRE	Access allowed if signaling arrangements permit	No restrictions	No restrictions	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
STN FRE	Access allowed if signaling arrangements permit	No restrictions	No restrictions	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
STN FR1	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
STN FR2	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
PAG	Access not allowed	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console	Only consultation- hold allowed
DICT	Access not allowed	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console	Only consultation- hold allowed
			– continued –		

Access summ	nary from	FGD trunks	(continued)	
r				

	Conference, Privacy release, Mixed sets	Hunting, Direct Access	Night Posting, Call Pickup, TAFAS, Call Forward	Attendant extended	Hold, Call Transfer
RAN	Access not allowed	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console	Only consultation- hold allowed
AIOD	Access not allowed	Access not allowed	Access not allowed	Access not allowed	Access not allowed
CCSA ANI	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit
CAMA	Access allowed if signaling arrangements permit	TGAR restricted only	TGAR restricted only	Access allowed, but call is held on console loop if signaling is not permitted	Access allowed if signaling arrangements permit

When a fully restricted party receives calls through an unrestricted FGD trunk, the restriction still applies. Table 10 shows that though calling parties have various levels of access (FRE, FR1, and FR2), the restrictions for the FGD trunk apply.

Connection type	Allov	enied		
	FRE	FR1	FR2	
Direct Access	A	D	D	
Conference or Transfer	А	D	D	
CFO	А	D	D	
CFF	А	А	А	
Call Forward No Answer	А	D	D	
Call Forward Busy	No	t applical	ole	
Hunt	А	D	D	
MIX, MULT, Private Line	А	D	D	
TAFAS (of W by Z)	А	D	D	
Call Pick Up (of W by Z)	А	D	D	

Table 10 Restricted access summary from FGD trunks

Automatic Trunk Maintenance (ATM)

FGD trunks support Automatic Trunk Maintenance (ATM).Automatic test lines are provided by the LEC for T100 and loop lines using a reference and a test trunk.For more information, see LD92 in the *X11 input/output guide* (553-3001-400).

Barge-In

Barge-In is not supported on an FGD trunk.

Call Detail Recording (CDR)

ANI information can be included in the CDR records. For a complete discussion, see *Call Detail Recording reports and formats* (553-2631-100).

Calling Line ID (CLID)

When an FGD call is routed over ISDN PRI or ISL, the complete 10 digit ANI number is provided as the CLID. Three Digit ANI numbers are not treated as CLID.

Call Party Disconnect Control (CPDC)

On an incoming FGD route, you can allow Call Party Disconnect Control.We recommend that you do not allow CPDC.If CPDC = YES, any disconnect signal received from the LEC is ignored.

This does not apply to test calls.

Call Party Name Display (CPND)

The name defined for the incoming FGD trunk access code will be displayed.

Customer Controlled Routing (CCR)

The ANI is used as the CLID when sent to the CCR processor for displaying the calling party number.

Digit Display

FGD supports Digit Display where allowed.

Direct Number Identification Service (DNIS)

To support DNIS on an FGD route define the route with DNIS = YES and NDGT = 3 or 4. This enables the last three or four digits in the FGD address field to act as the DNIS number. For every incoming FGD call, the DNIS is saved. Normal FGD termination uses NARS to reach an ACD DN.

Incoming Digit Conversion (IDC)

Incoming Digit Conversion (IDC) is not supported on FGD trunks.

ISDN PRI and ISL

FGD calls should use ISDN networking capability once a call has reached the network.

Network Alternate Route Selection (NARS)

FGD relies on NARS routing features for call termination.NARS is enhanced by FGD to allow local termination.

Network Call Redirection (NCRD)

If an FGD call is redirected for any reason supported by NCRD, ANI is used for updating the terminating telephone's display.

Malicious Call Trace (MCT)

A new field is added to the MCT record output. It now prints the identification field (II+ANI) received from the LEC, thus identifying the caller. A second line is added to the MCT printout that lists a header "ANI," the II, and the ANI digits. If no ANI digits are received, an unmodified Malicious Call Trace (MCT) report is printed. An example of the new MCT printout is shown below:

MCT CUST0 TN 117 3 10 4 *TN 109 3 10 2 15:30:05 12/11/91 ANI 00-2134159661

If an incomplete identification code is given, the printout includes all the digits received.

MCT CUST0 TN 117 3 10 4 *TN 109 3 10 2 15:30:05 12/11/91 ANI 00-213

Minor Alarm

The minor alarm on the attendant console lights up whenever one or more MFR units fails testing.

Private line service

FGD trunks should not be defined as Private Lines.

Traffic measurements

See *Traffic measurement* (553-2001-450) for a complete description of the traffic measurement printouts.

Trunk Group Distinctive Ringing

Trunk Group Distinctive Ringing is supported by FGD trunks when DRNG = YES in the FGD data block.

Trunk Verification from a Station (TVS)

Sets with Trunk Verification from a Station Allowed (TVA) can access FGD trunks and use the MF capability to dial test numbers of three or seven digits. There is usually no dial tone provided on FGD trunks.

Figure 2 Trunk verification

Feature Group D 553-2901-102

1

Feature operation

In the remainder of this document call direction is covered from the Meridian 1 point of view.Incoming calls are calls from the Local Exchange Carrier (LEC) to the Carrier (Meridian 1), and outgoing calls are from the Carrier to the Local Exchange Carrier (LEC).Therefore, incoming calls are *calls coming into* the Meridian 1 network.

Example of using the FGD feature

How to initiate a call

Presubscribed user: prior arrangements must be made to use a specific long distance network or local telco (for example SPRINT, MCI, or the carrier being served by the SL1 with FGD capability).Then, when the user picks up his/her presubscribed home or work phone and dials a long distance call in the normal way (for example, 1+area code+phone number), the LEC will route that call to the carrier presubscribed for termination over the carrier's network.

Non-presubscribed user: The user dials a 5-digit CARRIER ACCESS code (10XXX) before the address digits. This alerts the LEC that this call only should be routed to the requested long distance carrier for completion. SPRINT, MCI, AT&T and others have their own carrier access codes that are recognized by all LECs

Incoming call routing

Incoming call processing

Call processing of incoming FGD calls is designed to provide maximum flexibility in call routing to external or local DNs.

For call types other than 3-digit test calls and operator calls, FGD uses the existing NARS translation table(s). There are usually two translation tables if NARS package is equipped:

- The first contains routing and other information about NPAs.
- The second contains similar information about NXXs in the home NPA.

NARS accesses these tables by using two different access codes: AC1 and AC2. However, there is no built-in constraint in relating AC1 (or AC2) to the NPA (or NXX) table.

The FGD database identifies the NARS access codes (AC1 or AC2) as being the LDAC (Long Distance Access Code - the one leading to the desired NPA translation table) or the LAAC (Local Area Access Code - the one leading to the NXX translation table).

If the Basic Automatic Route Selection (BARS) and not NARS package is equipped, then one translation table exists and LDAC and LAAC are identical. This could also be true if the NARS package is equipped but only one translation table is configured.

In order to convert the addressing information obtained from the FGD trunk into a digit sequence that can be processed by NARS, the FGD software prefixes the access code as either LDAC or LAAC.

Incoming FGD calls are processed as follows:

- 1 Digit collecting phase in which all incoming MF digits(ID field and Address field) are collected.
- 2 Address format validation check for valid NPA and NXX and checks that the address fields contain the correct number of digits.

The first three digits (or the first four, if the first is a 0) must comply with the restrictions shown below:

NPA or NXX, with $2 \le N \le 9$, P=0 or P=1, A or X = 0 to 9

Invalid Address field leads to call interception, except for the cases in which too many digits are received, or no ST is received. In these cases, the MF receiver will be released, the trunk locked out and no intercept treatment will be given.

3 ANI field format validation

The call category determines if the LEC provides the ANI data.

4 II (information digits) screening

The first two digits of the ID field are the II digits. A list of allowed II digits is contained in the FGD block. If the II digits are not defined, the call is intercepted and an error message is (optionally) issued.

5 ANI screening (optional)

ANI digits are checked, and an NCOS is attached to the call.In case of undefined ANI, call interception can occur, and an error message can (optionally) be issued.

6 Address preparation

The address field is retrieved, and one of the NARS access codes is prefixed to it, to make the number conform to the existing Meridian 1 translation tables.

7 Translation and termination

The final address, resulting from the previous steps, is processed by the existing NARS routing.

Local termination

If the FGD call is to be routed to some other node in the network, the NARS feature can make the conversion. The NARS access code is prefixed to the digits and some additional digit manipulation also occurs.

However, the existing NARS feature is not capable of making the conversion if the call terminates on a DN in the local switch that serves as an interface to the LEC using FGD, and full digit conversion (more than four digits) is required.

The solution is a new entry - Local Termination (LTER), in the NARS route list block. This entry is used for local translation, and is not related to any trunk group.

The LTER entry may appear in any route list and can be accessed when route-selection takes place. The existing restriction facilities TOD (Time Of Day schedule), FRL and FCAS can be applied as usual.

When a LTER entry is selected, NARS considers it a success, regardless of the result of the termination (busy, vacant number). When the LTER entry is not restricted by the facilities mentioned above, the entries following it in the route list will never be selected.

Calls inside World Zone 1 (7 digits)

These calls are characterized by an address field of 7 digits.Meridian 1 inserts the NARS LAAC access code before the address field.

Calls inside World Zone 1 (10 digits)

These calls are characterized by an address field of 10 digits. The Meridian 1 inserts the NARS LDAC access code before the address field, thus allowing routing of the call within the corporate network.

Calls inside World Zone 1 (0+ and 0-)

A call to the operator is distinguished by a digit sequence where the first digit of the address field is 0.

The address field dialed by the incoming FGD trunk should use one of the following sequences:

- 0+ type call : KP + 0 + (NPA) + NXX + XXXX + ST
- 0- type call : KP + 0 + ST
- 0+ type call : KP + 0 + SAC + NXX + XXXX + ST

An operator DN (or up to 16 digits) is defined through a Service Change and all "0-" and "0+" calls are directed to this DN. This can be either the local attendant DN or any DN in the network.

During call processing in the address preparation, the address field received from the FGD trunk is replaced with the operator DN described above. The call is then processed by the DN translation tables.

An option is provided to intercept all "0+" and "0-" calls to a Recorded Announcement Trunk route.

An address field sequence beginning with 0, but followed by an incorrect number of digits, or containing an invalid NPA, will lead to call intercept (invalid address format).In addition, the rest of the address field that follows the "0" is ignored.

Table 11 provides an example of a 0-call.

Table 11 EANA protocol - customer dials 10XXX+0

Situation Customer dials 10990+0									
Trunk group uses exchange	access North American	signaling protocol							
Interface interactions									
LEC	РОТ	Meridian 1							
Customer finishes dialing									
Seize		Wink							
Identification field KKP+00+212+555+XXXX+ST	>>								
Address Field KP+0+ST		Acknowledgement Wink							
LEC connects talking path									
Disconnect		Answer Disconnect							
	Interpretation								
Class of service of calling line is regular (II=00). Billing number of calling line is 212+555+XXXX. Customer did not provide a destination address.									

Information digits screening for incoming calls

The FGD feature allows flexible II type assignment. Table 12 shows the II digits defined as defaults. The interpretation of the various II codes (00 - 99) is defined by the customer through service changes. The flexibility is per route: the customer defines independent FGD blocks (up to 128) containing the II definitions, then specifies for each FGD route one block index. Each number in the 00-99 range can be defined as pertaining to one of the II-types listed in table 12. Numbers in the 00-99 range that have not been defined are considered as denied.

Information digit pairs 10, 12-19, and 95 are not generated as ANI information digits by LEC originating end offices.

Because the identification field precedes the address field for exchange access signaling, and because there is no identification field on test calls, the first two digits of the address field for test calls appear to the Carrier as ANI information digits.Either a 10 or a 95 in this position tells the Carrier that the incoming call is a test call.

Digits 12 to 19 are used for calls outside World Zone 1. These are not used by EANA.

Table 12 Information digits (II)

Information digits	Explanation
00	Regular line
01	4- and 8-party
06	Hotel/Motel
07	Coinless
10	Test call
12 - 19	Not to be assigned because of conflicts with 1NX used as first digits in international calls
20	AIOD listed directory number sent
27	Coin
95	Test Call

In addition, a NCOS number may be attached to an II. This allows it to bypass ANI screening. If an II has an NCOS attached to it, then:

- ANI screening will not be done on calls initiated by customers with II.
- The incoming FGD trunk will have the NCOS stated above.

In the II processing phase, the information related to the call type is retrieved from the FGD block. If interception treatment is needed (for the invalid II case), intercept treatment is applied as defined for "invalid II."

FGD call intercept

Intercept treatment is supplied for the following invalid calls:

- Invalid address field format
- Invalid II
- Invalid ANI

The intercept treatment for each of these calls can be defined by Service Change to be Overflow Tone (OVF), a Recorded Announcement (RAN), or termination on a network or local DN.

Incoming test calls (7 and 3 digits)

The line testing facilities currently provided by Meridian 1 to incoming trunks are:

- A 100 Test Termination DN, that may be accessed simultaneously by up to four trunks. There is one 100 Test Termination DN per customer.
- Four pairs of Reference Trunk Termination DN and Test Trunk Termination DNs.

A test call digit sequence is a 3-digit or 7-digit sequence of the form 10X (3 digits) or 95Y-XXX (7 digits), where Y is either 8 or 9 (the 10 and 95 prefixes may be modified by service change). There is no identification field, therefore digits 95 or 10 appear to the carrier as an II code (information digits). The processing after the II type has been identified as test call type is described below. Also refer to the section "Information digits screening for incoming calls."

In the FGD blocks, there are actually two types of test call information digits (II):

- TST3, typically digits 10
- TST7, typically digits 95

In the remainder of this section, reference may be made to either TST3 or TST7 or their corresponding digits 10 and 95.

The two types of call information are treated differently:

- **10X calls** are interpreted as calls to the T100-line test DN.
- 95Y-calls are routed via NARS/BARS using the LAAC access code.

The possible situations are:

Digits KP + 10X + ST are received on an incoming FGD trunk:

100 is dialed (X=0), it triggers the T100 line test. Normally an incoming TIE dials the T100 test DN.If X is not 0, the call receives an invalid address treatment.

Invalid Address format - digit sequences starting with 10 but containing either less or more than 3 digits leads to call intercept.

Digits KP + 95Y + XXXX + ST are received on an incoming FGD trunk.

The whole number is treated as an address: The LAAC access code is inserted, invoking NARS/BARS translation. The call can be forwarded to the network or handled by local test equipment.

Digit sequences starting with 95 but containing less or more than 7 digits invokes a call intercept (invalid address format).

Authorization Code prompting

FGD routes may be defined to prompt for Authorization Code.

An NCOS is attached to an incoming FGD trunk by one of the following:

- If ANI screening is being bypassed, then an NCOS is associated with the II type.
- If ANI screening has been configured, then an NCOS is defined by the ANI screening process.
- The NCOS of the call is the NCOS of the FGD trunk.

LEC trunk grouping and ANI provision by call category

LEC trunk grouping

Calls intended to terminate on a Carrier POT can be assigned by the LEC to different trunk groups (for example, trunk routes) according to their category and the class of service (for example, II type) of the calling customer.Up to four such groups may exist.

On the Meridian 1, the FGD block associated with an FGD trunk route contains data regarding the call categories expected. This data can be service changed to conform to the agreement between the LEC and the Carrier. This data, together with the II screening data, serves to verify correct trunk grouping as agreed with the LEC.

The appropriate error message is issued when a call of an unexpected call category reaches the Carrier.

For a list of call categories refer to Table 1.

A Carrier switch cannot distinguish between the following two categories:

- Embodied SAC calls
- External SAC calls

If one of them is expected, all SAC calls are considered expected. Test calls are considered as expected.

ANI provisions

ANI digits are provided by the LEC based on call category according to the agreement with the Carrier.

The FGD block associated with an FGD trunk route determines whether ANI data is to be received on such a call.

Note: ANI data is never received on test calls.

An error message is issued when:

- ANI is not received on a call when expected.
- ANI is received on a call when not expected.

ANI digits screening

This section covers the screening function to be performed on the ANI digits in an Identification Field.

After the complete digit string (both Identification and Address fields) is collected, and the call passes the II (information digits) screening, the ANI bypass option is attached to the call's information digits.

If ANI screening is not configured, the call proceeds with the NCOS of the incoming trunk. Otherwise, ANI screening is performed as described below.

If the ANI provision is selected by the Carrier, the ANI digits are normally 10 digits (or 3 digits when the calling party cannot be identified).

- NPA+NXX+XXXX (normal case)
- NPA (calling party not identified)

Calls (with the associated ANI digits) from FGD trunks are screened against the ANI database as defined in the Meridian 1 access node.

For each allowed (or recognized) NPA, ANI screening is defined in three levels:

- NPA (3 digits)
- NPA+NXX (6 digits)
- NPA+NXX+XXXX (10 digits)

Each valid ANI is associated with a specific NCOS which is the calling party's initial NCOS (to be used for determining call termination through ESN).

10 ANI digits

If the 10 ANI digits (NPA+NXX+XXXX) are received from an incoming FGD trunk, call validation is based on the screening level defined in the ANI database:

NPA (3 digits) Screening Level

The received ANI digits NPA must match a defined area code in the database.

NPA+NXX (6 digits) Screening Level

The received ANI digits NXX must be within the defined end office number range under the NPA.

NPA+NXX+XXXX (10 digits) Screening Level

The received ANI digits XXXX must be within the defined subscriber number range under the NPA+NXX.

A match yields a NCOS to be used later for called number screening and routing.Otherwise, apply invalid ANI treatment.

Partial ANI digits

If only 3 ANI digits (NPA) are received from an incoming FGD trunk and:

The NPA is defined in the ANI database (regardless of the screening level defined):

3-digit ANI allowed - Pass: extract the specified NCOS.

3-digit ANI not allowed - Fail: apply invalid ANI treatment.

- The NPA is not defined in the ANI database – *Fail*: apply invalid ANI treatment.

Invalid ANI treatment

Either route to OVF, RAN, or a network or local DN.Or consider it as passed and map it to a NCOS that is specified for invalid ANI.

ANI digits as Calling Line ID (CLID)

If an incoming FGD call is routed to a neighboring switch via an ISDN PRI or ISL, the complete 10-digit ANI is used as the Calling Line ID (CLID). It is then sent (in a SETUP message) to the neighboring switch for CLID display. An incomplete 3-digit ANI is not treated as CLID.

If the SHAN field of the FGD data block associated with the incoming route indicates that the ANI should not be displayed on the terminating telephone, the ANI still is sent over ISDN PRI or ISL as the CLID.However, the presentation indicator field of the calling party number information element is set to presentation restricted so the CLID will not be displayed on the terminating telephone.

ANI display

For FGD calls terminating in the local switch, the received ANI number is displayed instead of the route access code and member number as is currently displayed for a trunk call.The option is per FGD block.

The implementation of this capability does not modify the operation of the existing Digit Display feature.

The formats of the received ANI number are:

- KP + II + 10 + ST. The display is the 10 digits string.
- KP + II + 3D + ST. The display is the route access code and member number.
- KP + ST (no ANI). The display is the route access code and member number.

The rules and limitations of the digit display feature are used.

ANI display for FGD has the same format and interactions with other features as the CLID display of an E.163 number (as opposed to a private network number).

ANI number display devices

The following devices support ANI number display:

- QCW4, M1250 and M2250 Attendant consoles
- SL-1 display set
- M3000
- M2009, M2018, M2018S, M2112 and M2317
- M2006, M2008 and M2016S
- M2216ACD-1, -2
- M2616

Dialpulse dialing on FGD trunks

DP outpulsing on trunks is not allowed on either incoming or outgoing FGDT trunks.

Outgoing test calls

Outgoing test calls are generated by:

- dialing the FGD route access code from some Meridian 1 station and then any test number consisting of 3 or 7 digits
- dialing the TVS access sequence from some Meridian 1 station to select a specific FGD trunk. For example, dial a special prefix DN, plus the TVS special function code, plus the route access code, plus the trunk member number, and then any test number (3 or 7 digits).
- dialing automatically from the Automatic Trunk Maintenance overlay (test numbers must contain either three or seven digits)

CDR records

CDR records of calls in which an incoming FGD trunk was involved can include (optionally) an ANI digits field. The option is per route, defined in its FGD block.

If the ANI digits field is desired, the CDRE package is required.

For a detailed discussion of CDR output see *Call Detail Recording* description and formats (553-2631-100).

Transmission characteristics

For the purposes of transmission losses and gains, FGD trunks are treated as TIE trunks: analog FGD trunks have PTYP = ATT (port type in LD16) and digital FGD trunks have PTYP = DTT.These values are imposed by service change when defining an FGDT route.In case of a connection between an analog FGDT trunk and a PRI channel, the PRI channel is treated as a digital tie (DTT), overriding the definition for PRI channels.

Operating parameters

Parameters

The maximum number of Multi-Frequency Receivers (MFRs) that can be defined in the Meridian 1 system is 255.

The maximum number of FGD blocks that can be defined in the Meridian 1 system is 128.

An FGD route can be configured as a DNIS route. In this situation, the route should carry ACD calls only.

FGD trunks will use MF signaling only to establish a call. DTMF signaling can be used for in-band signaling after establishing an end-to-end connection, for example, Authorization code entry.

Terminating protocol is limited to test calls only.

FGD is available on all machine types supported by X11 release 17.However, the available protected data store and the disk storage is limited to the maximum amount of FGD data, particularly ANI data that can be configured for a given machine type.

For system option 21 and SL-1 ST, the theoretical maximum is 64K words, and, if FGD ANI share the same physical page with other features, the actual Protected Data Store (PDS) available for FGD ANI is much smaller.For other systems, there is virtually no limit (approximately 2 million words).

The linear and cyclic search methods supported by Meridian 1 are acceptable for FGD trunks.

Transitional configurations

On a transitional basis, if full Meridian 1 support is not available for FGD, systems with Meridian 1 hardware can have non-Meridian 1 MFRC in a non-Meridian 1 peripheral shelf installed (together with non-Meridian 1 PE buffer) in a Meridian 1 cube, with Meridian 1 power supply. In that case, MF tone receiving is performed by QPC916 receivers only, whereas MF sending can be performed by both MF loops and/or Conference/TDS cards.

MF Receiver guidelines

The MF Receiver receives 26 MF digits from the Equal Access End Office.Holding time for the MF Receiver is estimated at 13 seconds (about 0.5 second per digit).When the number of MF trunks are known, the following procedures can be used to estimate the MFR requirements:

- Calculate the number of FGD calls from MF trunks:

FGD calls (FGDC) = # of MF trunks * 30 * 100/180 = 16.67 * # of MF trunks

Where 30 CCS per trunk and 180 seconds holding time are assumed.

- Calculate MFR traffic:

MFR traffic in CCS = FGDC * 13/100

Where 13 seconds receiver holding time is assumed.

Refer to the following tables to determine the number of MFRs to support your system.

Table 13 provides information on Multifrequency receiver load capacity with 6 to 15 second holding times.

Table 13Multifrequency receiver load capacity - 6 to 15 second holding time

Average holding time in seconds	6	7	8	9	10	11	12	13	14	15
Number of MFR										
1	0	0	0	0	0	0	0	0	0	0
2	3	2	2	2	2	2	2	2	2	2
3	11	10	10	9	9	9	9	8	8	8
4	24	23	22	21	20	19	19	19	18	18
5	41	39	37	36	35	34	33	33	32	32
6	61	57	55	53	52	50	49	49	48	47
7	83	78	75	73	71	69	68	67	66	65
8	106	101	91	94	91	89	88	86	85	84
9	131	125	120	116	113	111	109	107	106	104
10	157	150	144	140	136	133	131	129	127	126
11	185	176	170	165	161	157	155	152	150	148
12	212	203	196	190	185	182	178	176	173	171
13	241	231	223	216	211	207	203	200	198	196
14	270	259	250	243	237	233	229	225	223	220
15	300	228	278	271	264	259	255	251	248	245
16	339	317	397	298	292	286	282	278	274	271
17	361	346	335	327	310	313	319	306	392	298
18	391	377	365	356	348	342	336	331	327	324
19	422	409	396	386	378	371	364	359	355	351
20	454	438	425	414	405	398	393	388	383	379
	<u> </u>	I	c	ontinue	d		I			

		·								
Average holding time in seconds	6	7	8	9	10	11	12	13	14	15
Number of MFR								<u> </u>		
21	1487	469	455	444	435	427	420	415	410	406
22	517	501	487	475	466	456	449	443	438	434
23	550	531	516	504	494	487	479	472	467	562
24	583	563	547	535	524	515	509	502	497	491
25	615	595	579	566	555	545	537	532	526	521
26	647	628	612	598	586	576	567	560	554	548
27	680	659	642	628	618	607	597	589	583	577
28	714	691	674	659	647	638	628	620	613	607
29	746	724	706	690	678	667	659	651	644	637
30	779	758	738	723	709	698	690	682	674	668
31	813	792	771	755	742	729	719	710	703	696
32	847	822	805	788	774	761	750	741	733	726
33	882	855	835	818	804	793	781	772	763	756
34	913	889	868	850	836	825	812	803	795	787
35	947	923	900	883	867	855	844	835	826	818
36	981	957	934	916	.900	886	876	866	857	850
37	1016	989	967	949	933	919	909	898	889	881
38	1051	1022	1001	982	966	951	938	928	918	912
39	1083	1055	1035	1015	999	984	970	959	949	941
40	1117	1089	1066	1046	1029	1017	1002	990	981	972
Note: Load capacity is	measure	ed in CC	S.				·····			

Table 13 Multifrequency receiver load capacity - 6 to 15 second holding time (continued)

Table 14 provides information on the Multifrequency receiver load capacity with 16 to 25 second holding times.

Table 14	
Multifrequency receiver load capacity - 16 to 25 second holding tin	me

Average holding time in seconds	16	17	18	19	20	21	22	23	24	25
Number of MFR										
1	0	0	0	0	0	0	0	0	0	0
2	2	2	2	2	2	2	2	2	2	2
3	8	8	8	8	8	8	8	8	8	8
4	18	18	18	18	18	17	17	17	17	17
5	31	31	31	30	30	30	30	30	30	29
6	47	46	46	45	45	45	45	44	44	44
7	64	63	63	62	62	62	61	61	61	60
8	83	82	82	81	80	80	79	79	79	78
9	103	102	101	100	100	99	99	98	98	97
10	125	123	122	121	121	120	119	119	118	118
11	147	145	144	143	142	141	140	140	139	138
12	170	168	167	166	165	164	163	162	161	160
13	193	192	190	189	188	186	185	184	184	183
14	218	216	214	213	211	210	209	208	207	206
15	243	241	239	237	236	234	233	232	231	230
16	268	266	264	262	260	259	257	256	255	254
17	294	292	290	288	286	284	283	281	280	279
18	322	319	317	314	312	311	309	308	306	305
19	347	344	342	339	337	335	334	332	331	329
20	374	371	368	366	364	361	360	358	356	355
21	402	399	396	393	391	388	386	385	383	381
22	431	427	424	421	419	416	414	412	410	409
			c	ontinue	d		I			

Multifrequency receiver load capacity - 16 to 25 second holding time (continued)

Average holding										
time in seconds	16	17	18	19	20	21	22	23	24	25
Number of MFR										
23	458	454	451	448	445	442	440	438	436	434
24	486	482	478	475	472	470	467	465	463	461
25	514	510	506	503	500	497	495	492	490	488
26	544	539	535	532	529	526	523	521	518	516
27	573	569	565	561	558	555	552	549	547	545
28	603	598	594	590	587	584	581	578	576	573
29	631	626	622	618	614	611	608	605	602	600
30	660	655	651	646	643	639	636	633	631	628
31	690	685	680	676	672	668	665	662	659	656
32	720	715	710	705	701	698	694	691	688	686
33	751	745	740	735	731	727	724	721	718	715
34	728	776	771	766	761	757	754	750	747	744
35	813	807	801	796	792	788	784	780	777	774
36	341	835	829	824	820	818	814	810	807	804
37	872	865	859	854	849	845	841	837	834	831
38	902	896	890	884	879	875	871	867	863	860
39	934	927	921	914	909	905	901	897	893	890
40	965	952	952	945	940	936	931	927	923	920
Note: Load capacity is	measure	d in CCS	3.		La					

Number of MFR	MFR load (CCS)	Number of MFR	MFR load (CCS)	Number of MFR	MFR load (CCS)
1	0	18	276	35	703
2	2	19	299	36	729
3	7	20	323	37	756
4	15	21	346	38	783
5	27	22	370	39	810
6	40	23	395	40	837
7	55	24	419	41	865
8	71	25	444	42	892
9	88	26	469	43	919
10	107	27	495	44	947
11	126	28	520	45	975
12	145	29	545	46	1003
13	165	30	571	47	1030
14	187	31	597	48	1058
15	208	32	624	49	1086
16	231	33	650	50	1115
17	253	34	676		

Table 15 provides the Multifrequency receiver requirements with the Poisson 0.1 percent blocking information.

 Table 15

 Multifrequency receiver requirements - Poisson 0.1 percent blocking

Implementation

Engineering guidelines

When estimating the total number of call registers required by the system (NCR in LD17), the following requirements should be taken into account:

- An incoming FGD call uses one additional call register for the whole duration of the call.
- An outgoing FGD call uses one additional call register for the outpulsing stage only (including the subscriber's dialing).

Since the FGD block is per system, the RAN route number(s) and/or network or local DNs given in response to prompts OPER, ADFT, IIT, and ANIT (in overlay 19) are not associated with any customer.All customers using the FGD feature must define their RAN routes and/or DNs in accordance with FGD block definitions.

The following service change information shows how to configure FGD capabilities on the Meridian 1 system. The loads shown here are only partial, and apply to FGD only. Only new prompts or prompts and responses required for FGD are shown here.

For a complete description of the service change prompts and responses, see *X11 input/output guide* (553-3001-400).

Prompt	Response	Definition
REQ	NEW, CHG	Add, or change
TYPE	MFR	Multifrequency receivers A maximum of 255 MFR units can be defined.
TN	LLSCU	loop, shelf, card, unit Only units 0 and 1 can be defined, and the card must be single density.

LD13 – Digitone receiver and tone detector

LD14-Trunk data block

Prompt	Response	Definition
REQ	NEW, CHG	Add, or change
TYPE	FGDT	Feature Group D trunk
TN	lscu	loop, shelf, card, unit Loop Channel is accepted for Digital loops
CUST	0-99	Customer number
NCOS	0-99	Network Class of Service
RTMB	nn nn	Route and Member number FGD trunks must belong to FGDT type routes.
MNDN	nnnn	Manual directory number to delete
TGAR	nn	Trunk group access restriction
SIGL	EAM, EM4, LDR	Signal type Only these values are accepted for FGD.
CDEN	(DD), SD	Card Density
STRI	WNK	Start Arrangement must be WNK for FGD trunks.
STRO	′WNK	must be WNK for FGD trunks.
CLS	MFR	CLS must be MFR for FGD.

LD16-Route data Block

i

Prompt	Response	Definition
REQ	NEW, CHG	Add or change
TYPE	RBD	Route Data Block
CUST	0-99	Customer number
ROUT	nnnn	FGD route number
ТКТР	FGDT	feature Group D route
CNTL _TIMR _TIMR _TIMR _TIMER	(NO), YES ICF 0-(512)-32640 OGF 0-(512)-32640 DDL 0-(70)-511 DSI 128-(34944)-499200	Change controls or timers Incoming flash timer Outgoing flash timer Dial delay timer Disconnect supervision timer Only these timers are allowed for FGD trunks.
FGNO	(0)-127	FGD block number

LD19 – Code restriction

Prompt	Response	Definition	
REQ	NEW, CHG	Add or change	
TYPE	FGDB	Feature Group D data block	
FGNO	0-127	FGD block number IF REQ = NEW, no response is allowed.The next free block number is always defined.	
CIC	0000-9999	Carrier ID Response must be 3 or 4 digits. <cr> not allowed when REQ = NEW.</cr>	
CCLS	IC, CONS	Carrier class Interexchange, or Consolidated <cr> not allowed when REQ = NEW.</cr>	
PRES	(YES), NO	Presubscription	
OVLP	(YES), NO	Overlapped outpulsing by the LEC	
CCAN	xxx (YES), NO	Call categories expected on calls to Carrier (xxx), and if ANI is provided (Yes or No).XXX must be one of the following:	
	NAM	1 + calls (inside WZ1)	
	NA0 INT	0 + calls (inside WZ1) 1 + calls (outside WZ1)	
	INO	0 + calls (outside WZ1)	
	OPR	0 - calls	
	SAM	1 + calls (embodied SAC)	
	SAN	1 + calls (external SAC) 0 + calls (external SAC)	
	CUT	cut-through calls	
	ALL	All calls (Default when REQ = NEW) When REQ = NEW, default is ALL.	
continued			

Note: Ensure that numeric zero is used for mnemonics INO, NAO, and SAO
2

Prompt	Response	Definition
SAC	XXX XXX	Service Access Code Up to 8 SACs can be defined.700, 800, 900, and 610 are the defaults defined.X removes the access code.
ANII	ХХ	ANI data block index 0 - 31 0 = no ANI screening.Default when REQ = NEW.
CDAN	YES, (NO)	ANI digits provided in CDR
SHAN	YES, (NO)	Show ANI digits on terminal displays
PRTD	(NO), ALL, REJ	Printout control for invalid II, ANI NO = no printouts issued ALL = printout on all invalid II, ANI REJ = printout on all invalid II, but no printout for invalid ANI if ANI screening assigned an NCOS to the call
LDAC	AC1, AC2	Long Distance Access Code Only if NARS is equipped
LAAC	AC1, AC2	Local Area Access Code Only if NARS is equipped
OPER	DN xxxxxx RAN xxx	Treatment for 0+, 0- calls 1-16 digit network or local DN RAN route (0-511)
INTR	(NO), YES	Intercept treatment specified
_ADFT	(OVF), RAN xxx, DN xxx xx	for invalid address format (overflow, RAN, or local or network DN)
_11T	(OVF), RAN xxx, DN xxx XX	for invalid IIs (overflow, RAN, or local or network DN)
continued		

Prompt	Response	Definition
ΙΙΤΡ	XX YYYY ZZ REGU 4A8P HOTL CLES TST3 AIOD COIN TST7	Valid II, II type, and NCOS for ANI screening XX is an II range 00-99 YYYY must be one of the following: Regular II 4 and 8 party II Hotel/Motel II Coinless II Test3 II AIOD II Coin II Test7 II ZZ is an optional NCOS number defining ANI screening bypass range 00-99.ANI screening bypass defaults to 'NO" if an NCOS is not entered.
CPAR	(NO), YES	Call Processing parameters
	0-(7)9	Length of initial string of dialed digits on outgoing calls (enbloc dialing)
_ ^{ENBL}	1-(12)-30	Long enbloc dialing timeout (before initial string is complete) in seconds
_ENBS	1-(5)30	Short enbloc dialing timeout (after initial string is complete) in seconds
_IFTO	2-(120)-255	Inter FGD field timeout (max time between two FGD fields) in seconds
_DGTO	128-(640)-5000	Inter digit timeout (max time between two FGD digits in same field) in Msec
_MONT	0-(256)-2048	Minimum on-hook time (min time between acknowledgment wink and answer off hook signal) in Msec
	co	ontinued —

Feature Group D 553-2901-102

100

Prompt	Response	Definition	
REQ	new, chg, out, prt	Create, change, remove or print	
TYPE	ANI	FGD ANI data block	
ANII	хх	ANI data block index (1-31)	
These promp	ts are given when R	EQ = NEW or CHG:	
ANIT		Invalid ANI treatment:	
	OVF	overflow tone (default)	
	RAN xxx	Recorded announcement route (0- 511)	
	DN xxxxx	1-16 digits, typically a Meridian 1 internal DN	
	NCOS xx	NCOS value (0-99)	
NPA	xxx	First 3 digits of ANI (in NPA format)	
	<cr></cr>	to reprompt REQ	
3ANI	DENY	3-digit ANI not allowed (default)-apply invalid ANI treatment	
	NCOS xx	3-digit ANI allowed: NCOS value (0- 99)	
SLV3	NXX	Use 6 or 10 digit screening level;	
	NCOS xx	3-digit screening: all NXX+XXXXs	
		map to NCOS value xx (0-99); reprompt NPA	
NXX	ххх "ууу"	Range of end office numbers (NXX)	
		xxx - starting or only NXX	
		yyy - ending NXX (optional);	
	<cr></cr>	to reprompt NPA	
	— continued —		

Prompt	Response	Definition
SLV6	SUB NCOS xx	Use 10 digits screening level; prompt SUB next; not allowed if yyy entered. Use 6 digits screening level; all xxxs map to NCOS value xx (0-99); to reprompt NXX.
SUB	xxxx "yyyy" <cr></cr>	Range of subscriber numbers (XXXX); prompted if SLV6=SUB xxxx - starting or only subscriber # xxxx - end subscriber # (optional) to reprompt NXX
NCOS	xx	NCOS value (0-99) for the subscribers; reprompt SUB
These promp	ts are given when F	REQ = PRT:
NPA	xxx	Specified NPA printed; prompt NXX next
	ALL	All NPAs defined printed; reprompt REQ
	<cr></cr>	to reprompt REQ
NXX	xxx [yyy] <cr></cr>	Range of end office numbers (NXX); xxx - starting or only NXX yyy - ending NXX (optional) reprompt NXX if yyy entered. Prompt SUB next if only xxx entered to reprompt NPA
SUB	<cr></cr>	Range of subscriber numbers (XXXX); xxxx - starting or only subscriber # xxxx - end subscriber # (optional) reprompt SUB. to reprompt NXX
continued		

LD19-Code restriction (continued)

Prompt	Response	Definition
These prompts are	e given when R	EQ = OUT
ENTER YES TO CONFIRM	YES (NO)	To confirm the OUT request - the entire ANI data block is deleted for OUT request. The OUT request is not executed
Note: To remove (undefine) an NPA, NXX or a SUB number, precede the number with X.To remove a range of NXX or subscriber numbers, precede the starting number with X.		
Note: To abort the or reprompt the current	current line of data prompt.	a entered, press the * key.The system will
Note: To abort the of (**).REQ will be repr prompting sequence	current incomplete ompted.All the da s will remain in th	e prompting sequence, press the * key twice ta entered in the previous and complete e system.
Note: To abort active overlay program, enter ****, or END in response to the system prompt REQ.All the data entered in the previous and complete prompting sequences will remain in the system.		

Table 16 defines the information digits (II) that are used as defaults in the LD19 code restriction program.

Table 16 Default IITP values

П	II type	ANI screening bypass
00	REGU	NO
01	4 A 8P	NO
06	HOTL	NO
07	CLES	NO
10	TST3	NO
20	AIOD	NO
27	COIN	NO
95	TST7	NO

LD20 - Print routine

Prompt	Response	Definition
REQ	PRT	Print
TYPE	TNB FGD MFR	Includes FGD trunks and MFRs Print FGD trunks Print Multifrequency units
TN	LLSCU	loop, shelf, card, unit

LD21 – Print routine

This print routine is modified to print FGDT route data blocks as defined using LD16.

LD22 - Print routine

"FGD" is printed if package 158 is equipped.

L	D29	- Memory	management
---	-----	----------	------------

ncy receivers 6 (1-128) of II entries -160) s (0-9999) s (0-30.000)

LD86-ESN

Changes are made to LD86 to allow for definition and print out of a new type of Route List Entry, which is the Local Termination (LTER) entry. The prompts and responses are listed below.

Prompt		Definition
REQ	new, out, chg, prt, end	
FEAT	rlb	
RLI	0 - 255	
ENTR	0 - 63	
LTER	yes/(no)	Local Termination entry
If "yes" is ei is no chang	ntered, only the following e in prompt responses):	prompts appear for this entry (there
TOD		Time of Day Schedule
FRL		minimum Facility Restriction Level
DMI		Digit Manipulation table Index
FCI		Free Calling Area Screening table index
The following prompts do not appear for this entry and they are set to the specified values. This is also true when changing a regular entry to a LTER entry:		
ROUT	0	Route Number
TDET	no	Tone Detector Used
CNV	no	conversion to LDN required
EX[no	expensive route
OHQ	no	off hook queueing allowed
CBQ	no	call-back queueing allowed
Note: No net	w SCH error codes are requ	ired in this LD.

Maintenance and diagnostics

The Meridian 1 software provides maintenance and diagnostics for the Multifrequency Receiver (MFR). They are performed similarly to the Tone Detector (TDET) or Digit Tone Receiver (DTR).

Maintenance and diagnostics are provided by the Meridian 1 software as service change programs that can be run either automatically upon Meridian 1 CPU request or manually.

They involve the following:

- enabling/disabling an MFR to allow card installation and removal
- self-testing of the MFR card
- test of all tones with the help of an MFS loop
- signaling test

LD 34 - Tone and digital switch

,

The maintenance of MFRs are integrated into LD34 (maintenance of DTR, TDET).

A new MFR test command is being introduced.

The following commands in table 17 apply to MFRs:

Table 17 MFR commands

ENLR	LSC (U)	enable the specified DTR/MFR card/unit	Note 1
			Note I
DISR	LSC (U)	disable the specified DTR/MFR card/unit	Note 1
SDTR	LSC (U)	display the status of the specified DTR/MFR	Note 1
SDTR		list all the disabled DTR/MFR units	Note 1
STAT		list all the disabled DTR/MFR units (duplicate of SDTR with no parameters)	Note 1
MFR	LSC (U)	test the specified MFR card/unit	Note 2
MFR	L	test all the specified MFR units on loop L.	Note 2
MFR	<cr></cr>	test all MFR units	Note 2
			·

Note 1: The existing command (for DTR) is used for both DTR and MFR.

Note 2: Faulty MFR cards are disabled and an MFRxxx error message is output.Only 50% of all MFR cards in the system may be disabled at one time.If the failure occurred during the midnight routine, a minor alarm is initiated.

Commands Description

The following commands are used for maintaining the MFR. They perform enabling, disabling, perform tests, and print the current status.

- ENLR n enable MFR "n"
- DISR n disable MFR "n"
- SDTR n print MFR "n" status
- MFR n test MFR "n"

The following commands are used for printing disabled MFR units.

- STAT print disabled MFR units
- SDTR print disabled MFR units

The ENLR, DISR, STAT and SDTR commands are used for both DTRs and MFRs. The Meridian 1 software can distinguish between the two types of receiver, where necessary.

Disabling an MFR (DISR command) that is at present active in a call, disconnects the call.No error messages are given (as for TDET and DTR).

The MFR command performs the following tests:

- response test
- self-test Internal test of the card by its processor
- valid reception test of all MF tones: An MFS is connected to the MFR through a network timeslot. The MFS is triggered to send MF tones to the MFR, and the correct reception is checked.

If the MFR is busy, no test is performed (as for TDET and DTR), and the TDS315 message is printed.

During midnight routines, the MFR command is performed.

The following are additional comments on the above section:

- For commands ENLR and DISR: "n"can only be LSC or LSCU
- For command STAT: no other parameters can be given
- For command SDTR: if "n" is specified, it can only be LSC or LSCU.If "n" is not specified, all disabled MFR units are printed.
- For command MFR: "n" can be one of LSC, LSCU, L or <CR> If
 <CR> is requested, a test is performed on all MFRs

LD30 - Network and signaling diagnostics

- Signaling test of MFRs is supported by this overlay.
- Signaling test of FGDT trunks are supported. The test is performed for all trunks. For example, if all units of the FGDT trunk card are idle, an "existence" message is sent to the card. It is then required to return the same message to the CPU.

During midnight routines, testing of FGDT trunks and MFRs is supported.

LD32 - Network peripheral equipment diagnostics

Standard enable, disable and status commands are supported for MFRs.For FGDT trunks, all trunk applicable commands are supported.

Changes are made for this program to include the following responses where applicable, for example, status of specific card.

Normal responses include:

MFR (Multi-frequency receiver)

Mnemonics for trunk types include:

FGDT (Feature Group D trunk)

List of terms

AIOD	Automatic Identification of Outward Dialing
ANI	Automatic Number Identification
АТМ	Automatic Trunk Maintenance
BARS	Basic Alternate Route Selection
BOC	Bell Operating Company
BSWT	BOC Switch Time
Called customer	The Local Exchange Carrier (LEC) customer receiving the FGD call placed by the calling customer. The called customer is usually identified by a public directory number used by the calling customer when requesting the connection
Calling customer	The LEC customer that initiates the FGD call

Carrier	
	An entity that maintains a public or private long distance network.An example of a public long distance carrier is AT&T or U.S. Sprint.Northern Telecom would be considered a private long distance carrier.
CDR	Call Detail Recording
CDRE	Call Detail Recording Expansion
CE	Common Equipment
CIC	Carrier Identification code. This is the three or four digit number dialed by LEC customers to reach a specific Carrier's facilities.
CLID	Calling Line Identification
Consolidated car	rier (IC&INC) Carriers that combine the services of the Interexchange and International carriers.
COS	Class of Service
CPND	Call Party Name Display
CSWT	Carrier Switch Time
DDD	Direct Distance Dialing
DMI	Digit Manipulation Table Index
DNIS	Dialed Number Identification Services

DTMF	Dual Tone Multifrequency
EA	Equal Access
EAEO	Equal Access End Office
EAIN	Exchange Access International signaling
EANA	Exchange Access North American signaling
Embodied	Embodied Carrier Identification - 6-digit translation.A 6-digit translation is performed by the LEC to determine the Carrier
ESN	Electronic Switched Network
E.163	Standard North America Telephony numbering plan
FGD	Feature Group D
FGDT	Feature Group D Trunk
II	Information Digits
IC	Interexchange Carrier
IDC	Incoming Digit Conversion
INC	International Carrier

IC&INC	Consolidated Carrier
ISDN	Integrated Service Digital Network
ISL	ISDN Signaling Link
Interexchange ca	rrier (IC) Carriers providing connections between LATAs. They also serve areas where calling and called customers are in World Zone 1.
International carr	ier (INC) Carriers that provide connections from customers in the United States and customers outside World Zone 1. They may also provide connections to customers within World Zone 1, but outside of the U.S.
LAAC	Local Area Access Code, the NARS access code leading to the NXX translation tables
LATA	Local Access and Transport Area
LDAC	Long Distance Access Code, the NARS access code leading to the NPA translation tables
LEC	Local Exchange Carrier, for example, Pacific Bell
KP	Key Pulse
MF	Multifrequency
MFR	Multifrequency Receiver (MFRC) QPC916
MFRC	Multifrequency receiver without DTMF receiving capability

Feature Group D 553-2901-102

MFS	Multifrequency Sender
NANP	North American Numbering Plan
NARS	Network Alternate Route Selection
NCOS	Network Class of Service
NN	National Number
NPA	Numbering Plan Area N=2-9 P=0 or 1 A=any
NXX	Office Code N=2-9 X=0 or 1 x=any
Originating acces	SS
	Establishing the connection between the calling customer and the Point of Termination.
Originating call	A call placed by a calling customer.
os	Operator Services
PE	Peripheral Equipment
POP	Point of Presence
РОТ	Point of Termination
PRES	Presubscription between the LEC and the Carrier

PRI	ISDN Primary Rate Interface
RBOC	Regional Bell Operating Company
SAC	Service Access Code
ST	Start Transmission
TAFAS	Trunk Access from Any Station
TDET	Tone Detector
Terminating acce	Establishing the connection between the Point of Termination and the called customer.
Terminating call	A call presented by the Carrier to the LEC for connection to the called customer.
TGAR	Trunk Group Access Restriction
ΤVΑ	Trunk Verification from a Station Allowed
TVS	Trunk Verification from a Station
WATS	Wide Area Telecommunications Service
World Zone 1	All countries participating in the North American Numbering Plan (NANP), and are dialed with a ten digit address.

WZ1

World Zone 1

,

Feature Group D 553-2901-102

,

Feature Group D

Description and operation

Copyright © 1990 Northern Telecom All rights reserved. Information subject to change without notice. Release 1.0 Standard December 1, 1991 Printed in USA

SL-1 ISDN Primary Rate Interface Installation

,

Publication number: 553-2901-200 Product release: X11 release 19 Document release: 7.0 Document status: Standard Date: October 31, 1993

© 1989 Northern Telecom All rights reserved.

Revision history

December 20, 1989	Standard, X11 release 15.
December 20, 1990	This document was issued for X11 release 16.
December 1, 1991	This document is issued to include changes and updates for X11 release 17. Due to the extent of changes, revision bars are omitted.
December 31, 1992	This document is reissued to include additions for X11 release 18 updates, including Multi-purpose Serial Data Link (MSDL) card information. Updates are noted with change bars in the margins.
April 1, 1993	This document is reissued for Option 81, updates noted with revision bars in the margins.
August 1, 1993	This document is reissued to include information relating to X11 release 19. Due to the extent of changes, revision bars are omitted.
October 31, 1993	This document has been reissued to include updated technical information. It has been slightly reorganized to enhance ease of use. Technical changes are noted with revision bars in the margins.

ii

Contents

Introduction	1
PRI equipment overview	1
DCHI installation	1
MSDL installation	1
PRI installation	1
RT	2
NT, and system options 51 and 61	2
XT, and system option 71	2
System option 81	2
Clock Controller	2
Echo Canceller	2
ISL installation	2
PRI wire list	3
References	3
Note to installers	4
Primary Rate Interface equipment: overview	5
ISDN Signaling Link hardware	8
QPC720 PRI	9
Power requirements	9
QPC720 faceplate	10
Cable requirements	10
Carrier interface	12
Echo Canceller interface	12
64 T-link version 2 protocol	13
QPC757 DCHI/NT6D80 MSDL	14
Power requirements	14

ISDN PRI installation 553-2901-200

Interface to PRI QPC757/NT6D80 faceplate	14 14
NT6D80 MSDL	16
Power requirements	16
MSDL/PRI interface	16
MSDL faceplate	16
Clock operation	18
Tracking mode	18
Free run (non-tracking) mode	18
Holdover mode	18
Reference clock errors	18
Automatic clock recovery	20
Automatic clock switching	20
DTI to PRI conversion	21
PRI installation: ST, STE, 21, 21E	25
PRI circuit card locations	25
PRI circuit card locations Cable requirements	25 25
PRI circuit card locations Cable requirements Installing the QPC720 PRI	25 25 26
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI	25 25 26 32
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT	25 25 26 32 33
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations	25 25 26 32 33 33
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements	25 25 26 32 33 33 33
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements Installing the QPC720 PRI	25 25 26 32 33 33 33 34
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI	25 25 26 32 33 33 33 34 40
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: NT, 51, 61	25 25 26 32 33 33 33 34 40 41
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements Installing the QPC720 PRI Installing the QPC720 PRI PRI circuit card locations PRI stallation: NT, 51, 61 PRI circuit card locations	25 25 26 32 33 33 33 34 40 41 41
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: NT, 51, 61 PRI circuit card locations Cable requirements Cable requirements	25 25 26 32 33 33 34 40 41 41
PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI installation: RT PRI circuit card locations Cable requirements Installing the QPC720 PRI Removing the QPC720 PRI PRI circuit card locations Cable requirements Installing the QPC720 PRI PRI installation: NT, 51, 61 PRI circuit card locations Cable requirements Installation: NT, 51, 61 PRI circuit card locations Cable requirements Installing the QPC720 PRI	25 25 26 32 33 33 34 40 41 41 41 42

PRI installation: XT, 71	53
PRI circuit card locations	53
Cable requirements	53
Installing the OPC720 PRI	54
Removing the QPC720 PRI	62
PRI installation: 81	63
PRI circuit card locations	63
Cable requirements	63
Installing the QPC720 PRI	63
Removing the QPC720 PRI	71
Clock Controller Installation	73
Determining slots and shelves	74
Replacing a Clock Controller	77
Installing a Clock Controller	77
Starting the Clock Controller	77
Clock Controller commands	77
Installing the Clock Controller in a single group	80
DCHI installation for all systems	85
Installing the OPC757 DCHI	85
D-channel parameter downloading	89
Removing the QPC757 DCHI	90
MSDL installation for all systems	91
Installing the MSDL	91
Echo Canceller for all systems	97
PRI to Echo Canceller nin assignments	07
	7/
Electromagnetic Interference	- 98

1

ISL installation for all systems	101
ISL configurations	101
DCHI switch settings	101
MSDL switch settings	103
Shared mode	104
Dedicated mode using leased line	105
Dedicated mode using dial-up modem	105
Installing the Hayes Smartmodem 2400	105
Dedicated mode using PRI/DTI trunks	108
ISL installation	111
ISL dedicated mode (digital and analog)	111
ISL shared mode	111
	111
PRI cabling information	113
QCAD128/NT8D83xx	113
QCAD129/NT9J93xx	115
QCAD133/NT8D83xx	116
QCAD328	117
NT8D74 Clock Controller to InterGroup cable	118
NT8D75 Clock Controller to Clock Controller cable	118
NT8D79 PRI/DTI to Clock Controller cable	118
NT8D83 PRI/DTI to I/O cable	119
NT8D85 Network to PE cable	119
NT8D86 Network to I/O cable	120
NT8D97AX PRI/DTI I/O to MDF cable	120
NT9J93AD PRI/DTI Echo Canceller to I/O cable	120
NTND26 PRI to MSDL cables	120
NTND27 MSDL to I/O panel cables	121
NTND98 PRI to I/O panel cables	121
ISDN card slot positions	123

List of figures

Figure 1 PRI hardware	6
Figure 2 QPC720 PRI faceplate layout	11
Figure 3 QPC757 DCHI faceplate layout	15
Figure 4 NT6D80 MSDL faceplate layout	17
Figure 5 Clock controller primary and secondary tracking	19
Figure 6 PRI circuit card (QPC720) option settings	22
Figure 7 ST, STE, 21, 21E cabling without Echo Canceller	29
Figure 8 ST, STE, 21, 21E cabling with Echo Canceller	30
Figure 9 PRI card (QPC720) switch settings	31
Figure 10 RT cabling without Echo Canceller	37
Figure 11 RT cabling with Echo Canceller	38
Figure 12 ' PRI card (QPC720) switch settings	39

Figure 13 Half group cabling without Echo Canceller	47
Figure 14 Half group cabling with Echo Canceller	48
Figure 15 Single group cabling without Echo Canceller (NT, 61)	49
Figure 16 Single group cabling with Echo Canceller (NT, 61)	50
Figure 17 PRI card (QPC720) switch settings	51
Figure 18 XT, 71 cabling without Echo Canceller	56
Figure 19 XT, 71 cabling with Echo Canceller	57
Figure 20 Option switch settings for PRI circuit card	58
Figure 21 Option 81 cabling without Echo Canceller	65
Figure 22 81 cabling with Echo Canceller	66
Figure 23 Option switch settings for PRI circuit card	67
Figure 24 QPC757 option and PRI/ISL high speed programming switch settings	87
Figure 25 QPC757 option switch settings for PRI/ISL low speed programming	88
Figure 26 MSDL card layout	93
Figure 27 PRI to Echo Canceller cabling	90
Figure 28 ISL settings	102

List of figures	ix
••••••	103
	104
	104
g leased line	105
	100
g dial-up Hayes Smartmodem 2400	106
g PRI/DTI trunk	109

machine type and X11 release	7
	10
ngths	13
settings for PRI/DTI	23
) in ST and option 21	26
settings for PRI	27
ıs for ST, STE, 21, 21E	28
) in RT	34
settings for PRI	35
is for RT	36
) in NT or option 61	42
settings for PRI	45

xi

ISDN PRI installation 553-2901-200

ISDN PRI installation 553-2901-200

a de constat

Table 13 Cable connections and destinations for NT, 51, 61	46
Table 14 Shelf and slot location of QPC720 in XN, XT, and option 71	54
Table 15 Transmission equalization switch settings for PRI	59
Table 16 Cable connections and destinations for XT, 71	60
Table 17 Shelf and slot location of QPC720 in 81	64
Table 18 Transmission equalization switch settings for PRI	68
Table 19 Cable connections and destinations for 81	69
Table 20 Clock Controller shelves and slots	74
Table 21 Clock Controller switch settings for QPC471 vintage A	74
Table 22Clock Controller switch settings for QPC471 vintages B through G	75
Table 23 Clock Controller switch settings for QPC471 vintage H	76
Table 24 Clock Controller switch settings for QPC775	76
Table 25 MSDL switch settings	94
Table 26 PRI to Echo Canceller pin assignments	97
Table 27 Echo Canceller operating parameters	98
Table 28 ' Echo Canceller initialization procedures	98

المراجعة ال المراجعة الم

the second second second second

123.23

ŧ

Table 29 Pin assignment for D-channel RS-232 interface	107
Table 30QCAD128/NT8D83xx wire list	114
Table 31QCAD129/NT9J93xx wire list	115
Table 32QCAD133/NT8D83xx wire list	116
Table 33 QCAD328 wire list	117
Table 34 Card slot positions for 21, 21E, 51, 61, 71, and 81	123
Table 35 Card slot positions for ST, STE, RT, NT, XT	124

i

ISDN PRI installation 553-2901-200

1

Introduction

This document provides procedures to install, replace, or remove Primary Rate Interface (PRI) circuit cards, D-channel Interface (DCHI) cards, Multipurpose Serial Data Link (MSDL) cards, Clock Controller cards, and ISDN Signaling Link (ISL) equipment.

Note: ISDN is an evolving product. To plan your system for future expansions, please consult with your Northern Telecom representative.

The document is organized as follows:

PRI equipment overview

QPC757 DCHI NT6D80 MSDL QPC720 PRI Clock Operation

DCHI installation

All Meridian 1 systems Installing the QPC757 DCHI Removing the QPC757 DCHI

MSDL installation

All Meridian 1 systems Installing the NT6D80 MSDL Removing the NT6D80 MSDL

PRI installation

The ST and system option 21 Installing the QPC720 PRI Removing the QPC720 PRI RT

Installing the QPC720 PRI Removing the QPC720 PRI

NT, and system options 51 and 61

Installing the QPC720 PRI Removing the QPC720 PRI Installing an additional network shelf

XT, and system option 71

Installing the QPC720 PRI Removing the QPC720 PRI

System option 81

Installing the QPC720 PRI Removing the QPC720 PRI

Clock Controller

Installing the QPC471 and 775 Removing the QPC471 and 775

Echo Canceller

All Meridian 1 systems PRI to Echo Canceller pin assignments Echo Canceller operating parameters Echo Canceller initialization settings

ISL installation

All systems ISL configurations DCHI switch settings MSDL switch settings Shared mode Dedicated mode using leased line Dedicated mode using dial-up modem Dedicated mode using DTI or PRI trunk

PRI wire list

Nonstandard cables QCAD128 QCAD129 QCAD133 QCAD328 NTNT26 (X11 release 18 and later) NTND27 (X11 release 18 and later) NTND98 (X11 release 18 and later)

Throughout this document, Meridian 1 refers to both ST, STE, NT, RT, and XT, as well as system options 21, 21E, 51, 61, 71, and 81 unless otherwise noted.

References

Refer to the following documents for additional information.

- ISDN Primary Rate Interface description and administration (553-2901-100)
- Software conversion procedures (553-2001-320)
- Circuit card installation and testing (553-3001-211)
- Spares planning (553-3001-153)
- ISDN Primary Rate Interface maintenance (553-2901-500)
- X11 input/output guide (553-3001-400)

Note to installers

Before beginning an installation, do the following:

- Consult the Spares planning (553-3001-153) document and follow the instructions.
- Bring spares of all cables and boards.
- Tables 34 and 35 at the end of this document illustrate acceptable positions for the QPC720, QPC414, QPC741, QPC775, QPC757, and NT6D80 cards. Use this chart to determine where you are placing your cards before you actually begin your installation.
- Refer to ISDN Primary Rate Interface description and administration (553-2901-100) and X11 input/output guide (553-3001-400) for database implementation.
Primary Rate Interface equipment: overview

The following machines support Primary Rate Interface (PRI):

- Beginning with X11 release 14, Meridian SL-1 ST, RT, NT, XT
- Beginning with X11 release 15, system options 21, 21A, 51, 61, and 71
- Beginning with X11 release 18, STE, 21E, and 81

This document describes the equipment and procedures needed to install the following ISDN PRI hardware on Meridian 1 systems.

- QPC757 D-channel Interface (DCHI)
- NT6D80 Multi-purpose Serial Data Link (MSDL)
- QPC720 Primary Rate Interface (PRI)
- QPC471 or QPC775 Clock Controller

The QPC775 Clock Controller is currently not available for U.S. markets. The QPC471 and QPC775 Clock Controllers cannot be mixed in one system. Vintages A through G of the QPC471 Clock Controller can be used in one system; vintage H of QPC471 Clock Controllers cannot be mixed with Clock Controllers of other vintages. See Figure 1.

Refer to ISDN Primary Rate Interface description and administration (553-2901-100) for hardware vintage requirements and compatibilities, as well as packaging information.

Note: Either the QPC757 DCHI, NT6D80 MSDL, or the QPC720 PRI may be installed first. However, PRI loops must be configured in software before defining DCHI links.

The following hardware is required for PRI capability and applications:

— QPC414 network card

Refer to Circuit card installation and testing (553-3001-211)

- Channel Service Unit (CSU)

Refer to information received from manufacturer

- ROM and memory, as shown in Table 1.

See also Software conversion procedures (553-2001-320)

The NT and RT can use one QPC583A board while the XT can use up to three QPC583A boards. X11 release 15 and later software requires at least two QPC583A boards in XT machines. Systems with less than 420K data storage require an additional memory board.

Table 1 Minimum ROM requirements by machine type and X11 release

X11 release	ST, 21	STE, 21E	RT	NT, 51, 61	XT, 71	81
14	QPC717D or QPC937	N/A	QPC602	QPC602	QPC602	N/A
15/16/17	QPC940	N/A	QPC939A	QPC939	QPC939	N/A
18	N/A	NTND31	NTND08	NTND08	NTND08	

ISDN Signaling Link hardware

Equipment required for shared mode.

- QPC757 DCHI or NT6D80 MSDL
- QPC720 PRI
- QPC471 or QPC775 Clock Controller

A Clock Controller is not needed for analog applications. Both QPC471 and QPC775 Clock Controllers cannot be in one system.

Equipment required for dedicated mode using leased lines.

- QPC757 DCHI or NT6D80 MSDL
- Modem set in synchronous mode

This equipment is required for dedicated mode using a DTI.

- QPC757 DCHI or NT6D80 MSDL
- QMT11 Asynchronous/Synchronous Interface Module (ASIM)
- QMT21 High Speed Data Module (HSDM)
- Meridian Communications Unit (X11 release 18 and later)
- Data line card
- QPC472 DTI

Equipment required for dedicated mode using a dial-up modem.

- QPC757 DCHI or NT6D80 MSDL
- Modem with auto-dial capability

Note: This configuration is the least reliable because of lockup problems inherent in smart modems from power splices and noisy lines. To increase the reliability on this configuration, use a constant power source when powering the modems. Also, verify that TIE lines meet data grade specifications. Northern Telecom takes no responsibility for ISL D-channel outages due to modem lockup.

9

The following equipment is recommended for modem connections:

Hayes Smartmodem 2400 Concord Data System CDS 224 Trispeed Series II Anderson Jacobson AJ 2441-1 or Racal-Vadic 2400 PA

QPC720 PRI

The QPC720 PRI card is required for PRI operation in all machine types.

Power requirements

The QPC720 PRI uses power and ground from the backplane. This card does not require an intelligent bus. Power requirements are

+5 volts at 6 amperes

i

+12 volts at 50 milliamperes

-12 volts at 50 milliamperes

QPC720 faceplate

Table 2 gives information about the external connectors located on the QPC720 PRI faceplate.

The QPC720 PRI contains five LEDs and six external connectors. Figure 2 shows the faceplate layout.

Table 2 QPC720 PRI: external connectors

Faceplate destination	Туре
J1	9-pin female, D-connector
J2	9-pin female, D-connector
J3	36-pin connector
J4	15-pin male, D-connector
J5	15-pin male, D-connector
J6	15-pin female, D-connector
RCV MON	Miniature bantam jack
XMT MON	Miniature bantam jack

Cable requirements

Table 3 lists the types of cable used and the lengths required for external QPC720 PRI connections.

Note: No additional cabling is required for nB+D configurations. Multiple PRIs and the D-channel are associated through software in LD17, prompt PRI.

Figure 2 QPC720 PRI faceplate layout

Carrier interface

The QPC720 PRI provides an interface to the DS-1 Channel either directly, through an office repeater, or through an Echo Canceller.

The T1 Channel Service Units listed below are compatible with the QPC720 PRI card and the 64K Clear Data feature as well as with PRI connection parameters such as the Superframe format, the Extended superframe format, and the B7 and B8ZS Alternate Mark Inversion (AMI) line coding. See *ISDN Primary Rate Interface description and administration* (553-2901-100) for more information about the connection parameters.

- Digital Link 551A
- Digital Link 551C
- Digital Link 551E
- Tellabs Model 441
- Verilink Model 551V ST

In the U.S.A., FCC Part 68 regulations require Network Channel Terminating Equipment (for example, the NT QRY551 Channel Service Unit) installed at of the point of connection between a system and a registered common carrier trunk.

Echo Canceller interface

Echo Cancellers are required only with satellite transmission. The Echo Canceller detects the length of the loop, then cancels reflected transmission (callers do not hear their own voices echoed).

The QPC720 PRI provides both a T1 line interface and a control interface to link to a signal format compatible with EIA standard RS-232-C. Both the PRI and the Echo Canceller act as Data Terminal Equipment (DTE). The Echo Canceller's control protocol must conform to that of the Tellabs Model 251.

64 T-link version 2 protocol

The QPC720 card supports the 64 T-link version 2 protocol. The QPC720 together with the QMT21 High Speed Data Module supports the 64K Clear Data feature. The QPC720 card provides a trunk that ties two switches together. This trunk allows 64K Clear Data to pass from the Meridian 1 to an outside network. The QMT21 module allows Data Terminal Equipment (DTE) to send and receive 64K Clear Data. See *ISDN Primary Rate Interface description and administration* (553-2901-100) for more information about the 64K Clear Data feature.

Table 3 QPC720 PRI: cables and cable lengths

Cable type	From	То	Maximum length (feet)	Maximum length (meters)
QCAD130	QPC720	QPC471/QPC775 (CC-0)	7	2.13
QCAD130	QPC720	QPC471/QPC775 (CC-1)	7	2.13
QCAD328A	QPC720	QPC757 DCHI	6	1.8
QCAD328B	QPC720	QPC757 DCHI	18	5.5
QCAD328C	QPC720	QPC757 DCHI	35	10.67
QCAD328D	QPC720	QPC757 DCHI	50	15.24
QCAD124	QPC720	QPC414 Network	50	15.24
QCAD128	QPC720	Bulkhead I/O panel	25	7.62
RS-232	QPC720	Echo Canceller	50	15.24
NTND26AA	QPC720	NT6D80 MSDL	6	1.8
NTND26AB	QPC720	NT6D80 MSDL	18	5.5
NTND26AC	QPC720	NT6D80 MSDL	35	10.67
NTND26AD	QPC720	NT6D80 MSDL	50	15.24
NTND98	QPC720	Input/output panel	6	15.24
22AWG ABAM	Echo Canceller	DSX-1	655	199.64

Note: The QPC775 Clock Controller is currently available in Canada only. There can be no mixing of QPC775 and QPC471 in one system.

QPC757 DCHI/NT6D80 MSDL

The QPC757 DCHI or NT6D80 MSDL card is required in all machine types.

Power requirements

The QPC757 DCHI/NT6D80 MSDL power requirements

+5 volts at 3 amperes +12 volts at 50 milliamperes 12 volts at 50 milliamperes

Interface to PRI

The QPC757 DCHI connects to the QPC720 PRI via a RS-422 cable. The following signals are transmitted across the interface:

RCV DATA RCV CLOCK XMIT CLOCK XMIT READY PRI READY DCHI READY

PRI READY and DCHI READY are handshake signals.

QPC757/NT6D80 faceplate

The QPC757 DCHI as shown in Figure 3, has one light-emitting-diode (LED) to indicate an active or inactive state and two external connectors as follows:

1 Port J1 is a standard asynchronous port in LD48

Note: This connection does not support an Add-on Data Module (ADM) terminal.

2 Port J2 is the D-channel Interface port.

Note: X11 release 14 requires QPC757 vintage B or higher. A QPC757 vintage C is required if the ISL Revert to Conventional Signaling feature is configured. X11 release 15 requires a QPC757 vintage C or later. The QPC757 vintage D is recommended for combination ISL/PRI networks using NACD or Network Message Services and ISL networks using modems.

Figure 3 QPC757 DCHI faceplate layout

ISDN PRI installation 553-2901-200

NT6D80 MSDL

The NT6D80 MSDL card can be used in all machines supporting X11 release 18. It can be used in conjunction with, or independently from, the QPC757 card.

Power requirements

The NT6D80 MSDL power requirements are

Voltage (VAC)	Current (Amps)	Power (Watts)	Heat (BTUs)	
+5	3.20	16.00	55.36	
+12	0.10	1.20	4.15	
-12	0.10	1.20	4.15	

MSDL/PRI interface

MSDL can connect to PRI trunks through RS-422 or RS-232 interfaces. The interfaces are switch configurable.

MSDL faceplate

The NT6D80 MSDL as shown in Figure 4 has one light-emitting-diode (LED) that indicates its state (active or inactive) and four external connectors.

Each port can be RS-422 or RS-232 connectors, with either DCE or DTE interfaces.

Figure 4 NT6D80 MSDL faceplate layout

Clock operation

There are three types of clock operation: tracking mode, free run mode, and holdover mode.

Tracking mode

In tracking mode, the PRI loop supplies an external clock reference to a Clock Controller. Two PRI loops can operate in tracking mode, with one defined as the primary reference source for clock synchronization, the other defined as the secondary reference source. The secondary reference acts as a back-up to the primary reference. Both the primary and secondary references are assigned in LD73. Each should have its own clocking source.

As shown in Figure 5, a Meridian 1 system with dual CPUs may have two Clock Controllers (CC-0 and CC-1). One Clock Controller acts as a back-up to the other. The Clock Controllers should be completely locked to the reference clock.

Free run (non-tracking) mode

The clock synchronization for a PRI loop may operate in free run mode if the following conditions are true:

- The loop is not defined as the primary or secondary clock reference.
- The primary and secondary references are disabled.
- The primary and secondary references are in red alarm (local alarm).

Holdover mode

Holdover mode, available for vintages G and H, saves clock references, remembering the last position and retaining it if system operation is interrupted. Holdover mode maximizes synchronization accuracy.

Reference clock errors

Meridian 1 software checks every 15 minutes to see if a Clock Controller or reference clock error has occurred.

In tracking mode, at any one time, there is one active Clock Controller, which is tracking on one reference clock. If a Clock Controller error is detected, the system switches to the back-up Clock Controller without affecting which reference clock is being tracked.

Figure 5 Clock controller primary and secondary tracking

,

Automatic clock recovery

Automatic clock recovery provides for the clocking devices, down due to a PRI loop problem, to return to operation as soon as the PRI loop recovers

With X11 release 14, you must enable the Auto recovery in LD60 with the command EREF as well as in LD70 with AUTO = YES. With X11 release 15 and later, enable it in LD73 with AUTO = YES, LD60 is not required.

A PRI loop is disabled when it enters a red alarm (local alarm) condition. If the red alarm is cleared, the loop is enabled automatically. When the loop is enabled, clock tracking is restored in the following conditions:

- 1 If the loop is assigned as the primary reference clock but the Clock Controller is tracking on the secondary reference or in free run mode, it is restored to tracking on primary.
- 2 If the loop is assigned as the secondary reference clock but the Clock Controller is in free run mode, it is restored to tracking on secondary.

If the 15-minute clock check indicates the system is in free run mode:

- 1 Tracking is restored to the primary reference clock (if defined).
- 2 If the primary reference is disabled or in red alarm (local alarm), tracking is restored to the secondary reference clock if defined.

If the system was put into free run mode intentionally by the craftsperson, it resumes tracking on a reference clock at this time unless the clock-switching option has been disabled (LD60, command MREF), or the reference clock has been undefined in the database.

Automatic clock switching

Tracking on the primary or secondary reference clock is automatically switched in the following manner, when clock recovery is enabled.

If software is unable to track on the assigned primary reference clock, it switches to the secondary reference clock.

If software is unable to track on the assigned secondary reference clock, it switches to free run.

DTI to PRI conversion

The QPC720 PRI circuit card can be used in Digital Trunk Interface (DTI) mode. If the circuit card is switched from DTI mode to PRI mode, use Procedure 1.

Procedure 1 DTI to PRI conversion

- 1 Disable the QPC720 PRI using LD60, prompt DISL x.
- 2 Change option switch settings on the PRI circuit card as required. Refer to Figure 6 and Table 4.
- 3 If the PRI links the D-channel, connect J5 to QPC757 DCHI J2 with a QCAD328A cable. You can also connect the PRI to an MSDL card with the cables noted in Table 3 (with X11 release 18 and later).

If this PRI does not supply the D-channel (it is one of multiple PRIs in an nB+D configuration), no additional cabling is required. The D-channel is associated through software in LD17, prompt PRI.

The LEDs flash three times to indicate the QPC720 is operable.

4 Configure your database. Refer to *ISDN Primary Rate Interface* description and administration (553-2901-100) and *X11 input/output* guide (553-3001-400) for database implementation.

Figure 6 PRI circuit card (QPC720) option settings

Use the settings in the table below for transmission equalization with Primary Rate Interface (PRI) and Digital Trunk Interface (DTI) applications.

Table 4 Transmission equalization switch settings for PRI/DTI

Swif	tch S2 s	settir	ngs	To repeated facility	To cross-connect point			
	5 ON	1		0–45 m (0–150 ft)	0–30 m (0–100 ft)			
	2, 4, 6	ON		46–135 m (151–450 ft)	31–100 m (101–355 ft)			
	1, 3, 7	ON		136–225 m (451–750 ft)	101–200 m (356–655 ft)			
	Switch 3 options for PRI/DTI with ESF							
SW3-1 ON = extended superframe format (ESF) OFF = superframe format (SF)								
SW3-2 ON = B8ZS line encoding (required for 64K clear option) OFF = AM1 line encoding								
SW3-3 ON = facility data link (FDL) yellow alarm method (cannot be used in Canada OFF = Digit 2 yellow alarm method								
Note 1: All switch positions for S2 (location B22) are OFF except as shown under the column labeled "Switch S2 settings." The 8-pole SW3 (location E37) switch positions are OFF except as shown for "Switch 3 options for PRI/DTI with ESF."								

Note 2: For D2, D3, or D4 framing formats (superframe formats), set all SW3 options to OFF.

1

PRI installation: ST, STE, 21, 21E

X11 release 18 requires ST and 21 upgrade to STE or 21E. This chapter includes the PRI installation procedure for all four systems.

PRI circuit card locations

Each PRI circuit card requires two adjacent slots on a shelf. PRI cards can be placed in the following slots:

- for ST/STE, slots in Common Equipment (CE) shelf and DTI Expansion Tier
- for 21/21E, slots in NT8D11 Common/Peripheral Equipment Module

Cable requirements

,

Shielded 22 AWG (0.644 mm) cable is recommended for connecting the PRI to the cross-connect point. This cable consists of two shielded twisted-pair conductors and two shields.

The transmit and the receive pairs must be individually shielded and enclosed in a polyvinyl jacket. This type of cable is commonly referred to as "6-conductor" cable. T1 cable shielding should be grounded at the cross-connect point.

To manufacture cables of different lengths than the standard cables provided, refer to "PRI cabling information" on page 113.

See Figures 7 and 8 for cabling arrangements with and without an Echo Canceller.

The recommended order of PRI connections for the Universal I/O Panel (P0715058) for NT8D11 CE/PE Module (system option 21) follows:

- with Echo Canceller, J4 and J12 for the T1, J8 for the Echo Canceller
- without Echo Canceller, J4, J8, and J12 for the T1s

Installing the QPC720 PRI

This procedure describes how to install the QPC720 PRI card in an ST, STE, 21, or 21E.

Procedure 2 Installing the QPC720 PRI in an ST, STE, 21, 21E

1 Determine the cabinet and shelf location of the circuit card to be installed. The following slots can be used if they are not required for other cards. See Table 5.

Table 5 Shelf and slot location of QPC720 in ST and option 21

System	Shelf	Slot			
ST	CE DTI Exp Tier	5–13 Note 1 2–10 Note 2			
21	QSD81 ST Upgrade	5–15 Note 2			
21	NT8D35 DTI Exp Cube	4–9 Note 2 2–3 Note 2 5–14 Note 2			
	NT8D47 RPE Cube	1, 11, 12			
Note 1: If a DTI/PRI pack is installed in slot 13, then PE slot 1 cannot be used.					
Note 0. DT/DDI sector sector to slate. The slate discussion is the slate					

Note 2: DTI/PRI packs require two slots. The slot indicated is the maximum slot that the pack resides in. For example, the slot 14 pack uses slots 13 and 14.

- Unpack and inspect circuit cards.
- 3 Set option switches on the PRI circuit card. See Figure 9 and Table 6.
- 4 Install PRI circuit card in the assigned shelf and slot.
- 5 Install network circuit card (if no network loop connection is available).
- 6 If required, install I/O adapters in I/O panel.

- 7 Run and connect PRI cables. Figures 7 and 8 show ST, STE, 21, 21E PRI cabling. Refer also to Table 7.
- 8 If required, install connecting blocks at MDF or wall mounted cross-connect terminal.
- 9 If required, designate connecting blocks at MDF or wall mounted cross-connect terminal.
- 10 If required, install CSU or Echo Canceller.
- 11 Cross-connect PRI circuits.
- 12 Add related office data into system memory. Refer to the work order.
- 13 Run PRI verification tests.

Table 6 Transmission equalization switch settings for PRI

Switch S2 settings				To repeated facility	To cross-connect point		
	5 ON	1		0–45 m (0–150 ft)	0–30 m (0–100 ft)		
	2, 4, 6	ON		46–135 m (151–450 ft)	31–100 m (101–355 ft)		
	1, 3, 7	ON		136–225 m (451–750 ft)	101–200 m (356–655 ft)		
	Switch 3 options for PRI/DTI with ESF						
SW3-1 ON = extended superframe format (ESF) OFF = superframe format (SF)							
SW3-2 ON = B8ZS line encoding (required for 64K clear option) OFF = AM1 line encoding							
SW3-3 ON = facility data link (FDL) yellow alarm method (cannot be used in Canada OFF = Digit 2 yellow alarm method							
Note 1: All switch positions for S2 (location B22) are OFF except as shown under the column labeled "Switch S2 settings." The 8-pole SW3 (location E37) switch positions are OFF except as shown for "Switch 3 options for PBI/DTI with ESE"							

Note 2: For D2, D3, or D4 framing formats (superframe formats), set all SW3 options to OFF.

Table 7

Cable connections and destinations for ST, STE, 21, 21E

Cable	From	Con.	То	Des.	Con.	Notes
QCAD130 NT8D79xx	QPC720	J1	QPC471/QPC775	CC-0	J2	Only when primary clock source.
QCAD130 NT8D79xx	QPC720	J1	QPC471/QPC775	CC-0	J1	Only when secondary clock source.
NTND26	QPC720	J5	MSDL (NT6D80)			X11 release 18 and later.
QCAD124 NT8D85xx	QPC720	J3	Network		Í	Run directly to network card.
QCAD328A	QPC720	J5	DCHI		J2	Run directly to DCHI card.
QCAD133 NT8D83xx	I/O Panel		Patch panel			Run via cabinet I/O panel to CSU, Echo Canceller, or cross- connect terminal.
QCAD129 NT8D93xx	QPC720	J6	I/O Panel			Echo Canceller.
RS-232 NT8D89Ax	I/O Panel		Echo canceller			
RS-232	QPC720	J6	Echo canceller			
QCAD133 Nt8D83xx	QPC720	J4	Patch panel			Run via cabinet I/O panel to cross- connect terminal or Echo Canceller from non-shielded system.

Note: No additional cabling is required for multiple PRIs. The D-channel is associated through software in LD17, prompt PRI.

Figure 8

1

ST, STE, 21, 21E cabling with Echo Canceller

1

Removing the QPC720 PRI

The following procedure describes how to remove the QPC720 PRI card from the ST, STE, 21, 21E.

Procedure 3 Removing the QPC720 PRI from the ST, STE, 21, 21E

- 1 Disable the D-channel in LD96.
- 2 Disable Network Loop using LD60. The command is DISL x.
- 3 If the circuit card is being completely removed, not replaced, remove data from memory. See ISDN Primary Rate Interface description and administration (553-2901-100).
- 4 Determine the location of the circuit cards to be removed.
- 5 Remove cross connections at MDF to wall-mounted cross-connect terminal.
- **6** Disconnect PRI cables at Echo Canceller and at carrier interface (for example, Office Repeater and NCTE equipment).
- 7 Tag and disconnect cables from card. Rearrange Clock Controller card cables if required. This will affect call processing on DTI/PRI loops.
- 8 Remove PRI and network circuit cards. If the other circuit of a dual network card is in use, DO NOT remove the network card.
- 9 Pack and store circuit card.

PRI installation: RT

PRI circuit card locations

Each PRI circuit card requires two adjacent slots on a shelf. As many as five circuit cards can be plugged into an empty network shelf, along with the power converter card, depending on the shelf type. See Tables 34 and 35.

Cable requirements

Shielded 22 AWG (0.644 mm) cable is recommended for connecting the PRI to the cross-connect point. This cable consists of two shielded twisted-pair conductors and two shields.

The transmit and the receive pairs must be individually shielded and enclosed in a polyvinyl jacket. This type of cable is commonly referred to as "6-conductor" cable. T1 cable shielding should be grounded at the cross-connect point.

To manufacture cables of different lengths than the standard cables provided, refer to "PRI cabling information" on page 113.

See Figures 10 and 11 for cabling arrangements with and without an Echo Canceller.

The recommended order of PRI connections for the Universal I/O Panel (P0715058) for NT8D11 CE/PE Module (system option 21) follows:

- with Echo Canceller, J4 and J12 for the T1, J8 for the Echo Canceller
- without Echo Canceller, J4, J8, and J12 for the T1s

,

Installing the QPC720 PRI

This procedure describes how to install the QPC720 PRI card in an RT.

Procedure 4 Installing the QPC720 PRI in an RT

1 Determine the cabinet and shelf location of the circuit card to be installed. The following slots can be used if they are not required for other cards.

Table 8 Shelf and slot location of QPC720 in RT

Shelf	Slot
Network	5–12
DTI Expansion tier	2–9

- 2 Unpack and inspect circuit cards.
- 3 Set option switches on the PRI circuit card. See Figure 12 and Table 9.
- 4 Install PRI circuit card in the assigned shelf and slot.
- 5 Install network circuit card (if no network loop connection is available).
- 6 If required, install I/O adapters in I/O panel.
- 7 Run and connect the PRI cables. Figures 11 and 12 show the RT PRI cabling. Refer also to Table 10.
- 8 If required, install connecting blocks at MDF or wall mounted cross-connect terminal.
- **9** If required, designate connecting blocks at MDF or wall mounted cross-connect terminal.
- 10 If required, install CSU or Echo Canceller.
- 11 Cross-connect PRI circuits.
- 12 Add related office data into system memory. Refer to the work order.
- 13 Run PRI verification tests.

Note: No additional cabling is required for multiple PRIs. The D-channel is associated through software in LD17, prompt PRI.

Table 9 Transmission equalization switch settings for PRI

i

Switch S2 settings				To repeated facility	To cross-connect point
	5 ON	١		0–45 m (0–150 ft)	0–30 m (0–100 ft)
	2, 4, 6	ON		46–135 m (151–450 ft)	31–100 m (101–355 ft)
	1, 3, 7	ON		136–225 m (451–750 ft)	101–200 m (356–655 ft)
Switch 3 options for PRI/DTI with ESF					
SW3-1 ON = extended superframe format (ESF) OFF = superframe format (SF)					
SW3-2	ON	=	B8ZS li	ne encoding (required for 64K c	lear option)
	OFF	=	AM1 lin	ne encoding	
SW3-3	ON	=	facility	data link (FDL) yellow alarm met	hod (cannot be used in Canada)
OFF = Digit 2 yellow alarm method					
Note 1: All switch positions for S2 (location B22) are OFF except as shown under the column labeled "Switch S2 settings." The 8-pole SW3 (location E37) switch positions are OFF except as shown for "Switch 3 options for PRI/DTI with ESF."					
Note 2: For D2, D3, or D4 framing formats (superframe formats), set all SW3 options to OFF.					

Table 10

Cable connections and destinations for RT

Cable	From	Con.	То	Des.	Con.	Notes
QCAD130 NT8D79xx	QPC720	J1	QPC471/QPC775	CC-0	J2	Only when primary clock source.
QCAD130 NT8D79xx	QPC720	J1	QPC471/QPC775	CC-0	J1	Only when secondary clock source.
NTND26	QPC720	J5	MSDL (NT6D80)			X11 release 18 and later.
QCAD124 NT8D85xx	QPC720	J3	Network			Run directly to network card.
QCAD328A	QPC720	J5	DCHI		J2	Run directly to DCHI card.
QCAD133 NT8D83xx	I/O Panel		Patch panel			Run via cabinet I/O panel to CSU, Echo Canceller, or cross- connect terminal.
QCAD129 NT8D93xx	QPC720	J6	I/O Panel			Echo canceller.
RS-232 NT8D89Ax	I/O Panel	J6	Echo canceller			
RS-232	QPC720	J6	Echo canceller			
QCAD133 Nt8D83xx	QPC720	J4	Patch panel			Run via cabinet I/O panel to cross- connect terminal or Echo Canceller from non-shielded system.

Figure 10 RT cabling without Echo Canceller

,

1.

Figure 11 RT cabling with Echo Canceller

Removing the QPC720 PRI

The following procedure describes how to remove the QPC720 PRI card from the RT.

Procedure 5 Removing the QPC720 PRI from the RT

- 1 Disable the D-channel in LD96.
- 2 Disable Network Loop using LD60. The command is DISL x.
- 3 If the circuit card is being completely removed, not replaced, remove data from memory. See ISDN Primary Rate Interface description and administration (553-2901-100).
- 4 Determine the location of the circuit cards to be removed.
- 5 Remove cross connections at MDF to wall-mounted cross-connect terminal.
- 6 Disconnect PRI cables at echo canceller and at carrier interface (for example, Office Repeater and NCTE equipment).
- 7 Tag and disconnect cables from card. Rearrange Clock Controller card cables if required. This will affect call processing on DTI/PRI loops.
- 8 Remove PRI and network circuit cards. If the other circuit of a dual network card is in use, DO NOT remove the network card.
- 9 Pack and store circuit card.
PRI installation: NT, 51, 61

PRI circuit card locations

Each PRI circuit card requires two adjacent slots on a shelf. As many as five circuit cards can be plugged into any empty network shelf, along with the power converter card, depending on the shelf type. See Tables 34 and 35.

If additional network shelves are required, use the NT8D35 Network Module. See *System installation* (553-3001-210).

Cable requirements

Shielded 22 AWG (0.644 mm) cable is recommended for connecting the PRI to the cross connect point. This cable consists of two shielded twisted-pair conductors and two shields.

The transmit and the receive pairs must be individually shielded and enclosed in a polyvinyl jacket. This type of cable is commonly referred to as "6-conductor" cable. T1 cable shielding should be grounded at the cross-connect point.

To manufacture cables of different lengths than the standard cables provided, see "PRI cabling information" on page 113.

The recommended order of PRI connections for the Universal I/O Panel (P0715058) for the NT6D39 CE/Network Module (system option 51/61) is as follows:

- with Echo Canceller, J4, J12, and J24 for the T1 and J8, J20, and J28 for the Echo Canceller
- without Echo Canceller, J8, J12, J20, J24, and J28 for the T1s

Installing the QPC720 PRI

This procedure describes how to install the QPC720 PRI card in an NT, 51, or 61.

Procedure 6 Installing the QPC720 PRI in NT, 51, 61

1 Determine the cabinet and shelf location of the circuit card to be installed. The following slots can be used if they are not required for other cards.

Table 11

Shelf and slot location of QPC720 in NT or option 61

System	Shelf	Slot
NT	QSD39 Network (LH)	4–10 Note 1
	QSD40 Network (RH)	5–10 Notes 1, 2
	QSD39 DTI/PRI only	2–10 Notes 1, 4 12–14
	QSD40 DTI/PRI only	2–3 Note 1 5–13
61	NT6D39 CPU/NET	3–8 Note 1 18 Note 3
	NT8D35 DTI Exp Cube	2–3 Note 1 5–14 Note 1
	NT8D47 RPE Cube	1, 11, 12

Note 1: DTI/PRI packs require two slots. The slot indicated is the maximum slot that the pack resides in. For example, the slot 14 pack uses slots 13 and 14.

Note 2: The DTI/PRI pack cannot be installed in slot 11. The pack would come in contact with the BTU installed between slots 11 and 12.

Note 3: Slot 18 is only available on CPU shelf, which has no MDU/FDU.

Note 4: DTI/PRI pack could reside in slots 10 and 11, but cannot reside in slots 11 and 12 because of powering restrictions.

Removing the QPC720 PRI

The following procedure describes how to remove the QPC720 PRI card from the NT, 51, 61.

Procedure 7 Removing the QPC720 PRI in the NT, 51, 61

- 1 Disable the D-channel in LD96.
- 2 Disable Network Loop using LD60. The command is DISL x.
- 3 If the circuit card is being completely removed, not replaced, remove data from memory. See ISDN Primary Rate Interface description and administration (553-2901-100).
- 4 Determine the location of the circuit cards to be removed.
- 5 Remove cross connections at MDF to wall-mounted cross-connect terminal.
- 6 Disconnect PRI cables at Echo Canceller and at carrier interface (for example, Office Repeater and NCTE equipment).
- 7 Tag and disconnect cables from card. Rearrange Clock Controller card cables if required. This will affect call processing on DTI/PRI loops.
- 8 Remove PRI and network circuit cards. If the other circuit of a dual network card is in use, DO NOT remove the network card.
- 9 Pack and store circuit card.

Note: No additional cabling is required for multiple PRIs. The D-channel is associated through software in LD17, prompt PRI.

Table 12	
Transmission equalization switch settings for	or PRI

Swit	ch S2 s	settir	ngs	To repeated facility	To cross-connect point				
	5 ON	1		0–45 m (0–150 ft)	0–30 m (0–100 ft)				
2, 4, 6 ON				46–135 m31–100 m(151–450 ft)(101–355 ft)					
	1, 3, 7	ON		136–225 m (451–750 ft)	101–200 m (356–655 ft)				
Switch 3 options for PRI/DTI with ESF									
SW3-1	ON OFF	=	extend superfr	extended superframe format (ESF) superframe format (SF)					
SW3-2	ON	=	B8ZS I	ne encoding (required for 64K c	lear option)				
	OFF	=	AM1 lir	ne encoding					
SW3-3	ON	=	facility	data link (FDL) yellow alarm met	thod (cannot be used in Canada)				
	OFF	=	Digit 2	yellow alarm method					
<i>Note 1:</i> All switch positions for S2 (location B22) are OFF except as shown under the column labeled "Switch S2 settings." The 8-pole SW3 (location E37) switch positions are OFF except as shown for "Switch 3 options for PRI/DTI with ESF."									
Note 2: For D2, D3, or D4 framing formats (superframe formats), set all SW3 options to OFF.									

Table 13

Cable connections and destinations for NT, 51, 61

Cable	From	Des.	Con.	То	Des.	Con.	Notes
For half grou	ip only						
QCAD130 NT8D79xx	QPC720		J1	QPC471/ QPC775	CC-0	J2	Only when primary clock source.
QCAD130 NT8D79xx	QPC720		J1	QPC471/ QPC775	CC-0	J 1	Only when secondary clock source.
NTND26	QPC720		J5	NT6D80			X11 release 18 and later.
For single gr	oup only						
QCAD130 NT8D79xx	QPC720		J2	QPC471/ QPC775	CC-1	J2	Only when primary clock source.
QCAD130 NT8D79xx	QPC720		J2	QPC471/ QPC775	CC-1	J1 .	Only when secondary clock source.
QCAD125 NT8D75xx	QPC471/ QPC775	CC-0	JЗ	QPC471/ QPC775	CC-1	J3	Clock controller back-up.
QCAD124 NT8D85xx	QPC720		JЗ	Network			Run directly to network card.
QCAD328A	QPC720		J5	QPC757		J2	Run directly to DCHI card.
NTND26	QPC720		J5	NT6D80			X11 release 18 and later.
QCAD133	I/O Panel			Patch panel			Run via cabinet I/O panel to CSU, Echo Canceller, or cross-connect terminal.
QCAD129	QPC720		J6	I/O Panel			
RS-232	I/O Panel			Echo canceller			i
RS-232	QPC720		J6	Echo canceller			
QCAD133 NT8D83xx	QPC720		J4	Patch panel			Run via cabinet I/O panel to cross-connect terminal or Echo Canceller from non-shielded system.

i

ISDN PRI installation 553-2901-200

1000

,

Figure 15 Single group cabling without Echo Canceller (NT, 61)

Figure 16 Single group cabling with Echo Canceller (NT, 61)

ISDN PRI installation 553-2901-200

ï

PRI installation: XT, 71

PRI circuit card locations

Each PRI circuit card requires two adjacent slots on a shelf. As many as five circuit cards can be plugged into an empty network shelf, along with the power converter card, depending on the shelf type. See Tables 34 and 35.

Cable requirements

Shielded 22 AWG (0.644 mm) cable is recommended for connecting the PRI to the cross-connect point. This cable consists of two shielded twisted-pair conductors and two shields.

The transmit and the receive pairs must be individually shielded and enclosed in a polyvinyl jacket. This type of cable is commonly referred to as "6-conductor" cable. T1 cable shielding should be grounded at the cross-connect point.

To manufacture cables of different lengths than the standard cables provided, refer to "PRI cabling information" on page 113.

See Figures 18 and 19 for cabling arrangements with and without an Echo Canceller.

Installing the QPC720 PRI

This procedure describes how to install the QPC720 PRI card in an XT, 71.

Procedure 8 Installing the QPC720 PRI in an XT, 71

 Determine the cabinet and shelf location of the circuit card to be installed. The following slots can be used if they are not required for other cards.

Table 14

Shelf and slot location of QPC720 in XN, XT, and option 71

System	Shelf	Slot
XN/XT	QSD39 Network (LH) QSD40 Network (RH)	4–10 Note 1 5–10 Notes 1, 2
	QSD39 DTI/PRi only	2–10 Notes 1, 3 12–14
	QSD40 DTI/PRI only	2–3 Note 1 5–13
	NT7D44 Mass Storage QCA 55/58 CAB	2–8 Notes 1, 4
	NT7D45 Mass Storage QCA 23/24 CAB	5–10 Notes 1, 4
71	NT8D35 CPU/NET	5–10 Note 1 13–14
	NT8D35 DTI Exp Cube	2–3 Note 1 5–14
	NT8D47 RPE Cube	1, 11, 12

Note 1: DTI/PRI packs require two slots. The slot indicated is the maximum slot that the pack resides in. For example, in slot 14, the pack uses slots 13 and 14.

Note 2: A DTI/PRI pack cannot be installed in slot 11. The pack would come in contact with the BTU installed between slots 11 and 12.

Note 3: A DTI/PRI pack could reside in slots 10 and 11, but cannot reside in slots 11 and 12 because of powering restrictions.

Note 4: The power regulator (NT6D81AA) may be substituted by the DTI/PRI packs, provided the balance of equipment in card slots 1 through 8 are already equipped.

Figure 18 XT, 71 cabling without Echo Canceller

Figure 19 XT, 71 cabling with Echo Canceller

,

1.

Figure 20 Option switch settings for PRI circuit card

Sec. 1. 1. 1. 1.

ź

Table 16

Cable connections and destinations for XT, 71 (Part 1 of 2)

Cable	From	Des.	Con.	То	Des.	Con.	Notes
QCAD130 NT8D79xx	QPC720			J1	QPC471QC P775	CC-0	1
QCAD130 NT8D79xx	QPC720			J1	QPC471 QCP775	CC-0	2
QCAD130 NT8D79xx	QPC720			J2	QPC471 QCP775	CC-1	1
QCAD130 NT8D79xx	QPC720			J2	QPC471 QCP775	CC-1	2
QCAD110 NT8D74xx	QPC471 QCP775	CC-0	JЗ	QPC417	JCTR	J11	3
QCAD110 NT8D74xx	QPC471 QCP775	CC-1	J3	QPC417	JCTR	J12	
QCAD124 NT8D85xx	QPC720		J3	Network			4
QCAD328A	QPC720		J5	QPC757		J2	5
NTND26	QPC720	J5		NT6D80			X11 release 18 and later
QCAD128 NT8D83xx	QPC720		J4	I/O Panel			6
QCAD133 NT8D97Ax	I/O Panel			Patch Panel			6
QCAD129 NT9J93xx	QPC720		J6	I/O Panel			6
RS-232	I/O Panel			Echo Canceller			

,

the second s

Table 16 Cable connections and destinations for XT, 71 (Part 2 of 2)

Cable	From	Des.	Con.	То	Des.	Con.	Notes
RS-232	QPC720	· · · · · · · · · · · · · · · · · · ·	J6	Echo Canceller			7
QCAD133 NT8D83xx	QPC720		J4	Patch Panel			7
RS-232	QPC720		J6	Echo Canceller			7
Note 1: Only	when primary clo	ock source					
Note 2: Only	when secondary	clock sou	ce.				
Note 3: Multi-	Note 3: Multi-group junctor board connection.						
Note 4: Run to connector on network pack.							
Note 5: Run directly to DCHI card.							
Note 6: Run b	y means of cabi	net I/O par	nel to CSU	l, Echo Cancelle	r, or cross-conn	ect termi	inal.

Note 7: Run by means of cabinet I/O panel to cross-connect terminal or Echo Canceller from non-shielded system.

Removing the QPC720 PRI

The following procedure explains how to remove the PRI card from the XT, 71.

Procedure 9 Removing the QPC720 PRI from XT, 71

- 1 Disable the D-channel in LD96.
- 2 Disable Network Loop using LD60. The command is DISL x.
- 3 If the circuit card is being completely removed, not replaced, remove data from memory. See ISDN Primary Rate Interface description and administration (553-2901-100).
- 4 Determine the location of the circuit cards to be removed.
- 5 Remove cross connections at MDF to wall mounted cross-connect terminal.
- 6 Disconnect PRI cables at Echo Canceller and at carrier interface (for example, Office Repeater and NCTE equipment).
- 7 Tag and disconnect cables from card. Rearrange Clock Controller card cables if required. This will affect call processing on DTI/PRI loops.
- 8 Remove PRI and network circuit cards. If the other circuit of a dual network card is in use, DO NOT remove the network card.
- 9 Pack and store circuit card.

Procedure 10 Installing the QPC720 PRI in an 81

1 Determine the location of the circuit card to be installed. The following slots can be used if they are not required for other cards.

Table 17 Shelf and slot location of QPC720 in 81

System	Shelf Slot			
81	Core	0-3		
	Network Module	5-9, 13-14		
	RPE	1, 11, 12		

- 2 Unpack and inspect circuit cards.
- 3 Set option switches on the PRI circuit card, Figure 23 and Table 18.
- 4 Install PRI circuit card in the assigned shelf and slot.
- 5 Install network circuit card (if no network loop connection is available).
- 6 If required, install I/O adapters in I/O panel.
- 7 Run and connect the PRI cables. Figures 21 and 22 show the 81 PRI cabling. Refer also to Table 19.
- 8 If required, install connecting blocks at MDF or wall mounted cross-connect terminal.

Note: No additional cabling is required for multiple PRIs. Prompt PRI in LD17 associates the D-channel.

- **9** If required, designate connecting blocks at MDF or wall mounted cross-connect terminal.
- 10 If required, install CSU or Echo Canceller.
- 11 Cross-connect PRI circuits.
- 12 Add related office data into system memory. Refer to the work order.
- 13 Run PRI verification tests.

Figure 21 Option 81 cabling without Echo Canceller

1.

,

ISDN PRI installation 553-2901-200

.

Table 18

Transmission equalization switch settings for PRI

Switch S2 settings				To repeated facility	To cross-connect point		
	5 ON			0–45 m (0–150 ft)	0–30 m (0–100 ft)		
2, 4, 6 ON				46–135 m (151–450 ft)	31–100 m (101–355 ft)		
1, 3, 7 ON				136–225 m (451–750 ft)	101–200 m (356–655 ft)		
	Switch 3 options for PRI/DTI with ESF						
SW3-1	ON OFF	ON = extended superframe format (ESF) OFF = superframe format (SF)					
SW3-2	ON	=	B8ZS I	ine encoding (required for 64K c	lear option)		
	OFF	=	AM1 lir	ne encoding			
SW3-3	ON	=	facility	data link (FDL) yellow alarm me	thod (cannot be used in Canada)		
	OFF = Digit 2 yellow alarm method						
Note 1: All switch positions for S2 (location B22) are OFF except as shown under the column labeled "Switch S2 settings." The 8-pole SW3 (location E37) switch positions are OFF except as shown for "Switch 3 options for PRI/DTI with ESF."							
Note 2: For D2, D3, or D4 framing formats (superframe formats), set all SW3 options to OFF.							

Table 19Cable connections and destinations for 81 (Part 1 of 2)

Cable	From	Des.	Con	То	Des.	Con.	Notes
QCAD130 NT8D79xx	QPC720			J1	QPC471 QCP775	CC-0	Only when primary clock source
QCAD130 NT8D79xx	QPC720			J1	QPC471 QCP775	CC-0	Only when secondary clock source
QCAD130 NT8D79xx	QPC720			J2	QPC471 QCP775	CC-1	Only when primary clock source
QCAD130 NT8D79xx	QPC720			J2	QPC471 QCP775	CC-1	Only when secondary clock source
QCAD110 NT8D74xx	QPC471 QCP775	CC-0	JЗ	QPC417	JCTR	J11	Multi-group junctor board connection
QCAD110 NT8D74xx	QPC471 QCP775	CC-1	JЗ	QPC417	JCTR	J12	
QCAD124 NT8D85xx	QPC720		JЗ	Network			Run to connector on network pack
QCAD328	QPC720		J5	QPC757		J2	Run directly to DCHI card
NTND26	QPC720	J5		NT6D80			X11 release 18 and later
QCAD128 NT8D83xx	QPC720		J4	I/O Panel			Run via cabinet I/O panel to CSU, Echo Canceller, or cross-connect terminal

Table 19 Cable connections and destinations for 81 (Part 2 of 2)

Cable	From	Des.	Con	То	Des.	Con.	Notes
QCAD133 NT8D83xx	I/O Panel			Patch Panel			Run via cabinet I/O panel to CSU, Echo Canceller, or cross-connect terminal
QCAD129 NT9J93xx	QPC720		J6	I/O Panel			Run via cabinet I/O panel to CSU, Echo Canceller, or cross-connect terminal
RS-232	I/O Panel			Echo Canceller			
RS-232	QPC720		J6	Echo Canceller			Run via cabinet I/O panel to Echo Canceller or cross-connect terminal from non-shielded system
QCAD133 NT8D83xx	QPC720		J4	Patch Panel			Run via cabinet I/O panel to Echo Canceller or cross-connect terminal from non-shielded system
RS-232	QPC720		J6	Echo Canceller			Run via cabinet I/O panel to Echo Canceller or cross-connect terminal from non-shielded system

1

Clock Controller Installation

There are three steps to installing a Clock Controller:

- 1 Determining the location of the Clock Controller card (shelf and slot).
- 2 Setting the switches on the card.
- 3 Inserting the card and connecting the cables. This step may also entail removing an old card.

This chapter describes the details of this process.

CAUTION

Do not deviate from the procedures described in this section, as deviation stops call processing.

Determining slots and shelves

The Clock Controller card installation site varies from system to system. Table 20 shows the systems, the shelves used, and the available slot or slots.

Table 20

Clock Controller shelves and slots

System	Shelf	Slot(s)
ST, STE	CE	5-12
RT	network	13
NT, 51	QSD39 network (LH) QSD40 network (RH)	13 2
XN	QSD17 CPU	14
ХТ	QSD62	15
21, 21E	NT8D11 CE	4-5
61	NT6D39 CPU/NET	9
71	NT8D34 CE Cube	14
81	core	6

Before installing a Clock Controller, set the switches as shown in Table 21, Table 22, Table 23, and Table 24 below. The first three tables display the settings for different vintages of the QPC471. Table 24 shows the settings for the QPC775.

Table 21 Clock Controller switch settings for QPC471 vintage A

System	Switch	Setting				
NT, RT	SW2	ON				
XN, XT	SW2	OFF				
Vintage A applies only to these systems						

Table 23

Clock Controller switch settings for QPC471 vintage H

System		S١	V1			SV	V2			S١	V4	
ST, STE, 21A, 21, 21E	on	on	on	on	off							
SN	on	off	off	off	off							
RT, NT, 51, 61	on	on	on	on	off	off	off	off	off	on	*	*
XN, XT, 71, 81	off	on	*	*								
Cable length between the J3 faceplate connectors:											,	
0-4.3 m (0-14 ft.)											off	off
4.6–6.1m (15–50 ft.)											off	on
6.4–10.1m (21–33 ft.)											on	off
10.4–15.2 m (34–50 ft.)											on	on

• If there is only one Clock Controller card in the system, set to OFF. If there are two Clock Controller cards, set to match the cable length between the J3 faceplate connectors. Determine the total cable length (no single cable can exceed 25 ft.) between the J3 connectors. Both cards must have the same setting.

Table 24

Clock Controller switch settings for QPC775

System	SW2	SW3	SW4
NT, RT, ST, STE, 21, 21A, 21E, 51, 61	ON	OFF	ON
SN	ON	ON	OFF
XN, XT, 71, 81	OFF	OFF	ON
Replacing a Clock Controller

Step 2 in the following procedures explains how to replace a card.

Do not disable an active clock or a clock associated with an active CPU.

Installing a Clock Controller

Be sure to inspect the Clock Controller card before installing it. Refer to the tables at the beginning of this chapter for shelf, slot, and switch setting information. Remember not to use both the QPC471 and the QPC775 on a single system. QPC471 vintage H cards cannot be mixed with cards of an earlier vintage.

Starting the Clock Controller

The Clock Controller, when first enabled, is in free run mode. It stays in this mode for several minutes before being switched to tracking mode. Manual mode setting is possible via LD60.

For the earlier QPC471 vintages, up to 20 minutes may pass before the clock actually locks and tracks. The QPC471 vintage G and H cards begin tracking within five minutes.

Clock Controller commands

During the installation procedure you will use some of the Clock Controller commands available in LD60. In the list of commands below, "x" refers to the Clock Controller number: 0 for the card associated with the CPU0, 1 for the card associated with CPU1.

- DIS CC x: Disable system Clock Controller x
- DSCK loop: Disable clock for specified loop
- DSYL loop: Disable yellow alarm processing for loop
- ENCK loop: Enable clock for specified loop
- ENL CC x: Enable system Clock Controller x
- ENYL loop: Enable yellow alarm processing for loop
- EREF: Enable automatic switchover of system clocks
- SSCK x: Obtain status of system clock x

- SWCK: Switch system clock between active and standby
- TRCK aaa: Set Clock Controller track where aaa can be PCK (the primary DTI/PRI reference), SCLK (the secondary DTI/PRI reference) or FRUN (free running)

Procedure 12

Installing the Clock Controller in the ST, STE, 21, 21E, RT, 51, and NT half group

Note: Refer to the tables in this section to be sure you are using the correct vintage.

- 1 Set the ENL/DIS toggle switch to DIS (disable) on the new circuit card.
- 2 If replacing an existing card, do the following:
 - Perform a status check on the clock with the SSCK command in LD60. The new controller should have the same status.
 - Disable the old card using LD60.

Note: ERR20 messages may be generated. These can usually be ignored. However, excessive clock switching should be avoided, especially when counters are near the maintenance or out-of-service thresholds. Excessive switching could generate threshold-exceeded messages or cause the PRI to be automatically disabled. Check the counters in LD60. If necessary, reset the counters using the RCNT command.

- Set the old card's faceplate ENL/DIS switch to DIS.
- Disconnect cables from the old Clock Controller card and remove the card from the shelf.

Note: The Clock Controller status display in this mode indicates NO UART (no universal async receiver transmitter). Do not perform a clock status check when receiving this code.

- 3 Install the new Clock Controller in the selected slot.
- 4 Connect the cables to the new card.
 - Connect the primary reference to J2.
 - If applicable, connect the secondary reference to J1.
- 5 Set the faceplate ENL/DIS switch to ENL (enable).

Installing the Clock Controller in a single group

Procedure 13 Installing the Clock Controller in the NT, 61

- 1 Set faceplate ENL/DIS switch to DIS (disable) on the new circuit card.
- 2 If replacing an existing card, do the following:
 - Perform a status check on the clock with the SSCK command. The new card should have the same status.
 - Disable the old card using LD60. (Only a card in standby state associated with a standby CPU can be disabled using software.)

Note: ERR20 messages may be generated. These can usually be ignored. However, excessive clock switching should be avoided, especially when counters are near the maintenance or out-of-service thresholds. Excessive switching could generate threshold-exceeded messages or cause the PRI to be automatically disabled. Check the counters in LD60. If necessary, reset the counters using the RCNT command.

- Set the old card's faceplate ENL/DIS switch to DIS.
- Disconnect the cables from the old Clock Controller card and remove the card from the shelf.

Note: The Clock Controller status display in this mode indicates NO UART (no universal async receiver transmitter).Do not perform a clock status check when receiving this code.

3 If the 3PE switches have not been modified to recognize the Clock Controller card, adjust them as follows:

> QSD39 (left-hand side) SW1 OFF (Option 61 shelf 0) SW2 ON SW4 OFF QSD40 (right-hand side) SW1 OFF (Option 61 shelf 1) SW2 ON SW4 OFF SW8 OFF

- 4 Set faceplate ENL/DIS switch to DISABLE.
- 5 Install Clock,Controller in the selected slot.

1.000

- 6 Run and connect cables
 - Connect the primary reference to J2.
 - -- If available, connect the secondary reference to J1.
 - Connect the cable between the two clocks to J3 on each controller card.
- 7 Set the faceplate ENL/DIS switch to ENL.
- 8 Enable the Clock Controller by entering ENL CC x in LD60.
- **9** Set the error detection thresholds and clock synchronization controls in LD73. (Optional with card replacement; required with new installation.)
- 10 To track on a primary or secondary reference clock, use LD60. Use the following command:

TRCK PCK (for primary) SCLK (for secondary) FRUN (for free-run)

- 11 Issue the status check command, SSCK.
- 12 (Optional) Activate the new Clock Controller with the LD60 SWCK command.
- 13 Repeat, if necessary, for the second Clock Controller.

Procedure 14 Installing the Clock Controller in the XN, XT, 71, and 81

Note: The option 81 system requires a vintage H Clock Controller

- 1 Set faceplate ENL/DIS switch to DIS on new circuit card.
- 2 If replacing an existing card, do the following:
 - Perform a status check on the clock with the SSCK command. The new card should have the same status.
 - Disable it using LD60. (Use software only to disable a card in standby state associated with the standby CPU.)

Note: ERR20 messages may be generated. These can usually be ignored. However, excessive clock switching should be avoided, especially when counters are near the maintenance or out-of-service thresholds. Excessive switching could generate threshold-exceeded messages or cause the PRI to be automatically disabled. Check the counters in LD60. If necessary, reset the counters using the RCNT command.

- Set the old card's faceplate ENL/DIS switch to DIS.
- Disconnect the cables from the old Clock Controller card and remove it from the shelf.

Note: The Clock Controller status display in this mode indicates NO UART (no universal async receiver transmitter). Do not perform a clock status check when receiving this code.

- 3 Set the faceplate ENL/DIS switch to DIS.
- 4 Install the Clock Controller in the selected slot.
- 5 Run and connect the cables
 - Connect the primary reference to J2.
 - If available, connect the secondary reference to J1.
 - Connect the cable between the two clocks to J3 on each controller card.
- 6 Set the faceplate ENL/DIS switch to ENL.

ISDN PRI installation 553-2901-200

DCHI installation for all systems

Installing the QPC757 DCHI

Installation instructions for the QPC757 DCHI are the same for the ST, STE, RT, NT, and XT, as well as 21, 21E, 51, 61, 71, and 81. See Figures 24 and 25 for option switch settings per port number of the DCHI card in Primary Rate Interface.

Refer to X11 input/output guide (553-3001-400) for administration and maintenance programs. The following procedures describe how to install the QPC757 DCHI card.

Procedure 15 Installing the QPC757 DCHI

1 Determine the cabinet and shelf location of the circuit card to be installed.

The QPC757 DCHI card can be installed in any slot appropriate for an I/O port card on a network shelf. For single CPU systems only, the QPC757 DCHI card can be located on the Common Equipment (CE) shelf. Refer to Tables 34 and 35 for your system capabilities.

- 2 Unpack and inspect card.
- 3 Set option switches and jumper plugs on the DCHI card. For PRI capability, set port J2 to odd. For ISL capability, set port J2 for high speed or low speed programming.
- 4 Set faceplate toggle switch to DISABLE.
- 5 Install DCHI card into the assigned shelf or module and slot.
- 6 Run and connect DCHI cables: connect QPC757 J2 to QPC720 PRI J5 with a QCAD328A cable.
- 7 Set faceplate toggle switch to ENABLE.
- 8 Enable the loop in LD60.
- 9 Coordinate start-up and verification of the DCHI with the start-up of the PRI. See ISDN Primary Rate Interface description and administration (553-2901-100). Enable the DCHI card using LD96, command ENL DCH x.

Figure 25

QPC757 option switch settings for PRI/ISL low speed programming

ISDN PRI installation 553-2901-200

D-channel parameter downloading

Beginning with X11 release 14, system upgrades often contain changes to Dchannel parameters. The Meridian 1 software automatically downloads the new parameters to each D-channel Interface (DCHI) circuit card upon SYSLOAD. When this occurs, the D-channel is temporarily disabled and then automatically re-enabled.

Three situations require manual disabling and re-enabling of each DCHI to ensure parameter downloading:

- Performing a parallel load and switching over to the second CPU
- Following an alarm condition for the T1 loop carrying the D-channel (but the D-channel is still operational)
- Following SYSLOAD when using ISDN Signaling Link (ISL)

Removing the QPC757 DCHI

The following procedure explains how to remove the QPC757 DCHI card.

CAUTION

The QPC757 DCHI must be software disabled before it is hardware disabled to prevent initialization.

Procedure 16 Removing the QPC757 DCHI

- 1 Disable the QPC757 DCHI using LD96, command DIS DCH x.
- 2 Disable asynchronous port J1 in LD48 to prevent initialization.
- 3 Disable loop in LD60.
- 4 If the circuit card is being removed, not replaced, remove data from memory. See the *ISDN Primary Rate Interface description and administration* (553-2901-100) document.
- 5 Determine the cabinet and shelf location of the card to be removed.
- 6 Set faceplate toggle switch to DISABLE.
- 7 Disconnect QPC757 DCHI cables.
- 8 Remove QPC757 DCHI card.
- Pack and store circuit card.

Procedure 17 Installing the MSDL card

- 1 Determine module and slot location for the MSDL card. Refer to the list above.
- 2 Unpack and inspect the MSDL card.
- **3** Set the MSDL switch settings to correspond to Table 25 and Figure 26.
- 4 Insert the MSDL card into the selected card slot of the module following the card guides.
- 5 Observe the red LED on the MSDL faceplate. If it turns on, flashes three times, and stays on continuously, the MSDL is operating correctly but is not yet enabled.

If the LED turns on and stays on continuously without flashing three times, the card may be defective. Go to step 8.

- 6 Run and connect the cables: NTND80 to QPC720 PRI J5 with a NTND26 cable.
- 7 Enable the MSDL card in LD96.
- 8 Unplug the MSDL card and reinsert it. If the red LED still does not flash three times, leave the card installed for approximately 10 minutes to allow the card to be initialized.
- **9** After 10 minutes unplug the card, reinsert it, and if the card still does not flash three times, the card is defective and must be replaced.

Figure 26 MSDL card layout

,

Table 25 MSDL switch settings

	Port 0 — SW4						Port 0 — SW8											
RS-232-D	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off
RS-422-A DTE	off	off	off	off	off	off	off	off	on									
RS-422-A DCE	on	on	on	on	on	on	on	on	off									
		Port 1— SW3					Port 1— SW7											
RS-232-D	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off
RS-422-A DTE	off	off	off	off	off	off	off	off	on									
RS-422-A DCE	on	on	on	on	on	on	on	on	off									
	Port 2— SW2						Port 2— SW2											
RS-232-D	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off
RS-422-A DTE	off	off	off	off	off	off	off	off	on									
RS-422-A DCE	on	on	on	on	on	on	on	on	off									
	Port 2— SW2						Port 2— SW2											
RS-232-D	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off	off
6-422-A DTE	off	off	off	off	off	off	off	off	on									
-422-A DCE	on	on	on	on	on	on	on	on	off									

1

ISDN PRI installation 553-2901-200

QPC757 option switch settings for PRI/ISL low speed programming

D-channel parameter downloading

For X11 release 14 and later, often software upgrades on the Meridian 1 contain changes to the D-channel parameters. The Meridian 1 software automatically downloads the new parameters to each D-channel Interface (DCHI) circuit card upon SYSLOAD. When this occurs, the D-channel is temporarily disabled and then re-enabled.

However, there are three exceptions to this automatic downloading of DCH parameters. Manual disabling and re-enabling of each DCHI is required to ensure parameter downloading in these situations:

- when performing a parallel load and switching over to the second CPU
- when the T1 loop carrying the D-channel is in alarm condition (but the D-channel is still operational) and the alarm condition is cleared
- after SYSLOAD when using ISDN Signaling Link (ISL)

Removing the QPC757 DCHI

The following procedure explains how to remove the QPC757 DCHI card.

CAUTION

The QPC757 DCHI must be software disabled before it is hardware disabled; otherwise, initialization occurs.

Procedure 25 Removing the QPC757 DCHI

- 1 Disable the QPC757 DCHI using LD96, command DIS DCH x.
- 2 Disable asynchronous port J1 in LD48, or initialization occurs.
- 3 Disable loop in LD60.
- 4 If the circuit card is being removed, not replaced, remove data from memory. See the *ISDN Primary Rate Interface description and administration* (553-2901-100) document.
- 5 Determine the cabinet and shelf location of the card to be removed.
- 6 Set faceplate toggle switch to DISABLE.
- 7 Disconnect QPC757 DCHI cables.
- 8 Remove QPC757 DCHI card.
- Pack and store circuit card.

ISDN PRI installation 553-2901-200

ISL installation for all systems

ISL configurations

The ISDN Signaling Link (ISL) feature operates in two modes (Figure 28):

- Shared mode—One DCH supports PRI with DTI or analog.
- Dedicated mode—In this mode, the DCH supports *only* ISL trunks using ISDN PRI signaling. The D-channel communicates with the far end using a dedicated leased line, dial-up modem, or DTI trunk.

It is recommended that Leased Lines be data conditioned from the Central Office to ensure the integrity of the ISL configuration.

DCHI switch settings

For ISL functions, use the following switch settings for the J2 port:

DTE for high speed programming

Note: For ISL low speed programming, see the DCHI installation section of this document.

- RS-232 for 19.2 Kbps and below
- HS for speed above 19.2 Kbps
- External clock (in LD17) provided by modem, ADM, or ASIM, otherwise DCH runs at 64 Kbps

Figure 28 ISL settings

Shared mode

In shared mode, the D-channel is provided by the DCHI or MSDL card and PRI. The hardware configuration is basically the same as the ISDN PRI D-channel. See Figure 30.

Shared mode is established through service change in LD17, prompt USR, with the response SHA.

In the shared mode, the DCH can share signaling for no more than 382 trunks, including digital and analog.

Figure 30 ISL in shared mode

Dedicated mode using leased line

In this configuration, the D-channel connects the DCHI or MSDL to a modem, which communicates with a far-end modem over a dedicated leased line. See Figure 31. A 2400 baud D-channel can support signaling for approximately 700 trunks without non-call associated messages.

Both modems should be set in the synchronous mode.

Figure 31 ISL dedicated mode: using leased line

Dedicated mode using dial-up modem

In this configuration, the DCHI or MSDL is connected to a modem, which is connected to a 500 set line card. See Figure 32. The call is connected to the far end through the 500 set-to-TIE trunk path.

To set up the D-channel, program the modem at one end in the auto-dial mode, so it automatically initiates a call to the other end at power up. The auto-dial DN must be coordinated with personnel at the far end switch.

Installing the Hayes Smartmodem 2400

The software and hardware of the Hayes Smartmodem 2400 must be installed sequentially. The Hayes Smartmodem 2400 software must be defined before the hardware connection between the Hayes Smartmodem 2400 and the Meridian 1 can be made. Within the software installation, either the autodial or the autoanswer software can be set up first.

Examples of parameters used for actual autoanswer and autodial sites are shown on the following pages. The *Hayes Smartmodem 2400 User's Guide* contains explanations of the parameters used.

After the software parameters have been set up, the JP1 jumpers behind the front faceplate of the Hayes Smartmodem 2400 must be dumb strapped on both modems. Then see the *Hayes Smartmodem 2400 Getting Started Guide* to set up the hardware between the Meridian 1 and the modem.

Note: The Hayes Smartmodem 2400 cannot be used on leased, conditioned lines.

Figure 32 ISL dedicated mode: using dial-up Hayes Smartmodem 2400

Dedicated mode using PRI/DTI trunks

In this configuration, the DCHI or MSDL is connected to an High Speed Data Module (HSDM) or Asynchronous/Synchronous Interface Module (ASIM). See Figure 33. The HSDM or ASIM is connected to a Data Line Card (DLC). The call is then connected to the far end through the DLC to DTI trunk path.

To establish the D-channel in this configuration, set up the HSDM or ASIM at one end in hot line mode. The hot line DN must be coordinated with personnel at the far end, then programmed in LD11. The preprogrammed hot line DN is dialed by the Meridian 1. If the call cannot be established, the Meridian 1 continues to dial the hot line number continuously until the call is connected.

Set the HSDM or ASIM in synchronous mode. A data rate of 9.6 Kbps is recommended because it provides internal error detection and correction. The following data rates are also supported: 1.2 Kbps, 2.4 Kbps, 3.6 Kbps, 4.8 Kbps, 7.2 Kbps, 14.4 Kbps, 19.2 Kbps, 38.4 Kbps, and 56 Kbps for ASIM. The High Speed Data Module (HSDM) supports 64 Kbps.

Note: This configuration is the least reliable because of the lockup problems inherent in Smart Modems from power splices and noisy lines. To increase the reliability on this configuration, a constant power source can be used when powering the modems. Also ensure that the TIE lines meet data grade specifications. Northern Telecom takes no responsibility for ISL D-channel outages due to modem lockup.

Figure 33 ISL dedicated mode: using PRI/DTI trunk

,

QMT11 switch settings – If using the QMT11 ASIM, set the dip switches, located on top of the unit under the flip-up, as follows:

	Hotline	On; See Note 1.
	Forced DTR	On; See Note 2.
—	FDX (full duplex)	On
—	SYNC	On
	INTernal CLK	On
	Modem/Network	Modem
	Auto Answer	On
	Loopback	Off

Note 1: Set only one side of the interface to originate the hot line.

Note 2: Forced Data Terminal Ready (DTR) automatically reinitiates a dropped hot line call.

QMT21C switch settings – If using the QMT21 HSDM, set the dip switches, located on top of the unit under the flip-up, as follows.

-	Hotline	On; See Note 1.
—	Forced DTR	On; See Note 2.
-	FDX (full duplex)	On
_	SYNC	On
_	INTernal CLK	On
_	Modem/Network	Modem
	Auto Answer	On
_	Loopback	Off

Note 1: Set only one side of the interface to originate the hot line.

Note 2: Forced Data Terminal Ready (DTR) automatically reinitiates a dropped hot line call.

ISDN PRI installation 553-2901-200

,
ł

PRI cabling information

This section provides information required to build cables of nonstandard lengths for ISDN Primary Rate Interface (PRI) applications.

QCAD128/NT8D83xx

This cable transports the T1 signal from the PRI pack to the I/O panel. See Table 30.

- Standard length -10 ft (3.05 m)
- Construction 15-conductor ribbon, 28 AWG (0.321 mm), stranded
- P1 Connector-15-pin, male, subminiature D, with jack-screws
- P2 Connector 15-pin, male, subminiature D, with jack-screws

Table 30 QCAD128/NT8D83xx wire list

From	То	Signal
P1-1	P2-1	XTIP (transmit tip) to telephone company
P1-2	P2-2	GND (ground)
P1-3	P2-3	RTIP (receive tip) from telephone company
P1-4	P2-4	GND (ground)
P1-5	P2-5	
P1-6	P2-6	
P1-7	P2-7	
P1-8	P2-8	
P1-9	P2-9	XRING (transmit ring) to telephone company
P1-10	P2-10	
P1-11	P2-11	RRING (receive ring) from telephone company
P1-12	P2-12	
P1-13	P2-13	
P1-14	P2-14	
P1-15	P2-15	

QCAD133/NT8D83xx

For cabinets with an I/O filter assembly, this cable transports the T1 signal from the I/O filter to the Network Channel Terminating Equipment (NCTE) telephone company interface. See Table 32.

For cabinets **without** an I/O filter assembly, this cable transports the T1 signal from the QPC720 PRI pack to the NCTE telephone company interface.

- Standard length -50 ft (15.3 m)
- Construction Individually foil-shielded, twisted pairs, 24 AWG (0.511 mm), stranded
- P1 Connector 15-pin, female, subminiature D with jack-screws
- P2 Connector 15-pin, male, subminiature D, with slide-latch (optional spring-latch loose-packed with cable assembly)

Color	From	То	PRI signai
WHITE	P1-1	P2-1	XTIP (transmit tip) to telephone company
BLACK	P1-9	P2-9	XRING (transmit ring) to telephone company
GRN SHLD	P1-2	nc	GND (ground)
RED	P1-3	P2-3	RTIP (receive tip) from telephone company
BLACK	P1-11	P2-11	RRING (receive ring) from telephone company
RED SHLD	P1-4	nc	GND (ground)

Table 32 QCAD133/NT8D83xx wire list

QCAD328

This cable connects the PRI pack to the D-channel interface card, the QPC757 DCHI. There are two types of QCAD328 cables, QCAD328A and QCAD328B. See Table 33.

- QCAD328A-6 ft (1.8 m)
- QCAD328B-18 ft (5.5 m)
- QCAD328C-35 ft (10.67 m)
- QCAD328D-50 ft (15.24 m)
- Construction 24 AWG (0.511 mm), stranded
- P1 Connector 25-pin male, subminiature D
- P2 Connector 15-pin male, subminiature D

Table 33 QCAD328 wire list

From	То	Signal
P1-2	P2-2	SDA+
P1-13	P2-10	SDB-
P1-20	P2-15	TR
P1-15	P2-9	STA+
P1-14	P2-11	STB-
P1-3	P2-4	RDA+
P1-16	P2-12	RDB-
P1-17	P2-5	RTA+
P1-12	P2-13	RTB-
P1-8	P2-8	RR
P1-5	P1-8	CS
P1-7	P1-1	SG
P1-1 ;	P2-1	GND

NT8D74 Clock Controller to InterGroup cable

This cable connects the QPC471 Clock Controller card to the NT8D36 InterGroup Module.

This cable is available in the following lengths:

- NT8D74AC 1.2 m (4 ft)
- NT8D74AD 1.8 m (6 ft)
- NT8D74AE 2.4 m (8 ft)
- NT8D74AF 3 m (10 ft) (QCAD110B)
- NT8D74AJ 4.8 m (16 ft)

NT8D75 Clock Controller to Clock Controller cable

This cable interconnects QPC471 Clock Controller cards.

This cable is available in the following lengths:

– NT8D75AC	1.2 m (4 ft)
– NT8D75AD	1.8 m (6 ft)
– QCAD125	3 m (10 ft)

NT8D79 PRI/DTI to Clock Controller cable

This cable connects the PRI/DTI card to the QPC471 Clock Controller card.

This cable is available in the following lengths:

- NT8D79AB 0.6 m (2 ft)
- NT8D79AC 1.2 m (4 ft)
- NT8D79AD 1.8 m (6 ft)
- NT8D79AE 2.4 m (8 ft)
- NT8D79AF 3 m (10 ft) (QCAD130)

ISDN PRI installation 553-2901-200

NT8D86 Network to I/O cable

This cable connects the following to the I/O connector panel:

- QPC414 Network card
- PRI/DTI card
- QPC659 Dual Loop Peripheral Buffer card
- NT8D47 RPE

This cable is available in the following lengths:

- NT8D86AC 1.5 m (5 ft)
- NT8D86AD 1.8 m (6 ft)

NT8D97AX PRI/DTI I/O to MDF cable

This cable connects the PRI/DTI card to the MDF through the I/O connector panel. It is $15.2 \text{ m} (50 \text{ ft}) \log R$.

NT9J93AD PRI/DTI Echo Canceller to I/O cable

This cable connects the PRI/DTI Echo Canceller port to the I/O connector panel. It is 1.8 m (6 ft) long.

NTND26 PRI to MSDL cables

These cables connect the MSDL card to the PRI cards.

- NTND26AA 6 feet
- NTND26AB 18 feet
- NTND26AC 35 feet
- NTND26AD 50 feet

NTND27 MSDL to I/O panel cables

These cables connect the MSDL card to the I/O panel.

- NTND27 6 feet

NTND98 PRI to I/O panel cables

i

These cables connect the PRI trunk card to the I/O panel.

- NTND98 6 feet

ISDN PRI installation 553-2901-200

ISDN PRI installation 553-2901-200

1

ISDN card slot positions

The following tables illustrate acceptable positions for the QPC720, QPC414, QPC741, QPC775, QPC757, and NT6D80 cards.

Use this chart to determine where you are placing your cards before you actually begin your installation.

Table 34			
Card slot positions	for 21, 21	E, 51, 61, 7	1, and 81

	21	21E	51/61	71	81
QPC414 1 slot	CE/PE: 4-9 (Net)	CE/PE: 4-9 (Net)	CPU/Net: 1-8	Net: 5-12	
Net: 5-12					
QPC720 2 slots	CE/PE: 4-8 (Net) RPE: 1, 11-12	CE/PE: 4-8 (Net) RPE: 1, 11-12	CPU/Net: 3-7 RPE: 1, 11-12	CPU: 8-12, 15-16 Net: 5-9, 13-14 RPE: 1, 11-12	Core: 0-3 Net: 5-9, 13-14 RPE: 1, 11-12
QPC471 QPC775 1 slot per CPU	CE/PE: 4-7 (Net)	CE/PE: 4-7 (Net)	CPU/Net: 9	CPU: 14	Core: 6
QPC757 1 slot	CE/PE: 4-9 (Net)	CE/PE: 4-9 (Net)	CPU/Net: 1-9, 13	Net: 5-13	Net: 5-13
NT6D80 1 slot		CE/PE: 4-9 (Net)	CPU/Net: 1-8, 13	Net: 5-12	Net: 5-12

Table 35

Card slot positions for ST, STE, RT, NT, XT

	ST QCA136	STE QCA136	RT QCA147	NT QCA58	XT QCA55
QPC414 1 slot	CE: 5-12	CE: 5-12	QSD76: 3-10	QSD39: 3-10 QSD40: 5-12	QSD39: 3-10 QSD40: 5-12
QPC720 2 slots	CE: 5-12 QSD73: 2-9	CE: 5-12 QSD73: 2-9	QSD76: 5-12 QSD73: 2-9	QSD39: 5-12 QSD40: 2-10	QSD39: 5-12 QSD40: 2-10
QPC471 QPC775 1 slot per CPU	CE: 5-12	CE: 5-12	QSD76: 13	Shelf 0, QSD39: 13 for half group Shelf 1, QSD40: 2 for single group	QSD62: 14 or 15
QPC757 1 slot	CE: 5-13	CE: 5-13	QSD76: 2-10, 12	QSD39: 2-10, 12 QSD40: 5-13, 2, 3	QSD39: 2-10 QSD40: 5-13, 2, 3
NT6D80 1 slot		CE: 5-13	QSD76: 2-10, 12	QSD39: 2-10, 12 QSD40: 5-13, 2, 3	QSD39: 2-10 QSD40: 5-13, 2, 3

,

i i

SL-1 ISDN Primary Rate Interface

Installation

Copyright © 1989 Northern Telecom All rights reserved. Information subject to change without notice. Release 7.0 Standard October 31, 1993 Printed in the U.S.A.

SL-1 ISDN Primary Rate Interface Maintenance

Publication number: 553-2901-500 Product release: X11 release 19 Document release: 6.0 Document status: Standard Date: August 1, 1993

© 1989 Northern Telecom All rights reserved.

Revision history

December 20, 1989	
	Standard, X11 release 15.
December 20, 1990	
	This document was updated to include X11 release 16 ISDN features and technical corrections. The traffic reports have been removed; see Traffic measurement (553-2001-450).
December 1, 1991	
	This document is issued to include changes and updates for X11 release 17. Due to the extent of changes, revision bars are omitted.
December 31, 1992	
	This document is reissued to include updates for X11 release 18 and MSDL cards. Changes are noted with revision bars in the margins.
April 1, 1993	
	This document is reissued to include information relating to X11 release 18 and option 81. Due to the extent of changes, revision bars are omitted.
August 1, 1993	
	This document is reissued for X11 release 19. Revisions are noted with change bars in the margins.

Contents

Introduction	11
References	12
PRI operations guide	13
PRI quick reference	15
PRI commands	15
PRI messages	15
DCHI quick reference	17
MSDL quick reference	18
D-channel commands (X11 release 17 and earlier)	18
D-channel commands (X11 release 18 and later)	20
MSDL commands (X11 release 18 and later)	21
D-channel messages	21
Maintenance service messages	21
Service message function	23
D-channel establishment	23
D-channel sanity polling	23
B-channel or ISL channel status change	23
Channel status audit	23
Service message commands	24
PRI status check	25
PRI start-up	28

,

Network Call Trace	30
Configuring Network Call Trace	30
Tracing a call	31
Trace function 01	31
Example 1: Successful call with trace function 01	33
Example 2: Unsuccessful call with trace function 01	34
Trace function 02	35
Feature requirements	36
PRI fault clearing	37
PRI red alarm (local alarm)	37
Channel restoration	38
PRI yellow alarm (remote alarm)	39
Channel restoration	39
PRI problems	41
D-channel problems	43
PRI local loop back test	44
PRI self-test	45
PRI automatic loop test	45
Link diagnostic and remote loop-back tests	46
Link diagnostic test	46
Remote loop-back test	46
Coordinating the tests	46
PRI commands (LD60)	48
PRI messages	48
PRI error detection	49
Yellow alarm (remote alarm)	49
Bit error rate	50
Bipolar violation (BPV) tracking	50
Cyclic redundancy check (CRC)	51
Bit error rate thresholds	52
Frame slip	53
Frame alignment	56
TN to channel number conversion	57
Using the error counter	59
Replacing the PRI	61

ISDN PRI maintenance 553-2901-500

D-channel maintenance	63
DCH tests 100 and 101 (QPC757 DCHI card only)	64
DCH tests 200 and 201 (QPC757 DCHI card only)	66
MSDL local loopback test (NT6D80)	68
MSDL remote loopback tests (NT6D80)	70
Protocol Log (PLOG)	73
Replacing the DCHI or MSDL	77
Clock Controller maintenance	79
Tracking mode	79
Free run (non-tracking) mode	79
Reference clock errors	79
Automatic clock recovery	81
Automatic clock switching	81
QPC471, QPC775 Clock Controller Card	82
Removing equipment	82
Installing equipment	83
ISDN Signaling Link maintenance	85
ISL interfaces	85
ISL status formats	88
Print programs (LD20-22)	89
ISL start-up	90
Dedicated D-channel using DTI or PRI	90
ISL recovery	91
Digital Trunk/Primary Rate Interface (LD60)	93
DTI and PRI commands	94
Clock Controller commands	95

,

· . .

D-channel diagnostic (LD96) 9	7
Monitoring	7
D-channels	8
B-channels and ISL channels	9 0
ISDN features	0 11
Setting output format levels 10	1 12
Deactivate monitor from a maintenance telephone	4
Get monitor status	5
D-channel command summary 10	6
Multi-purpose Serial Data Link (MSDL) commands 10	7
MSDL D-channel command summary 10	8
Alphabetical list of commands 10	9
DCH messages 113	3
DTA messages 12	1
DTC messages 12	9
DTI messages 13	1
MSDL messages 13	5
PRI messages 14	1

1.

List of Figures

Figure 1 Meridian 1 system PRI capacity	14
Figure 2 QPC720B PRI faceplate	16
Figure 3 QPC757C DCHI faceplate	17
Figure 4 NT6D80 MSDL faceplate	19
Figure 5 PRI alarm timers	38
Figure 6 PRI remote loop-back and link diagnostic tests	48
Figure 7 Bipolar violations	51
Figure 8 BIPV and BIPC thresholds	53
Figure 9 DTA messages	54
Figure 10 DTA thresholds	55
Figure 11 Frame alignment	56
Figure 12 ' Frame alignment loss	57

Figure 13 DCH tests 100 and 101 (QPC757 DCHI card only	65
Figure 14 DCH tests 200 and 201 (QPC757 DCHI card only)	67
Figure 15 Local loopback test (NT6D80)	69
Figure 16 Remote loopback tests (NT6D80)	72
Figure 17 Clock controller primary and secondary tracking	80
Figure 18 ISDN signaling link: shared mode	86
Figure 19 ISDN signaling link: dedicated mode configurations	87

ومحيل محمول والمستعمد المعرف وترافيتك المستوق والمتلكي وجواريا المرور والمرور المرور والمرور والمرور والمرور وا

i

List of Tables

Table 1 Maintenance message status	22
Table 2 PRI problem solving	41
Table 3 BIPV thresholds	52
Table 4 PRI channel numbers and equivalent terminal numbers	58
Table 5 Error Counter switch functions	60
Table 6 Error Counter display functions	60
Table 7 Protocol log (X11 release 17 and earlier)	74
Table 8 Protocol log (X11 release 18 and later)	75
Table 9 ISL status check in LD32 and 36	88
Table 10 ISL status check in LD60	88
Table 11 ISL prompts in LD20, LD21, and LD22	89
Table 12 ' Additional ISL information provided in LD21	89

ISDN PRI maintenance 553-2901-500

ISDN PRI maintenance 553-2901-500

Introduction

This document provides operation and maintenance procedures for ISDN Primary Rate Interface (PRI) capability on the Meridian 1. It covers the following topics:

- PRI operations guide: presents quick references for Primary Rate Interface (PRI) and D-channel (DCH) maintenance, a PRI status check, and PRI start up procedures.
- PRI fault clearing: gives steps for clearing alarm conditions, and for handling PRI and DCH problems.
- Primary Rate Interface (PRI) maintenance: covers PRI maintenance commands, tests, system messages, error detection, and cabling.
- D-channel (DCH) maintenance: covers DCH maintenance commands, tests, system messages, and tracking information.
- Clock Controller (CC) maintenance: describes clock controller operation, maintenance commands, system messages, and cabling.
- ISDN Signaling Link (ISL) maintenance: covers ISL interfaces, status formats, start-up procedures, and recovery procedures.

References

Refer to the following documents for additional information.

- ISDN Primary Rate Interface description and administration (553-2901-100)
- ISDN Primary Rate Interface installation (553-2901-200)
- System installation and maintenance guide
- Multi-purpose Serial Data Link description (553-3001-195)
- Basic and Network Alternate Route Selection description (553-2751-100)
- System overview (553-3001-100)

PRI operations guide

Primary Rate Interface (PRI) provides a digital connection from the Meridian 1 system to another Meridian 1 and to Central Office equipment (DMS-100 or AT&T 4ESS and 5ESS).

The Primary Rate Interface (PRI) circuit card, the QPC720, provides 24 channels to PRI equipment. Voice and data are transmitted over B-channels. Call control is supported out-of-band over a D-channel.

The B-channel is the fundamental channel in PRI. It carries user information to the far end, by means of T1 transmission, without carrying any signaling messages.

The D-channel transmits the standard signaling protocol, carrying the call set-up and feature activation information to the destination.

Each D-channel is physically connected to a QPC757 or NT6D11AB D-channel Interface (DCHI) card, or a NT6D80 Multi-purpose Serial Data Link (MSDL) card. The MSDL and DCHI cards provides the PRI link capability.

Refer to ISDN Primary Rate Interface description and administration (553-2901-100) for further explanation of the D-channel configuration.

Figure 1 Meridian 1 system PRI capacity

ISDN PRI maintenance 553-2901-500

PRI quick reference

The Primary Rate Interface (PRI) card provides a 24-channel digital trunk to another telephone switch.

With X11 release 15 and later, supporting nB+D capability, the D-channel interface must configured as shown in Figure 1.

PRI commands

This is a quick reference list of important PRI commands. For a more extensive list of PRI commands, see the section describing PRI maintenance.

Command	Action
DISI loop	disable PRI when idle
DISL loop	force disable PRI
ENLL loop	enable PRI
LCNT (loop)	list alarm counters
RCNT (loop)	reset alarm counters
SLFT loop	do PRI self-test
STAT (loop)	list PRI status

PRI messages

PRI status and error conditions are reported with PRI messages. These messages are described at the end of this document, and in the X11 input/ output guide (553-3001-400).

Figure 2 QPC720B PRI faceplate

1

ISDN PRI maintenance 553-2901-500

1

DCHI quick reference

The D-channel Interface (DCHI) card provides an asynchronous port and the DCHI port. See Figure 3. The D-channel performs the call set-up and modification signaling for one or more 24-channel PRI cards. Switch settings for the DCHI port are provided in *ISDN Primary Rate Interface installation* (553-2901-200).

Figure 3 QPC757C DCHI faceplate

ISDN PRI maintenance 553-2901-500

MSDL quick reference

Command

The Multi-purpose Serial Data Link (MSDL) card provides four I/O ports in a single device. Each port can be configured for asynchronous or synchronous interface, with switch settings for DTE or DCE for each port. Like the QPC757, the MSDL card performs call set up and connections with the PRI QPC720 cards. Refer to *ISDN Primary Rate Interface installation* (553-2901-200) for information regarding the switch settings.

D-channel commands (X11 release 17 and earlier)

This is a quick reference list of D-channel commands with X11 release 17 and earlier only. For a complete list of D-channel commands, refer to X11 input/ output guide (553-3001-400).

DIS DCHI x	disable DCHI port x
ENL DCHI x	enable DCHI port x
EST DCH x	establish D-channel x
PLOG DCHI x	print D-channel statistics log x
RLS DCH x	release D-channel x
SDCH DCH x	Switch to back-up D-channel x
RST DCH x	reset D-channel x
STAT DCH (x)	print D-channel status (link status)
STAT DCHI (x)	print DCHI port status (hardware status)
TEST 100/101/200/201	see DCH tests

Action

NT LED Indicator I/O Port 0 I/O Port 1 XXXXX I/O Port 2 XXXXX I/O Port 3 Monitor Port ۲ REL XX NT6D80AA 553-5438

Figure 4 NT6D80 MSDL faceplate

ISDN PRI maintenance 553-2901-500

D-channel commands (X11 release 18 and later)

This is a quick reference list of D-channel commands for X11 release 18 and later. For a complete list of D-channel commands, refer to X11 input/output guide (553-3001-400).

Action	
Disable automatic recovery for DCH x	
Disable DCH x	
Enable automatic recovery for DCH x	
Enable DCH x and attempt to establish the link	
Print error log on DCH x	
Release D-channel x	
Reset D-channel x, inhibit signaling	
Switch to the standby D-channel x	
Get status of one or all D-channels	
Perform interrupt generation test on DCH x	
(QPC757 only)	
Perform loopback mode test on DCH x	
(QPC757 only)	
Perform interrupt handler test on DCH x	
(QPC757 only)	
Test interrupt handler-to-link interface path	
(QPC757 only)	

MSDL commands (X11 release 18 and later)

This is a quick reference list of D-channel commands for X11 release 18 and later. For a complete list of D-channel commands, refer to X11 input/output guide (553-3001-400).

Command	Action
DIS LLB x	Disable local loop back mode on MSDL DCH x
DIS RLB x	Disable remote loop back mode on MSDL DCH x
DIS TEST x	Disable TEST mode on MSDL DCH x
ENL LLB x	Enable local loop back mode on MSDL DCH x
ENL RLB x	Enable remote loop back mode on MSDL DCH x
ENL TEST x	Enable TEST mode on MSDL DCH x
PCON DCH x	Print configuration parameters on MSDL DCH x
PTRF DCH x	Print traffic report on MSDL DCH x
TEST LLB x	Start local loop back test on MSDL DCH x
TEST RLB x	Start remote loop back test on MSDL DCH x

D-channel messages

D-channel status and error conditions are reported DCH messages These messages are described at the end of this document and the*X11 input/output guide* (553-3001-400).

Maintenance service messages

Service messages provide near and far end switch status. Both service and service acknowledge messages are supported on PRI B-channels and ISL channels. In addition, service and service acknowledge messages for D-channels are supported between Meridian 1 and Meridian 1 only. These messages are used for backup D-channel and D-channel sanity polling. The status may be in-service and out-of service.

Service and service acknowledge messages for B-channels and ISL channels are supported between:

- Meridian 1 to Meridian 1

Service and service acknowledge messages for B-channels and PRI only are supported between:

- Meridian 1 to DMS-100
- Meridian 1 to DMS-250
- Meridian 1 to AT&T 4ESS and 5ESS

Three channel statuses are reported by the service and service acknowledge messages for B-channels and ISL channels. They are:

- in-service
- maintenance
- out-of-service

Near end and far end subcategories are defined for each maintenance status. See Table 1 for possible combinations of near and far end status, and the channel capability for each status. When the near end and far end status do not match, the more severe maintenance status takes effect over the less severe maintenance status.

Table 1Maintenance message status

Near end status	Far end status	B or ISL channel capability for near end
In-service	In-service	both incoming and outgoing calls allowed
In-service	Maintenance	only incoming calls allowed
In-service	Out-of-service	not allowed to use
Maintenance	n/a	not allowed to use
Out-of-service	n/a	not allowed to use
Service message function

Service messages are used to monitor the following:

- D-channel establishment
- D-channel sanity polling
- B-channel or ISL channel status change
- Channel status audit

D-channel establishment

When the D-channel establishes, the B-channel status is supported by sending service messages for each B-channel controlled by a D-channel. This allows the far end to synchronize its channel states. These service messages are sent when the D-channel is brought up automatically by the system or manually by using LD96.

This function is supported by Meridian 1 to Meridian 1 connections only.

D-channel sanity polling

If a D-channel has been idle for 30 seconds, a service message is sent to poll the sanity of the link. The service message is sent regardless of whether the near end is configured as a master or a slave.

B-channel or ISL channel status change

Whenever there is a status change for a B-channel or an ISL channel, the new status is reported to the far end by means of a service message. Status change can occur through service change or maintenance operations, such as the addition or deletion of a channel in LD14, or the enabling or disabling of the associated loop, shelf, card or unit in LD30, LD32, LD36, LD41, or LD60.

Channel status audit

LD30 is enhanced to allow channel status audit to be initiated. The channels associated with each D-channel are examined and their status is reported to the far end by means of service messages.

Service message commands

You activate the service messages in LD96 on a per D-channel basis. The commands are:

- ENL SERV x: Turns on the support of service and service acknowledge messages for D-channel x. The primary and backup D-channels must be disabled before enabling service messages.
- DIS SERV x: Turns off the support of service and service acknowledge messages for D-channel x.
- STAT SERV (x): Displays the current service and service acknowledge message SERV setting for individual DCH n or for all D-channels.

When configuring these messages, the SERV command should only be enabled if both switches are equipped with X11 release 15 software.

Note: The ENL SERV and DIS SERV commands apply to both the primary and backup D-channel. With backup D-channel configured, for example LD17 DCHI = 5 and LD17 BCHI = 7, ENL SERV 5 enables both D-channels 5 and 7. Similarly, DIS SERV 5 disables both channels.

Two new statuses are added in X11 release 15 for maintenance messages, FE MBSY, Far end maintenance, and FE DSBL, Far end disabled. The FE MBSY, FE DSBL, and IDLE messages appear when either the B-channel or the ISL channel is idle. See "PRI fault clearing" on page 37 for more information about these responses.

PRI status check

This status check is used to verify that a PRI is working normally. It assumes the PRI and DCHI/MSDL are properly installed (for example, correctly cabled) and operational. If the PRI status is not as shown in the steps below, complete the check and proceed to PRI fault clearing procedures.

Once all problems are cleared, go to PRI start-up.

Procedure 1 PRI status check

1 Check the status LEDs on all PRI cards.

For normal operation, only the green ACT LED is lit. Note if any other LED is lit and continue with the status check

553-1340

2 Check the LED on the DCHI or MSDL faceplate.

If the LED is lit, the D-channel is disabled.

Note: The DCHI LED indicates the status of both ports on the DCHI card. If both ports are configured, the LED is lit only when both ports are disabled.

Check the status of the DCH port using: LD 96 STAT DCH (x)

Check the status of all PRI cards using:
 LD 60
 STAT (loop)

sample response:

PRI TRK LOOP L: ENBL SERVICE RESTORE: YES YELLOW ALARM PROCESS: YES ALARM STATUS: NO ALARM CH 1 IDLE DID CH 2 BUSY TIE

CH 24 D-channel

4 List PRI alarm counters using: LD 60 LCNT (loop)

(Check the out of service counters to determine the number of out of service occurrences since last execution of the midnight routines.)

response:

BVP XXXX SLIPR XXXX CRC XXXX LOSFA XXXX OS_BVP XXXX OS_LOSF XXXX OS_YEL XXXX

,

ISDN PRI maintenance 553-2901-500

 5 Check DCHI or MSDL card and D-channel (DCH) link status using: LD 96
 STAT DCH (x) (x is the I/O port number)

the D-channel status should be OPER (operational)

the DCH status should be EST (established)

- 6 Check to assure the following PRI cables are connected correctly:
 - PRI to DCHI or MSDL cable
 - T1 cable from QPC720B to DSX (the digital cross connect)

PRI start-up

This procedure shows how to take the PRI and DCH from disabled to operational.

Procedure 2 PRI start-up

1 Check the status of all PRI cards.

The PRI shown is disabled. If any other LEDs are lit, go to PRI fault clearing.

553-1340

2 Test all PRI cards using: LD 60 ISL loop LFT loop

> response: SLFT OK

3 Enable all PRI cards using: LD 60 ENLL loop

response:	
PRI000	Correct version ID
DTA005	yellow alarm (remote alarm)
DTA007	yellow alarm cleared (provided the far end is up)
DTA023	PRI loop is up
DCH1010	D-channel is disabled

Enable the D-channel(s) using:
 LD 96
 ENL DCH x
 (x is the I/O port number)

response:

DCH x EST Time and Date

D-channel is established (provided far end D-channel is OK).

If you do not get the DCH EST response, see the note in step 5.

5 Perform a PRI status check.

Note: If the status check response is RLS, establish the link at this point by entering the command:

EST DCH x

ź

Network Call Trace

Network Call Trace is available with X11 release 17 and later to trace a network call and to diagnose network problems. When a network call is blocked, trace data is output indicating the reason the call was blocked and the X11 software procedure responsible.

A network call can be traced by dialing a SPRE code and the NCT feature code (9912) before the network number. When this is done, call set-up and status information is output to the system terminal as the call tandems through the network. The trace information is output to all the system terminals designated in LD17 as ADAN = TTY and USER = MTC.

NCT provides useful information such as the following.

- the route used
- the facility accessed
- the routing control imposed
- the call-blocked location

There are two Network Call Trace functions: 01 and 02. They output different information as shown in the following sections.

Configuring Network Call Trace

To configure Network Call Trace on the Meridian 1, log in to the system and:

- enter NCT in response to prompt RCAP in LD17 for each D-channel (only required when the remote end is Meridian 1 with X11 release 17)
- enter CLTA in response to prompt CLS in LD10 or LD11 to allow a telephone to trace calls

Tracing a call

A call can be traced from any attendant console or a telephone with CLTA class of service (CLS). To trace a call dial the following.

SPRE + 9912 + xx + yyy...

where

```
SPRE = special function access code (defined in LD15)
9912 = NCT feature code
xx = call trace function (01, 02)
Dial tone is provided after "xx" is dialed.
yyy... = digits normally dialed for the network call
```

Trace function 01

This function provides the common information related to ESN routing. It is the recommended function. The call trace data for function 01 is:

```
**** NCT xx ****
<switch specific data>
--- OUT ---
<outgoing data>
--- IN ---
<incoming data>
--- STATE ---
<call state>
```

Where xx is the call trace ID for a traced call. The output data depends on the type of call and can be the following.

CAUSE xxxx – call reject cause CREF xxxx – call reference number DCH – D-channel number DGT xxxxx... – outgoing: digits outpulsed DGT xxxxx... – state: digits received (NODE=TBD), or digits dialed when the call is rejected (STAT=REJ) DN xxx – DN of ringing set ENT xx – entry in the outgoing route list FCI x – free calling area index FRL x – facility restriction level

IFC xxx-outgoing D-channel interface (LD17 prompt IFC) D100 = Meridian DMS-100D250 = Meridian DMS-250ESS4 = AT&T ESS4ESS5 = AT&T ESS5SL1 = Meridian SL-1 S100 = Meridian SL-100SS12 = Norwegian SYS-12 AXEA = AXE-10 (Australia) UNKN = unknown data received LOC xxxx-call reject software location MODE xxx-outgoing termination ALOG = analog trunk DTI = digital trunk interface-1.5 Mb/s DTI2 = digital trunk interface-2.0 Mb/s ISL = ISDN Signaling Link PRA = Primary Rate Interface UNKN = unknown data received NCOS xx - Network class of service NODE xxxx - type of node ORIG = originating node TAND = intermediate node (tandem) TERM = terminating node TBD = node undetermined RLI xxx-ESN outgoing route list index RLS xx xx - software release, issue number of node switch RTE xxx-incoming or outgoing route number SID xxxx-system identification (LD17) STAT xxxx – call state, where xxxx can be ANS = call answeredBUSY = termination busy DIAL = call state is dialing (mainpm)ERR = error detected in this message OPULSE = digit outpulsing PROC = call proceeding through this node (tandem) REJ = call rejected or blocked REOR = call state is dialing (mainpm) RING = call ringingSEIZ = trunk seized

STYP xx - terminating station type 500 = single line telephone (LD10) BCS = multi-line telephone (LD11) ATT = attendant console (LD12) TKTP TIE,COT,WAT... - incoming or outgoing trunk type TKTN loop ch, l s c u - incoming or outgoing B-channel, ISL trunk TN TN l s c u TN of originating telephone TOD x - time of the day schedule TYP I,E - Initial/Extended set XLT NPA,NXX,LOC... - ESN translation type

Example 1: Successful call with trace function 01

In this example, the following digits are dialed from a telephone at TN 0051.

1+9912++01+78+6000

where,

1 = SPRE (defined in LD15) 9912 = NCT feature code 01 = call trace function 01 78 = PRI route access code (ACOD) 6000 = remote extension

The resulting trace information is output on the maintenance terminal:

```
**** NCT # 22 ****
NODE ORIG (SL1)
SID 0
RLS 17 53
---- OUT ----
TNS 0 0 5 1
DCH 5
IFC SL1
CREF 22
MODE PRA
RTE 24
TKTP TIE
TKTN 18 22
DGT 6000
---- STATE ----
STAT PROC
```

ISDN PRI maintenance 553-2901-500

```
***** NCT # 22 ****
NODE ORIG (SL1)
SID 0
RLS 17 53
--- OUT ---
DCH 5
RTE 24
TKTP TIE
TKTN 18 22
DGT 6000
--- STATE ---
STYP BCS
DN 6000
STAT RING
```

Example 2: Unsuccessful call with trace function 01

In this example, the same call is made as in example 1, but in this case the D-channel is down.

The resulting trace information is output on the maintenance terminal:

```
**** NCT # 22 ****
NODE ORIG (SL1)
SID 0
RLS 17 53
--- OUT ---
TNS 0 0 5 1
MODE UNKN
--- STATE ---
DGT 786000
STAT REJ
LOC 99
```

Trace function 02

Call trace function 02 provides the information from the active (main) call register, the incoming call state, and the outgoing call state (if any). Trace function 02 is intended as a debugging tool for system designers.

The information output by function 02 includes:

NODE ORIG, TAND, TERM, TBD SID xxxx – system identifier RLS xx xx – release of software, issue number of node TNS l s c u – TN of the originating set CREF xxxx – call reference number

Incoming call:

ISTATPM x – incoming state progress mark ITRKPM x – incoming trunk progress mark LOC xxxx – call reject software location

Outgoing Call:

OSTATPM x – outgoing state progress mark OTRKPM x – outgoing trunk progress mark LOC xxxx – call reject software location

Main call register:

Word 0 – MainPM/AuxPM Word 1 – CRlink Word 2 – Queue_In Word 3,4 – Son_Types/Processes Word 5 – Aux_CRlink Word 6 – OrigType/TerType Word 7 – TTR_TN Word 8 – OrigTN Word 8 – OrigTN Word 9 – TerTN Word 10 – CallFwdTN Word 11 – DISA_Call/XFER_indication Word 12,13 – CR_Dialed_DN Word 14 – Digitload/Digitunload Word 15-20 – digits

Feature requirements

Network Call Trace is limited to basic ISDN PRI/ISL calls across Meridian 1 private networks.

NCT collects information only during initial call setup. It does not report on further call modification, such as Call Transfer.

Network call information is lost and the call trace ceases when any of the Meridian 1 nodes in which the call is being traced is initialized or any of the D-channels fails.

Although NCT requires PRI or ISL, calls can be traced to nodes that do not support Network Call Trace. Calls can also be traced to DTI or analog trunks. However, only the local node information is provided. Trunk types not supported: ADM, AWU, DIC, MDM, MUS, PAG, RAN, RLM and RLR.

Call trace information is still output if the call is blocked before the trunk is seized. If queuing (Ring Again, CBQ or OHQ) is available, then the original call trace function is activated when the call is offered to the user.

When a remote Meridian 1 without NCT capability receives a Call Trace message, no call trace information is returned.

PRI fault clearing

PRI red alarm (local alarm)

A PRI red alarm (local alarm) can indicate T1 transmission problems, the PRI is disabled, or the PRI card is faulty.

Under any of these alarm conditions, all 24 channels are taken out of service as follows:

1 Meridian 1 software checks every 15 minutes to see if a clock controller or reference clock error has occurred.

If the 15-minute check finds the PRI in red alarm (local alarm) was a primary clock source, the software switches the clock controller to the secondary reference.

- 2 The PRI red alarm (local alarm) faceplate LED is lit.
- 3 Calls on the PRI are disconnected automatically.
- 4 The PRI card and all 24 channels are disabled.
- 5 After a pause of 2.5 seconds, the PRI sends a yellow alarm (remote alarm) signal to the far end.
- 6 The appropriate DTA message is printed and a minor alarm is raised on all attendant consoles within the same customer group.

Channel restoration

When the alarm condition improves, the PRI is restored to service as follows:

- 1 The Red alarm (local alarm) is cleared.
- 2 After 11 seconds, the PRI stops sending a yellow alarm (remote alarm) pattern to the far end.
- 3 With B-channel signaling (and the D-channel is established), channels are placed into the idle state and made available for calls.

With A&B bit signaling, TIE trunks are made to match the state of the far end (as presented by the T1 port).

Figure 5 shows the progression of the Meridian 1 system red and yellow (local and remote) alarm timers.

Figure 5 PRI alarm timers

ISDN PRI maintenance 553-2901-500

Procedure 3 Red alarm status check

- 1 Check PRI status using the following prompts: LD 60 STAT (loop)
- 2 Check PRI alarm counters using the following prompts: LD 60 LCNT (loop)
- 3 See Table 2 for solutions to possible PRI problems.

PRI yellow alarm (remote alarm)

A yellow alarm on the Meridian 1 indicates a problem at the far end (the remote end). The fact that the PRI is receiving the yellow alarm pattern indicates that there is a T1 connection, but the far end is not ready.

When the PRI receives the yellow alarm (remote alarm) signal from the far end, all 24 channels are disabled.

Channel restoration

When the PRI stops receiving the yellow alarm, and the D-channel is established, the channels are placed into the idle state.

Each time a yellow alarm is generated, a counter is incremented. When the yellow alarm 24-hour threshold (prompt RALM in LD73) is reached, the PRI must be restored to service manually.

Procedure 4 Yellow alarm status check

- 1 Perform a PRI status check.
- 2 Contact personnel at the far end to determine what action they are taking.

When the yellow alarm (remote alarm) 24-hour threshold is reached (DTA006 is printed):

- 1 Contact personnel at the far end to determine what action they are taking.
- 2 When the far end troubles are cleared, reset the alarm counters and disable, then enable the PRI. To do this, use the following commands:

LD 60 LCNT loop RCNT loop DISL loop ENLL loop

list alarm counters list alarm counters disable loop enable loop

PRI problems

The PRI can have any of the following problems. Determine the cause of the problem and follow the recommended actions provided in Table 2.

Table 2 PRI problem solving (Part 1 of 2)

Symptom	Action	
No connection to far end. If the T1 cable is not physically connected to the far end, frame alignment errors occur. The channels will be disabled, but the PRI will be in red alarm (local alarm) mode.	Use the Error Counter to verify the T1 transmission from the PRI faceplate (RCV and XMT) to each connection (cross-connect, LD-1 repeater, CSU, and such equipment).	
PRI fails self-test	 Reset the PRI card and network loop cable Add a loopback plug (with pin 1 jumpered to pin 3 and pin 9 to 11) to J14 on the PRI card. Replace the PRI card Replace the network card 	
Far end problems, usually indicated by a yellow alarm (remote alarm).	Do a PRI status check and contact personnel at the far end.	
 PRI T1 is connected but getting bit rate or frame errors. This can be caused by: a bad T1 cable connection electrical interference carrier problems (for example, defective repeater or cross talk) 	Use the Error Counter to verify the T1 transmission from the PRI faceplate (RCV and XMT) to each connection (cross-connect, LD-1 repeater, CSU, and such equipment).	
Cannot enable the PRI.	Problem due to one of:	
	 The far end PRI is disabled, indicated by: PRI000PRI is responding DTA005loop enabled, with yellow alarm DCH1010DCHI is software disabled DTI031yellow alarm (remote alarm) 	

ISDN PRI maintenance 553-2901-500

Table 2 PRI problem solving (Part 2 of 2)

Symptom	Action
	 There is no T1 connection, indicated by: PRI000PRI is responding DTI030loop enabled with red alarm DTA021loss of frame alignment for 3s DCH1010DCHI is software disabled
Meridian 1 initializes and there are no active B-channels.	When a PRI or ISL trunk interfaces with a DMS-100, Meridian SL-100, or AT&T 4ESS/ 5ESS and the Meridian 1 initializes, you may have to disable and then enable each B-channel.
Configuration settings do not match the far end. These problems can occur during initial start-up. They may be indicated by:	See that the following Meridian 1 PRI parameters correlate to the far end:
 DTA 018, Frame slip out of service limit DTA 021, Loss of frame alignment for 3 seconds DCH 1003, D-channel MDL errors 	Frame format LD17 prompt: DLOP response: D2, D3, D4, or ESF Line coding LD17 prompt: LCMT response: B8ZS or AMI D-channel transmission rate LD17 prompt: DRAT response: 56K, 64KC, or 64KI Yellow alarm (remote alarm) method LD17 prompt: YALM response: FDL or DG2

,

ander 1995 - Standard Barris, 1997 1997 - Standard Barris, 1997 - 1997 1997 - Standard Barris, 1997

D-channel problems

D-channel problems are indicated when the DCHI or MSDL releases after being enabled. This applies to both primary and backup D-channels. For example:

LD 96

DCH 1003	protocol error
DCH 1006	link establishment error
DCH RLS	DCHI released
	DCH 1003 DCH 1006 DCH RLS

Procedure 5

D-channel status check

- 1 Check the status of the D-channel's PRI. Clear any PRI problems.
- 2 Contact the far end. If the far end D-channel is down, the DCH1006 message is printed.
- 3 Test the QPC757 DCHI (only) using tests 100, 101, 200 and 201 (the tests must be run in sequential order).
- 4 Print the protocol log using: LD 96 PLOG DCH x

,

- 5 Check the DCHI or MSDL to PRI cable.
- 6 Check DCHI card jumper settings.a
- 7 Check to see that one Meridian 1 is designated as "master" (usually the larger system), the other as "slave."

Note: This applies only to a Meridian 1 to Meridian 1 configuration.

PRI local loop back test

This test checks the communication path between the QPC414 Network card and QPC720 PRI card. It also checks the leads for the J4. It is often performed when the PRI cannot be enabled. The PRI card must be installed, and a cable connecting its J3 connector to a QPC414 Network card.

- 1 Disable the DCHI: LD96 DIS DCH x
- 2 Disable the PRI loop: LD60 DISL loop
- 3 Disconnect the cable connector from the QPC720 J4 (if attached). Several LEDs will light on the faceplate.
- 4 Attach a female 15 pin connector loopback plug to J4. The loopback plug must have pins 1 and 3, and pins 9 and 11 shorted together.
- 5 Enable the PRI loop: LD60 ENLL loop

The green ACT LED will light in a few seconds. If so, the test passed. Continue with the following steps.

If the green ACT light does not come on, retest. Unseat the PRI card between steps 2 and 3.

If the light still does not turn on, try replacing your QPC414 or QPC 720 cards, or the connecting cable.

- 6 Remove the loopback plug from the J4 connector.
- 7 Replace the cable removed at Step 3.
- 8 Enable the loop: LD60 ENLL loop
- 9 Enable the DCHI card: LD96 ENL DCH x

ISDN PRI maintenance 553-2901-500

ı

PRI self-test

The self-test checks speech path continuity, zero code suppression, remote alarm detection, and A&B bit signaling. This test is performed manually, on a per channel or a per frame (24 channels) basis.

The DCHI and PRI must be disabled before performing the self-test or call processing is disrupted. To perform the self-test on a specific loop:

- 1 Disable DCHI: LD96 DIS DCHI x
- 2 Disable the PRI loop and run the self-test: LD60 DISL loop SLFT loop When the system returns OK, it indicates that the hardware is operable.
- 3 Re-enable the PRI loop: LD60 ENLL loop The D-channel will re-enable automatically.

PRI automatic loop test

The automatic loop test checks the same functions as the self-test. Unlike the self-test, it can be run automatically, as part of the midnight routines.

With the ATLP command set to one:

If all 23 channels are idle at midnight, the system disables the card and performs a self-test on all channels.

If any of the 23 channels are busy at midnight, the system disables one idle channel, chosen at random, and checks it while the card is enabled.

With the ATLP command set to zero, only one channel is tested. The channel tested is randomly selected by software; it cannot be specified.

To perform the remote loop-back test, use the following:

LD60 ATLP 1 or 0

When ATLP 1 is entered, the TTY prints out AUTO TEST ENBL. When ATLP 0 is entered, the TTY prints out AUTO TEST DSBL.

> ISDN PRI maintenance 553-2901-500

Link diagnostic and remote loop-back tests

The remote loop-back test and the link diagnostic test are performed manually on a per channel or a per frame (23 channels) basis.

Link diagnostic test

The link diagnostic test, also called the far end loopback test, does not test the Meridian 1 PRI. It puts the PRI in loop-back mode at the far end so a remote loop-back test can be performed on far end equipment. The PRI channel, loop, or frame tested must be disabled.

Remote loop-back test

The remote loop-back test, also called the near end loopback test, checks the integrity of the PRI from the Meridian 1 system to the far end. The far end must be put into loop-back mode before this test can be performed. The PRI channel, loop, or frame tested must be disabled.

Coordinating the tests

When a technician at the far end asks for loop-back mode on the Meridian 1, perform the following steps.

- 1 Disable the DCHI: LD96 DIS DCH x
- 2 Disable the PRI loop and activate loop-back mode: LD60 DISL loop RLBK loop The QPC720 LBK LED lights.

When a technician at the far end asks for loop-back mode on the Meridian 1 to be disabled, perform this step.

Disable loopback mode: LD60 DLBK loop The LBK LED turns off. When a technician at the far end asks for PRI and DCHI to be re-enabled, perform this step.

Enable the PRI loop: **LD60 ENLL loop** OK will print out. The D-channel re-enables automatically.

To run the remote loop-back test on the Meridian 1, call a technician at the far end and ask for loop-back mode at that facility.

When loop-back mode at the far end is confirmed, the technician at the far end follows these steps.

1 Disable the DCHI: LD96 DIS DCH N

1

- 2 Disable the PRI loop and run the loop-back test using: LD60 DISL L RMST L SLFT OK prints out to indicate a successful test.
- Call the far end technician to disable the loopback test, and to re-enable the PRI and DCHI. The far end technician enables the PRI:
 LD60
 ENLL L
 OK prints out, and the D-channel re-enables automatically.

Figure 6 shows the relationship between the remote loopback test and the link diagnostic test.

Figure 6

PRI remote loop-back and link diagnostic tests

PRI commands (LD60)

PRI diagnostic commands are used to maintain both PRI and clock controller operation. See LD60 at the end of this document for a list of the PRI card and channel commands in LD60. PRI midnight routines

The following PRI maintenance routines should be included in midnight routines:

- LD30: Network and signaling diagnostic
- LD60: Digital trunk interface diagnostic

,

- LD95: Automatic trunk maintenance diagnostic
- LD48: Link diagnostic

PRI messages

There are three types of system messages – DTA messages, DTI messages, and PRI messages. These messages are provided at the end of this document.

PRI error detection

There are four types of error detection:

- Yellow (remote) alarm
- Bit error rate
- Frame alignment
- Frame slip

PRI hardware detects BPV or CRC errors. It sends an overflow (OVFL) message to the Meridian 1 CPU each time 1024 BPV or CRC errors are detected. Running the midnight routines prints the number of overflows and clears the counter.

Yellow alarm (remote alarm)

A yellow alarm indicates that the far end (the remote end) is not ready. If the PRI is receiving the yellow alarm pattern, it indicates that there is a T1 connection. When the PRI receives a yellow alarm signal from the far end, all 24 channels are disabled.

The yellow alarm method used depends on the framing format (D2, D3, D4, or ESF) selected. If D2, D3, or D4 framing formats are chosen, Digit 2 yellow alarm is automatically selected by software. If the ESF framing format is chosen, the yellow alarm method must be set through service change.

- Digit 2 (DG2) yellow alarm signaling is provided by external circuitry. This alarm is detected when each digit 2 in 63 contiguous channels is logic zero. Use DG2 yellow alarm signaling with D2, D3, and D4 frame formats in Canada and the U.S. Also use DG2 yellow alarm signaling with the ESF frame format in Canada, in compliance with Canadian standard CS03.
- Facility Data Link (FDL) yellow alarm signaling is a 4 Kbps channel. In the U.S., use FDL yellow alarm signaling when the ESF frame format is selected.

When the PRI stops receiving the yellow alarm, channels are placed into the idle state and made available for calls. (In comparison, tie trunks using A&B bit signaling are made to match the state of the far end, as presented by the T1 port.)

Each time a yellow alarm is generated, a counter is incremented. When the remote alarm 24-hour threshold (prompt RALM in LD73) is reached, the PRI must be restored to service manually.

Maintenance and out-of-service thresholds are used to monitor the performance of PRI bit error rate, frame alignment and frame slips. These thresholds are defined in LD73. When a threshold is reached, the following actions are taken:

- Maintenance threshold: PRI warning message is output
- Out-of-service threshold:
 loop is placed in red alarm
 yellow alarm sent to far end
 PRI warning message is output
 minor alarm is lit at the customers attendant consoles

Bit error rate

Bit error rate monitoring detects errors in transmission. See Figure 7. There are two methods of bit error rate monitoring, bipolar violation tracking and Cyclic Redundancy Check (CRC). If the D3 framing format is selected in LD17, prompt DLOP, bipolar violation tracking is implemented. If the Extended Superframe Format (ESF) is selected, CRC is implemented.

Bipolar violation (BPV) tracking

In a bipolar pulse stream, pulses alternate in polarity. A bipolar violation has occurred if, after transmission, two pulses of the same polarity are received in succession (this could be caused by an electrical disturbance such as noise).

Note: Some bipolar violations could result from a far end using B8ZS line coding while the near end expects AMI line coding.

Cyclic redundancy check (CRC)

The Extended Superframe Format (ESF) contains a checksum of all the data in the frame. The receiving side uses the checksum to verify the data.

The primary difference between BPV and CRC is that bipolar violation tracking indicates errors on the local span, while CRC indicates errors on an end-to-end span. For example, on a satellite link, BPV only detects errors in the span between the Meridian 1 and the satellite connection. Since CRC traverses the entire span, it indicates an end-to-end bit error rate.

The CRC error counter is displayed with the LCNT L command in LD60 provided that loop L has been defined with ESF as a framing format. The framing format (D2, D3, D4, or ESF) is selected in LD17 when the loop is configured.

Bit error rate thresholds

There are three bit error rate thresholds set in LD73. When a threshold is reached, a DTA message is output. See Figure 8.

DTA011:	Bit error rate maintenance threshold.
DTA012:	Bit error rate out of service limit.
DTA013:	Too many bit error rate out of service occurrences in 24 hours.

The BIPV thresholds are based on the number of errors in a given time. The threshold levels are shown in Table 3.

For example, if the default BIPV thresholds are used, DTA011 is output when the number of errors exceed 15.4 per second. DTA012 is output when the number of errors exceed 154 per second.

When the error rate improves two levels, the PRI is restored to service unless the 24 hour out-of-service counter was exceeded.

Table 3 BIPV thresholds

Level	Error rate	Elapsed time (seconds)	Number of BPV allowed during elapsed time
least tolerant			
1	>10-3 (1544 BPV per s)	0.6639	1025
2	>10-4 (154 BPV per s)	.639	025
3	>10-5 (15.4 BPV per s)	6.39	025
4	>10-6 (1.54 BPV per s)	663.9	1025
most tolerant			

Figure 8 BIPV and BIPC thresholds

Frame slip

Digital signals must have accurate clock synchronization for data to be interleaved into or extracted from the appropriate timeslot during multiplexing and demultiplexing operations. Frame slip monitoring detects frame deletion and repetition errors in clock synchronization. See Figure 9.

Clock synchronization can be either tracking, on the primary or secondary reference clock, or free run (non-tracking). In LD73 (prompts PREF and SREF), one PRI may be defined as the primary clock reference. Another may be defined as the secondary clock reference. All others are defined as free run.

PRI hardware detects frame slips in tracking and free run modes. For tracking mode, running the midnight routines prints the number of overflows and clears the counter. For free run mode, running the midnight routines prints the number of frame deletions and repetitions and clears the counters.

Tracking mode There are two thresholds set in LD73. When a threshold is reached, a DTA message is output as shown below.

DTA015: Maintenance limit for frame slips in tracking mode.

DTA016: Out of service limit for frame slips in tracking mode.

Figure 9 DTA messages

Free run (non-tracking) mode A maintenance threshold and an out of service threshold are set in LD73. When these thresholds are reached, DTA messages are output. An option in LD73 can enable automatic recovery after the out of service limit has been reached. Related DTA messages are described below. See Figure 10.

DTA017: Maintenance limit for frame slips in free run (non-tracking) mode. The default is 10 slips in 15s seconds.

DTA018: Out of service limit for frame slips in free run (non-tracking) mode without automatic recovery selected. The default is 10 slips in 3 seconds.

DTA026: Non-tracking frame slip out of service threshold reached while monitoring frame slip rate for improvement. Trunks remain out of service. Reset improvement timer.

DTA028: Slip rate improvement criterion is met. Trunks are brought back into service. Reset improvement timer. (Duration of timer selected in LD73.)

DTA029: Slip rate improvement criteria is met. Trunks being returned to service.

Figure 10 DTA thresholds

Automatic recovery After the tracking mode or non-tracking mode out of service thresholds are exceeded, the slip rate is monitored for improvement. When the slip rate has improved, the trunks are returned to service.

There are two parameters set in LD73:

SRIM	(1) - 127	improvement timer in minutes
SRMM	1 - (2) - 127	improvement criteria

If the non-tracking mode maintenance threshold is exceeded SRMM or fewer timers in the duration of SRIM, then the trunks are returned to service. If not, the timer is restarted and monitoring continues.

Frame slippage is considered less important than alarms for loss of frame alignment persisting for 3 seconds, remote alarm, and bipolar violations exceeding the out of service threshold. If any of these alarms are reported while the slip rate is being monitored for improvement, then the monitoring stops. The trunks are returned to service only when the more serious alarms clear.

Frame alignment

Loss of frame alignment monitoring detects out-of-frame conditions on the DS-1 bit stream. See Figure 11.

Loss of frame alignment thresholds PRI hardware detects out-of-frame conditions. Running the midnight routines prints the number of occurrences when frame alignment was lost and clears the counters.

There are three frame alignment thresholds set in LD73. When a maintenance or out of service threshold is reached, a DTA message is output as shown below.

DTA019:	Frame alignment maintenance limit
DTA020:	Frame alignment out of service limit

Figure 11 Frame alignment

	DTA 019— maintenance threshold A warning message is printed.
LFAL 1-(17)- 1-(511)	10240 -10240
	DTA_020—out of service threshold
	The PRI is taken out of service and the red alarm (local alarm) is raised. If the loss of frame alignment condition clears for at least 15 seconds, the PRI is restored
	to service.
LFAC 0-(3)-128	<u>24 -hour out of service limit</u> Maximum number of times a PBI can
i	be taken out of service (DTA 020) in 24 hours. When this count is reached, the PRI will be restored to service automatically only if LFAC is set to zero.
	553-1377

If a loss of frame alignment condition persists for three seconds, the affected PRI loop is taken out of service and a red alarm (local alarm) is raised. See Figure 12.

If the loss of frame alignment condition clears for at least 15 seconds, the PRI is automatically restored to service. The following DTA message is generated:

DTA021: Loss of frame alignment has persisted for 3 seconds.

Figure 12 Frame alignment loss

TN to channel number conversion

PRI channel numbers have an equivalent terminal number (TN). The TN is output instead of the channel number in some Meridian 1 messages. The TN to channel number translation is shown below. Note that the translation is different for the D2 framing format than formats for D3, D4 or ESF. Terminal numbers are identified in software by Loop (L), Shelf (S), Card (C), and Unit (U) numbers. Each TN is applied to an individual channel on the PRI card. See Table 4 below.

Channel number	D2 format TN (S C U)	D3, D4,E SF format TN (S C U)
1	140	010
2	150	020
3	010	030
4	210	040
5	050	050
6	250	060
7	110	070
8	170	180
9	030	110
0	230	120
1	070	130
2	270	140
з	130	150
4	160	160
5	020	170
6	220	280
7	060	210
8	260	220
9	120	230

 Table 4

 PRI channel numbers and equivalent terminal numbers (Part 1 of 2)
Table 4PRI channel numbers and equivalent terminal numbers (Part 2 of 2)

Channel number	D2 format TN (S C U)	D3, D4,E SF format TN (S C U)
0	280	240
1	040	250
2	240	260
3	180	270
4	380	380

Using the error counter

The Error Counter detects bipolar violations or no-signal periods. It counts, stores, and displays these occurrences to a maximum of 9999.

The PRI fault detection and isolation procedures described in this section are performed using a Thor portable test package, which consists of one each of the following items:

- the Thor TTT2028 Mini-Error Counter, plus operation instruction card
- a cord equipped with a bantam plug at one end and minihooks at the other
- a loop-back plug (shorts pins 3 to 1 and 11 to 9 of a 15 pin D connector)

Procedure 6 Using the error counter

CAUTION

To prevent injury from voltage on the span, always connect the patch cord into the test set before connecting the other end to the external signal source.

- 1 Plug one end of a patch cord into the input jack of the test set.
- 2 Plug the other end of the patch cord into one of the monitor jacks (RCV and XMT) of the PRI card being tested.

3 Monitor the Error Counter LED indicators as described below:

Table 5 Error Counter switch functions

Switch	Function
Display Enable	When held down, the switch enables the Counter display and the GOOD and O/R LED displays
Reset	Used to zero the counter
Error/Error	Used to select error counting seconds for bipolar violations or error-seconds

Table 6 Error Counter display functions

Display	Function
GOOD	Indicates the presence of an acceptable bipolar signal (if bipolar violations, missing pulses, or an oscillating line are detected, the indicator is off)
ERR	Flashes when bipolar violations are detected
W/M	Indicates no input (absence of pulse) or an oscillating line
O/R	Over range display turns on when the counter input has exceeded 9999 (the counter resets to 0000)
CNTR	With Error/Error-Second switch in the Error position, the unit counts errors at a maximum rate of 200 per second
	With Error/Error-Second switch in the Error- Second position, the unit counts error seconds at a rate of one per second

Replacing the PRI

Procedure 7 Replacing the PRI circuit card

CAUTION

Firmly touch the metal frame of the cabinet to discharge static electricity from your body before handling circuit cards.

- 1 Disable the D-channel using: LD 96 DIS DCH x
- 2 Disable the PRI loop using: LD 60 DISL loop
- 3 Disconnect cables on PRI faceplate.
- 4 Remove the PRI card.
- 5 Make sure that the new PRI card switch settings are the same as the faulty PRI card.
- 6 Install the new PRI card in the appropriate slot.
- 7 Connect the network loop cable, the carrier interface cable, and the echo canceller cable. If the PRI card is defined as a primary or secondary clock source, connect the clock controller cable(s).
- 8 Test the PRI card using: LD 60
 SLFT loopIf an error message results, see PRI fault clearing.
- 9 Enable the PRI using: LD 60 ENLL loop

ISDN PRI maintenance 553-2901-500

í

D-channel maintenance

,

There are four types of DCH tests for the QPC757 DCHI card. The MSDL card performs local and remote loopback tests.

TEST 100 N	Perform interrupt generation test on DCHI N.
TEST 101 N	Perform loop-back mode test on DCHI N.
TEST 200 N	Perform interrupt handler test on DCHI N.
TEST 201 N	Perform interrupt handler-to-link interface path test

The DCH tests 100 and 101 are hardware tests, while the 200 and 201 test the DCH software.

CAUTION

The DCHI tests must be executed in sequential order.

DCH tests 100 and 101 (QPC757 DCHI card only)

DCH tests 100 and 101 are isolated hardware tests. See Figure 13. Test 100 checks interrupt generation on the DCHI. Test 101 checks the DCHI loop-back capability. If either test fails, either a faulty DCHI or a contention problem is indicated. A test failure initiates DCH error messages.

Tests 100 and 101 must be run in sequential order (tests 200 and 201 may follow). Established calls will stay up, but new calls cannot be placed.

The DCH link must be in the reset state when these tests are run. The reset state can be established when the status of the D-channel is "established" (EST) or "released" (RLS) by using:

LD 96 STAT DCH N (responds either EST or RLS) RST DCH N

If the DCHI is disabled, it must be enabled before reset can be established by using:

LD 96	
STAT DCH N	responds DSBL
ENL DCH N	if a problem caused the disabled state,
	RLS will occur; if the disabled state is
	cleared, status will be EST
RST DCH N)	

Figure 13 DCH tests 100 and 101 (QPC757 DCHI card only

DCH tests 200 and 201 (QPC757 DCHI card only)

DCH tests 200 and 201 are software tests. See Figure 14. Test 200 monitors the DCHI interrupt handler. Test 201 checks the interrupt handler-to-link interface path. If either test fails, software problems are indicated. A test failure initiates DCH error messages.

Tests 200 and 201 must be run sequentially after tests 100 and 101. Established calls will stay up, but new calls cannot be placed.

The DCH link must be in the reset state when these tests are run. Reset can be established when the status of the D-channel is established (EST) or released (RLS). Use:

LD 96 STAT DCH N (responds either EST or RLS) RST DCH N

If the DCHI is disabled, it must be enabled before reset can be established. Use:

LD 96	
STAT DCH N	responds DSBL
ENL DCH N	if a problem caused the disable
	state, RLS will occur; if the disabled
	state is cleared, status will be EST
RST DCH N	

Figure 14

DCH tests 200 and 201 (QPC757 DCHI card only)

MSDL local loopback test (NT6D80)

Prior to beginning this test, the D-channel must be in test state: ENL TEST DCH x.

To start the local loopback test on the MSDL card, use the **TEST LLB DCH x** command. The test checks both MSDL expedited and normal (ring) interfaces.

The response for the expedited interface that carries urgent signaling and maintenance messages between the Meridian 1 CPU and the MSDL MPU follows.

DCH : X XDU TEST CONFIRM TIME : <time of day> TEST : PASS (or FAIL)

X is the DCH logical address XDU is the expedient message sent around the loop.

The response for the ring interface that transmits operation data between the Meridian 1 CPU and the MSDL MPU follows.

DCH : X DU TEST CONFIRM TIME : <time of day> TEST : PASS (or FAIL)

- 1 If the test fails, check the status of the MSDL card, used by this DCH link, with the STAT MSDL x FULL command.
- 2 If the MSDL card may be faulty, disable the card and perform s self-test. DIS MSDL x SLFT MSDL x
- 3 If the card passed the test, the problem may lie in incompatible software.

After completing the test, remove the D-channel from the test state:

DIS TEST DCH x.

Refer to Multi-purpose Serial Data Link description (553-3001-195).

MSDL remote loopback tests (NT6D80)

Before beginning this test, verify the following.

- D-channels on both switches are configured on MSDL cards
- DCH links on both switches are set to TEST mode
- DCH at Switch B is in remote loopback mode (RLB)
- remote capability (RCAP) is MSDL
- Place DCH links on both systems in TEST mode. Enter ENL TEST DCH x on Switch A and ENL TEST DCH y on Switch B for the same DCH link. The DCH links on both switches are automatically placed in idle state (IDLE).
- 2 Place the Switch B DCH link in remote loopback state (RLB) with ENL RLB DCH x. The DCH link in Switch A must stay in idle.
- 3 From Switch A, perform the loopback test with TEST RLB DCH x.

The result of the remote loopback test is displayed on Switch A's console in the following format.

DCH : X RLB TEST CONFIRM TIME : <time of day> TEST : PASS TEST : FAIL - NO DATA RCV FAR END TEST : FAIL - CORPT DATA RCV FAR END TEST : FAIL - REASON UNKNOWN

TEST : FAIL may indicate a problem in the physical link between the two switches, or faulty equipment in either switch. Check the connections, and verify the status of the MSDL and PRI trunk cards used for this link. Refer to *ISDN Primary Rate Interface maintenance* (553-2901-500) for detailed troubleshooting procedures.

- 4 Place the Switch B DCH link back to the idle state, with the **DIS RLB y** command.
- 5 If you think the MSDL card used in either switch has failed, check the status of the DCH link and the status of the MSDL card by entering STAT MSDL x FULL.

- 6 If the MSDL card may be faulty, disable the card and perform self-test.
 DIS MSDL x
 SLFT MSDL x
- 7 If the card passed the test, the problem may lie in incompatible software. Refer to *Multi-purpose Serial Data Link description* (553-3001-195).

After the test is complete, remove both sides from the test state:

DIS TEST DCH x DIS TEST DCH y

Figure 16 Remote loopback tests (NT6D80)

Protocol Log (PLOG)

The count of D-channel errors is stored in the Protocol Log (PLOG). The PLOG is printed by using LD96 as shown in the PLOG status check.

Protocol errors can be the result of PRI transmission problems and re-start procedures, or a protocol mismatch with the far end. The PLOG counters are cleared after the PLOG is printed, or the DCHI/MSDL card is enabled.

Note: When a protocol counter overflows, the PLOG is printed automatically and the counters are cleared.

When the PLOG has non-zero counters, check the PRI status and alarms as shown. See Figure 17.

Procedure 8 PLOG status check

Check the contents of the PLOG using:
 LD96
 PLOG DCH x
 Response with X11 release 17 and earlier:

where:

I = incoming

xxxx = system real time (in hexadecimal) yy = maintenance indication primitive ID zz = maintenance indication task ID 00 00 ... = protocol error counters

Response with X11 release 18 and later: DCH : XX MAINT CONFIRM TIME: <time of day> COUNTER VALUE

1:	12
12:	8
20:	15
N:	XX

- 2 If there are PRI bit rate or frame errors, assume there is a PRI problem.
- 3 If there is no problem with the PRI but there are a large number of protocol errors, report a protocol problem.

Table 7 Protocol log (X11 release 17 and earlier)

at

Protocol counters

- 1 count of missing PRI handshakes
- 2 count of peer initiated re-establishment link
- 3 count of unsuccessful retransmit N200 of SABME
- 4 count of unsuccessful retransmit N201 of DISC
- 5 count of N(R) errors
- 6 count of information fields with length greater than N201
- 7 count of undefined frames
- 8 count of I fields but not allowed
- 9 count of FRMR frames
- 10 count of CRC error frames
- 11 count of REJ frames
- 12 count of messages with less than 4 octets
- 13 count of undefined protocol discriminators
- 14 count of undefined message types
- 15 count of messages missing one or more mandatory information elements
- 16 count of messages with one or more undefined information elements

Table 8 Protocol log (X11 release 18 and later) (Part 1 of 2)

Format			
DCH : XX MAINT CONFIRM TIME: <time day="" of=""> COUNTERVALUE</time>			
Protoco	Protocol counters		
1	count of missing PRI handshakes		
2	count of peer initiated re-establishment link		
3	count of unsuccessful retransmit N200 of SABME		
4	count of unsuccessful retransmit N200 of DISC		
5	count of N(R) errors		
6	count of information fields with length greater than N201		
7	count of undefined frames		
8	count of information fields that are not allowed to contain information		
9	count of FRMR frames received from the far end		
10	count of CRC error frames received from the far end		
11	count of REJ frames received from the far end		
12	count of layer 3 messages with less than 4 octets		
13	dummy counter, always zero		
14	count of undefined layer 3 message types		
15	count of layer 3 messages missing one or more mandatory information elements		
16	count of layer 3 messages missing one or more undefined information elements		
17	count of layer 1 reports of no external clock being received		
18	count of aborted frames		
19	count of SABME frames received with incorrect C/R bit		

76 D-channel maintenance

Table 8

Protocol log (X11	release	18 and late	r) (Part 2 of 2)
-------------------	---------	-------------	------------------

20	count of supervisory frames received with F = 1
21	count of unsolicited DM responses with F = 1
22	count of unsolicited UA responses with $F = 1$
23	count of unsolicited UA responses with $F = 0$
24	count of DM responses with $F = 0$
25	count of times that no response was received from the far end after N200 transmissions retransmissions of RR or RNR
26	count of frames received with incorrect header length
27	count of messages received with call reference length greater than 2
28	count of optional information elements received with invalid contents
29	count of mandatory information elements received with invalid contents
30	count of messages received with information elements not ordered correctly
31	count of information elements repeated in received messages, but only appeared once
32	count of information elements receive with length exceeding maximum specified length

i

ารสารสารา (1. สารีวิธีสตรี) มีส

. ×

Replacing the DCHI or MSDL

Follow this procedure to replace the QPC757 DCHI, or NT6D80 MSDL card.

Procedure 9

Replacing the DCHI or MSDL card

CAUTION

Firmly touch the metal frame of the cabinet to discharge static electricity from your body before handling circuit cards.

1 Disable the D-channel.

LD 96 DIS DCH x

2 Disable the asynchronous port on the card (if equipped).

X11 release 18 and later LD 37 DIS TTY x

X11 release 17 and earlier LD 48 DIS ESDI x

- 3 Set the ENB/DIS switch to DIS (if equipped).
- 4 Disconnect cables on faceplate.
- 5 Remove the DCHI or MSDL from the shelf.
- 6 Make sure that the new card switch settings are the same as the ones on the old DCHI card.
- 7 Install the new card in the appropriate slot.
- 8 Connect the faceplate cables to the new card.
- 9 Set the ENB/DIS switch to ENB (if equipped).
- 10 Enable the D-channel.

LD 60 ENĹ DCH x

Clock Controller maintenance

Tracking mode

In tracking mode, the PRI loop supplies an external clock reference to a clock controller. See Figure 17. Two PRI loops can operate in tracking mode, with one defined as the primary reference source for clock synchronization, the other defined as the secondary reference source. The secondary reference acts as a backup to the primary reference.

As shown Figure 17, a Meridian 1 system with dual CPUs may have two clock controllers (CC0 and CC1). One clock controller acts as a backup to the other. The clock controllers should be completely locked to the reference clock.

Free run (non-tracking) mode

The clock synchronization for a PRI loop may operate in free run mode if:

- the loop is not defined as the primary or secondary clock reference
- the primary and secondary references are disabled
- the primary and secondary references are in red alarm (local alarm)

Reference clock errors

Meridian 1 software checks every 15 minutes to see if a clock controller or reference clock error has occurred.

In tracking mode, at any one time, there is one active clock controller which is tracking on one reference clock. If a clock controller error is detected, the system switches to the backup clock controller, without affecting which reference clock is being tracked. A reference clock error occurs when there is a problem with the clock driver or with the reference system clock at the far end. If the clock controller detects a reference clock error, the reference clocks are switched.

199

Automatic clock recovery

An option for automatic clock recovery can be selected in LD60 with the command EREF.

A PRI loop is disabled when it enters a red alarm (local alarm) condition. If the red alarm is cleared, the loop is enabled automatically. When the loop is enabled, clock tracking is restored in the following conditions:

- If the loop is assigned as the primary reference clock, but the clock controller is tracking on the secondary reference or in free run mode, the clock is restored to tracking on primary.
- If the loop is assigned as the secondary reference clock but the clock controller is in free run mode, it is restored to tracking on secondary.

If the 15-minute clock check indicates the system is in free run mode:

- Tracking is restored to the primary reference clock, if defined.
- If the primary reference is disabled or in red alarm (local alarm), tracking is restored to the secondary reference clock, if defined.

Note: If the system is put into free run mode intentionally by the craftsperson, it resumes tracking on a reference clock at this time. This occurs unless the clock-switching option has been disabled (LD60, command MREF), or the reference clock has been "undefined" in the database.

Automatic clock switching

If the EREF option is selected in LD60, tracking on the primary or secondary reference clock is automatically switched in the following manner:

- If software is unable to track on the assigned primary reference clock, it switches to the secondary reference clock and sends appropriate DTC maintenance messages.
- If software is unable to track on the assigned secondary reference clock, it switches to free run mode.

QPC471, QPC775 Clock Controller Card

Use this procedure to replace a clock controller (CC) card.

Note: The QPC775 Clock Controller is used in Canadian and International applications. QPC775 and QPC471 cards may not be combined in one system.

When using the QPC471 clock controller, vintage H must be used with option 81 systems.

Refer to X11 input/output guide (553-3001-400) for a description of all maintenance commands and system messages.

WARNING

Module covers are not hinged; do not let go of the cover. Lift the cover away from the module and set it out of your work area.

Removing equipment

- 1 Disable the clock controller card:
 - The card you are removing must be inactive. To switch the clock:

LD 60 SWCK

• Disable the clock controller card:

DIS CC x "x" is the card number -0 or 1

2 Set the ENB/DIS switch to DIS on the card you are removing.

CAUTION

To avoid interrupting service, set ENB/DIS switches to DIS before disconnecting or connecting cables.

- 3 Tag and disconnect cables to the card you are removing.
- 4 Unhook the locking devices on the card; pull it out of the card cage.

Installing equipment

- 1 Set the ENB/DIS switch to DIS on the replacement card.
- 2 Set option switches on the replacement card the same as on the card you removed. To check switch settings, see *Circuit card installation and testing* (553-3001-211).
- 3 Insert the replacement card into the vacated slot and hook the locking devices.
- 4 Connect the cable to the replacement card.
- 5 Set the ENB/DIS switch to ENB on the replacement card.
- 6 Enable and test the card:

ENL CC x SWCK

End the session in LD60: ****

If there is a problem, a DTC system message is generated and the red LED lights on the faceplate of the card.

7 Tag defective equipment with a description of the problem and package it for return to a repair center.

ISDN Signaling Link maintenance

ISL interfaces

The ISDN Signaling Link (ISL) feature provides the capability to replace both digital and analog conventional trunk signaling with out-of-band ISDN D-channel signaling. Call-by-Call (CBC) Service, Calling Line Identification (CLID) and CLID in Call Detail Recording (CDR), Electronic Switched Network (ESN) interworking, and Network Ring Again (NRAG) applications are supported.

The ISL feature supports TIE and ISA trunk types with Meridian 1 to Meridian 1 connectivity. The TIE lines and the trunk used for the D-channel may be leased from the Central Office (CO). With leased lines, the function of the CO is simply to provide the trunk facilities between Meridian 1 systems for circuit switched connections.

There are two modes of ISL operation:

- Shared mode: In the shared mode, the DCHI or MSDL supports ISDN PRI signaling as well as ISL trunks. See Figure 18. The configuration is basically the same as the PRI D-channel, but the D-channel also supports ISL trunks (analog or DTI).
- Dedicated mode: In the dedicated mode, the DCHI or MSDL does not support ISDN PRI signaling. See Figure 19. The DCHI or MSDL is reserved for ISL use. The D-channel can communicate with the far end by means of a dedicated leased line, dial-up modem, or DTI/PRI trunk.

Figure 18 ISDN signaling link: shared mode

277212

MALE COMPLETE

Figure 19 ISDN signaling link: dedicated mode configurations

ISL status formats

If a trunk unit is controlled by the ISL feature, the STAT commands in LD32 and LD36 will:

- indicate the trunk is an ISL trunk, and
- display the status of the D-channel

The display format is the same for both programs. See Table 9.

Table 9 ISL status check in LD32 and 36

Command	Response
STAT L S C	UNIT 00 = IDLE ISL TRK D-CH <ch #=""> <status> UNIT 01 = IDLE ISL TRK D-CH <ch #=""> <status></status></ch></status></ch>
STAT L S C U	IDLE ISLTRK D-CH <ch #=""> <status></status></ch>

When a trunk unit is controlled by ISL, the STAT L command in LD60 indicates the trunk is an ISL trunk. The STAT L CH command indicates the trunk is an ISL trunk and displays the status of the D-channel. The display format is shown in Table 10.

Table 10 ISL status check in LD60

Command	Response
STAT L	CH 1 = IDLE ISL TIE CH 2 = UNEQUIP
STAT L CH	CH 1 = IDLE ISL TIE?D-ch <ch #=""> <status></status></ch>

Print programs (LD20-22)

Print programs LD20, LD21, and LD22 provide the following ISL information:

- LD20 prints trunk information
- LD21 prints route information
- LD22 prints configuration record information

Table 11 ISL prompts in LD20, LD21, and LD22

Program	Prompt	Description
LD20	CHID nn	Channel ID
LD21	MODE ISL/PRI DCHI x	ISL or PRI service route DCHI port number (printed if MODE = ISL)
LD22	USR PRI/ISL/SHA	D-channel for PRI only, ISL D-channel for (dedicated mode), or SHA= D-channel shared between PRI and ISL
	ISLM ×	maximum number of ISL trunks

LD21 also lists the ISL trunk terminal numbers (TNs) configured in the system and counts the number of ISL trunks controlled by the DCH. To list ISL trunk TNs use the following prompts:

REQ PRT YPE ISLL

Table 12 Additional ISL information provided in LD21

Cust #	ISL Trunk TN	Channel ID	DCH #	Route #
xx	lscu	xxx	xx	xxx
xx	lscu	xxx	xx	ххх

ISL start-up

In general, the procedures for bringing up the D-channel are the same as the ISDN PRI interface (see the PRI start-up section). However, some additional procedures are required when ISL is configured in the dedicated mode using DTI or PRI trunks.

Dedicated D-channel using DTI or PRI

When the D-channel is configured in the dedicated mode using a DTI or PRI trunk, an Asynchronous Data Module (ADM), an Asynchronous/ Synchronous Interface Module (ASIM), or a High Speed Data Module (HSDM) is required between the DCHI or MSDL cards, and the Data Line Card (DLC).

Note: The configuration with a DTI or PRI meets Radio Frequency Interference (RFI) requirements. The RFI filter connectors are attached to the QCAD42A cable. To install the RFI filters, see the instructions for installing the EMI filters in the system installation documents.

The following signaling sequence is required between the DCHI or MSDL cards, and ADM, HSDM, or ASIM to establish the D-channel.

- 1 The ADM, ASIM, or HSDM is already powered up.
- 2 The ADM, ASIM, or HSDM raises clear to send (CTS) and data set ready (DSR) signals to the DCHI or MSDL.
- 3 The DCHI or MSDL raises the data terminal ready (DTR) signal to the ADM, ASIM, or HSDM.
- 4 The ADM, ASIM, or HSDM makes the hotline call (the programmed auto-dial DN) to the far end switch using a DTI or PRI trunk line, depending on the DN configured.
- 5 The call is established and the CONNECT lamp on the ADM, ASIM, or HSDM is lit.
- 6 The D-channel is established.

i

ISL recovery

The D-channel will go down if:

- the modem, ADM, ASIM, or HSDM power is off
- the hotline call between the Meridian 1 and the modem, ADM, ASIM, or HSDM is dropped

The Meridian 1 system handles these possibilities in the following way:

- 1 The Meridian 1 CPU schedules a data link diagnostics program which runs in background mode.
- 2 If this program finds that the link is not established, it requests the maintenance program to reestablish the data link by reinitializing the hotline connection.
- 3 The hotline call is brought up as it is during installation.

The ASIM can automatically reinitiate the hotline call with the Forced DTR option set to ON.

A modem with auto-dial capability is required to automatically bring up the D-channel in the configuration below.

Note: The Radio Frequency Interference (RFI) filter connectors are attached to the QCAD42 cable. To install the RFI filters, see the instructions for installing the EMI filters in the system installation documents.

ISDN PRI maintenance 553-2901-500

,

93

Digital Trunk/Primary Rate Interface (LD60)

LD is used to maintain the following

- QPC471/775 Clock Controller
- QPC472 1.5 Mb/s Digital Trunk Interface (DTI)
- QPC536 2.0 Mb/s Digital Trunk Interface (DTI2)
- QPC720 Primary Rate Interface (PRI)

This diagnostic program can be can be run in midnight routines or loaded manually to enter commands. The following lists describe the commands available with LD60.

DTI and PRI commands

ATLP (0), 1	Disable (0) or enable (1) daily routine auto loop test		
CDSP	Clear maintenance display on the active CPU		
CMIN ALL	Clear minor alarm indication on all attendant consoles		
CMIN c	Clear minor alarm indication on attendant consoles for customer c		
DISI loop	Disable DTI/PRI loop when all channels are idle		
DISL loop	Disable network loop (LD17 DLOP) and associated DTI/PRI cards		
DLBK loop	Disable remote loopback test previously set by RLBK loop command		
DLBK loop ch	Disable remote loopback test previously set by RLBK loop ch command		
DSCH loop ch	Disable channel ch of DTI/PRI loop		
ENCH loop ch	Enable channel ch of DTI/PRI loop		
ENCH loop	Enable all channels on loop (DTI2 only)		
ENLL loop	Enable network loop (LD17 DLOP) and associated DTI/PRI cards		
LCNT (loop)	List contents of alarm counters on one or all DTI/PRI loops		
LOVF c r	List threshold overflows for customer c (0-99) and route r (0-511)		
RCNT	Reset alarm counters of all DTI/PRI loops		
RCNT loop	Reset alarm counter of DTI/PRI loop		
RMST loop	Perform self-test on specified loop		
RMST loop ch	Perform self-test on specified channel (DTI2 only)		
RLBK loop	Close loop at carrier interface point for testing		
RLBK loop ch	Close channel at carrier interface point		
RSET loop ch	Reset thresholds for channel ch		
SLFT loop	Invoke DTI/PRI hardware self-test on loop		
SLFT loop ch	Invoke partial hardware self-test on channel ch		
STAT	Get status of all PRI loops		
STAT loop	Get status of PRI loop		
STAT loop ch	Get status of channel ch		
Clock Controller commands

DIS CC 0, 1	Disable system clock controller 0 or 1
DSYL loop	Disable yellow alarm processing for specified loop
ENL CC 0, 1	Enable system clock controller 0 or 1
ENYL loop	Enable yellow alarm processing for specified loop
EREF	Enable automatic switchover of system clocks
MREF	Disable switchover of system clocks
SSCK 0, 1	Get status of system clock 0 or 1
SWCK	Switch system clock from active to standby
TRCK aaa	Set clock controller tracking to primary, secondary or free run

i

ISDN PRI maintenance 553-2901-500

D-channel diagnostic (LD96)

The D-channel diagnostic program is used to test and maintain D-channel links and the QPC757 or NT6D11AB D-channel Interface (DCHI) card.

In X11 release 18, D-channels can also reside on Meridian Serial Data Link (MSDL) cards. A new set of LD96 commands are provided to support MSDL cards.

Monitoring

D-channel message monitoring is used to analyze the Layer 3 protocol messages traveling between the near and far end D-channels.

Up to and including X11 release 16, message monitoring can be performed only on a per D-channel basis using LD96. That is, once the message monitor is turned on, all messages are output for that D-channel. The messages output might be excessive.

X11 release 17 provides additional commands in LD96 that allows selective message monitoring based on

- the D-channel
- the B- or ISL channel
- the message types for a specific feature
- any specific message

The following sections describe the various command formats.

Note 1: During high traffic some of the monitored messages may be lost.

Note 2: In order to get the D-channel monitor messages to display, the system terminal must be have LD17 prompt USER defined as MTC (X11 release 17).

D-channels

All message types, features and channels associated with a particular Dchannel can be monitored. Up to and including X11 release 16, only one Dchannel can be monitored for outgoing messages and one for incoming messages. X11 release 17 allows the monitoring of multiple D-channels for both incoming and outgoing messages.

The LD96 commands to enable or disable monitoring of all incoming or outgoing messages on a D-channel are listed here.

ENL MSGI x – enable monitoring of incoming messages ENL MSGO x – enable monitoring of outgoing messages DIS MSGI x – disable monitoring of incoming messages DIS MSGO x – disable monitoring of outgoing messages

Where x is the DCHI or MSDL port address (I/O address). For example, to enable monitoring of incoming messages on D-channel 5, enter

ENL MSGI 5

The output includes all messages, features and channels for D-channel 5.

All monitor commands in LD96 require a primary D-channel to be defined. If a backup D-channel number is entered for monitor definitions, an error is given and the command is aborted. Once the monitoring options are configured for the primary D-channel, they apply to the backup as well. For example, if a D-channel switchover takes place, and the backup becomes active, the monitor option set for the primary are effective for the backup.

B-channels and ISL channels

You can monitor up to 5 ISL or B-channels, for each direction. If there is no specific channel selected, all channels are monitored. The commands are listed below.

For B-channels:

ENL MSGI x CH loop channel ENL MSGO x CH loop channel DIS MSGI x CH loop channel DIS MSGO x CH loop channel

For ISL channels:

ENL MSGI x CH l s c u ENL MSGO x CH l s c u DIS MSGI x CH l s c u DIS MSGO x CH l s c u

Where,

ENL = enable monitoring DIS = disable monitoring MSGI = incoming messages MSGO = outgoing messages

ISDN features

You can select specific ISDN applications, such as Network Ring Again, for message monitoring. Only one or all ISDN applications can be monitored per D-channel at one time. The LD96 commands are listed below, where x is the D-channel (DCHI or MSDL) port number.

ENL MSGI x FEAT feature ENL MSGO x FEAT feature DIS MSGI x FEAT feature DIS MSGO x FEAT feature

Where "feature" can be

NCT = Network Call Trace NRAG = Network Ring Again NACD = Network Automatic Call Distribution TRO = Trunk Optimization NMS = Network Message Services

Message types

You can select specific types of messages to be monitored on a D-channel. The LD96 commands are listed below, where x is the D-channel (DCHI or MSDL) port number.

ENL MSGI x MSG msg1 msg2 msg3 ENL MSGO x MSG msg1 msg2 msg3 DIS MSGI x MSG msg1 msg2 msg3 DIS MSGO x MSG msg1 msg2 msg3

Up to three message types (msg1, msg2, msg3) can be entered per command. The default is "ALL", which is all message types except SVC and SVCA. The message types are:

ALER = alertingALL = all primitives and all messages except SVC and SVCA CAPR = call proceedingCON = connectCONA = connect ackDISC = disconnectFAC = facilityFACA = facility ack FACR = facility reject INFO = information NOTF = notifyPRIM = all primitives (such as release indication) PROC = call proceeding PROG = progressRLS = releaseRLSC = release complete RST = restartRSTA = restart ackSTAT = statusSTEN = status enquiry STP = setupSTPA = setup ackSVC = serviceSVCA = service ackUI = user information

Setting output format levels

There are three levels (0-2) of message decoding. The level determines the format of the data output to the system terminal. To set the output level enter the following.

SET MSGI x MON (0)-2 SET MSGO x MON (0)-2

Level 0 outputs the message as shown below.

DCH x y MSG msgtype REF xxxxxxx CH zzzz TOD hh:mm:ss <more data>

Where,

x = D-channel number y = "I" for incoming messages, "O" for outgoing messages xxxxxxx = the call reference number zzzz = the loop and channel number (or TN for ISL channels) <more data> = additional lines of information, such as CALLED # = called number CALLING # = calling number of originator CAUSE = reason for action taken (e.g., unassigned number) CONNECT # = connected number FEAT = feature (such as Network Ring Again) NUM PLAN = Numbering plan used (such as private) PROGRESS = call progress description REDIR REASON = reason the call was re-directed REDN # = call redirection number STATE = call stateSTATUS = channel status TYPE = type of channel

Level 1 outputs the raw data (as was done in X11 release 16). The format is

DCH x y MSG msgtype REF xxxxxxx TN zzzzz CH# x CK x <more data in hexadecimal>

Level 2 output identifies the individual Information Elements (IE) in the messages and their hexadecimal values.

BCAP = bearer capability CAST = call stateCHGA = charge adviceCHID = channel ID CHST = change status CLED = called numberCLES = called party subaddress CLNG = calling number CLNS = calling party subaddress CNS5 = codeset 5 connected number subaddress CON# = connect number CON5 = codeset 5 connected number CSE = causeDES6 = codeset 6 Destination IE DISP = displayFAC = facility IE for codeset 0FAC6 = codeset 6 facility IEFIND = feature Indication HLYR = higher layer compatibility INFO = information request KYPD = keypadLLYR = low layer compatibility LS5 = locking Shift to codeset 5LS6 = locking shift to codeset 6LS7 = locking Shift to codeset 7 NLS5 = codeset 5 non locking shift NLS6 = codeset 6 non locking shiftNLSO = non-locking shift to codeset 0 NOTI = notify indicator NSF = network specific facility ORG# = originating called number ORG6 = codeset 6 Originating IE PROG = progress indicator RDG6 = codeset 6 redirecting number

REDG = redirecting number REDN = redirection number RETR = codeset 6 reason for return RSTI = restart indicator SHFT = shift SIGN = signal TACG = codeset 6 TTC advice charge TNS = transit network selection UNKN = unknown UUI = user-user information

Deactivate monitor from a maintenance telephone

Once the system has been tied up or flooded with the monitored messages, it is very difficult, if not impossible, to use LD96 to disable the monitors. In this case, a maintenance telephone with MTA class of service can be used to deactivate the monitor.

To activate or deactivate the monitor from a maintenance telephone, simply dial: SPRE 9913 x 01

Where,

SPRE = special function access code (defined in LD15) 9913 = feature code to activate or deactivate the monitor x = 0 to deactivate, 1 to activate 01 = DCH monitor ID

Note 1: Dial tone is provided if successful.

Note 2: Use RST MON to reactivate the monitor from LD96.

Note 3: Deactivating the monitor by the maintenance telephone does not disable the monitor, but simply halts the output. If the monitor is deactivated and not disabled using the DIS MSGI and DIS MSGO commands, then the monitor becomes re-activated after a data dump and sysload.

والمستحق وأجريه وأراجهم وأستعم المحرب والمستحج

Get monitor status

To determine the current status of the D-channel monitor, enter the following command, where x is the D-channel (DCHI or MSDL) port number.

STAT MON x

Output format:

***DCH MSGI x LEVEL y ACTV (where, y = format level)
MSG - msg1 msg2 ...
FEAT - feat
CH - loop channel (or l s c u for ISL)

***DCH MSGO x LEVEL y ACTV MSG - msg1 msg2 ... FEAT - feat CH - loop channel (or l s c u for ISL)

Note: If the monitor had been deactivated by the maintenance telephone, INACTV is output instead of ACTV.

D-channel command summary

The following commands are used to enable, disable, test and get the status of a D-channel. Refer to the LD96 introduction for details on the use of these commands.

In X11 release 18 all commands use DCH instead of DCHI. For example: use ENL DCH x instead of ENL DCHI x. The STAT DCH and STAT DCHI commands have been combined to STAT DCH.

DIS AUTO x	Disable automatic recovery for DCH x
DIS DCH x	Disable DCH x
DIS MSGI x (options)	Disable the monitoring of incoming messages on D-channel x
DIS MSGO x (options)	Disable the monitoring of outgoing messages on D-channel x
DIS SERV x	Disable service messages on D-channel x
DWNL DCH x (t)	Down load layer 3 message configuration table t and LAPD parameters from DCH x
ENLAUTO x	Enable automatic recovery for DCH x
ENL DCH x	Enable DCH x and attempt to establish the link
ENL MSGI x (options)	Enable the monitoring of incoming messages on D-channel x
ENL MSGO x (options)	Enable the monitoring of outgoing messages on D-channel x
ENL SERV x	Enable service messages on D-channel x
EST DCH x	Establish multiple frame operation on D-channel x
MAP DCH x	Get physical address and switch settings for D-channels
PLOG DCH x	Print protocol error log on DCH x
PTAB DCH x (t)	Display layer 3 message configuration table t and LAPD parameters from DCH x
RLS DCH x	Release D-channel x
RST DCH x	Reset D-channel x, inhibit signaling
RST MON	Reactivate monitoring on D-channels
SDCH DCH x	Switch to the standby D-channel x
STAT DCH (x)	Get status of one or all D-channels

STAT MON (x)	Display the incoming and outgoing monitoring status of one or all D-channel
STAT SERV (x)	Get the status of services messages for one or all D-channels
TEST 100 x	Perform interrupt generation test on DCH x
TEST 101 x	Perform loopback mode test on DCH x
TEST 200 x	Perform interrupt handler test on DCH x
TEST 201 x	Test interrupt handler-to-link interface path

Multi-purpose Serial Data Link (MSDL) commands

The NT6D80 MSDL card provides 4 ports for ISDN Primary Rate D-channel (DCH) and Application Module Link (AML)

The MSDL commands are listed below, where x is the MSDL device number (defined by prompt DNUM in LD17). These are provided in Link Diagnostic (LD48) and D-channel Maintenance (LD96), and I/O Diagnostic (LD37).

DIS MSDL x (ALL) – Disable MSDL card ENL MSDL x (FDL, ALL) – Enable MSDL card RST MSDL x – Reset MSDL card STAT MSDL [x (FULL)] – Get MSDL status SLFT MSDL x – Execute a selftest on MSDL card x

These commands are provided in Link Diagnostic (LD48) and D-channel Maintenance (LD96), and I/O Diagnostic (LD37). See X11 input/output guide (553-3001-400) for a complete description of these commands.

MSDL D-channel command summary

The following commands are available only for D-channels on MSDL ports.

DIS LLB x	Disable local loop back mode on MSDL DCH x
DIS RLB x	Disable remote loop back mode on MSDL DCH x
DIS TEST x	Disable TEST mode on MSDL DCH x
ENL LLB x	Enable local loop back mode on MSDL DCH x
ENL RLB x	Enable remote loop back mode on MSDL DCH x
ENL TEST x	Enable TEST mode on MSDL DCH x
MAP DCH x	Get physical address and switch settings for D- channels
PCON DCH x	Print configuration parameters on MSDL DCH x
PMES DCH x	Print incoming layer 3 messages on MSDL DCH x
PTRF DCH x	Print traffic report on MSDL DCH x
TEST LLB x	Start local loop back test on MSDL DCH x
TEST RLB x	Start remote loop back test on MSDL DCH x

Alphabetical list of commands

The following is an alphabetical list, and brief description of all the commands found in LD96. These are brief descriptions only. For complete discussions refer to *X11 input/output guide* (553-3001-400).

DIS AUTO x	Disable automatic recovery for DCH x.
DIS DCH x	Disable DCH x.?X11 release 17 and earlier uses command format is: ENL DCHI x.
DIS LLB x	Disable local loop back mode on MSDL DCH x.
DIS MSGI x (options)	Disable the monitoring of incoming messages on D-channel x.
DIS MSGO x (options)	Disable the monitoring of outgoing messages on D-channel x.
DIS RLB x	Disable remote loop back mode on MSDL DCH x.
DIS SERV x	Disable service messages on D-channel x.
DIS TEST x	Disable TEST mode on MSDL DCH x.
ENLAUTO x	Enable automatic recovery for DCH x.
ENL DCH x (FDL)	Enable DCH x and attempt to establish the link. FDL (optional), and force downloads D-channel loadware to MSDL card. X11 release 17 and earlier uses command format is: ENL DCHI x.
ENL LLB x	Enable local loop back mode on MSDL DCH x.
ENL MSGI x (options)	Enable the monitoring of incoming messages on D-channel x.
ENL MSGO x (options)	Enable the monitoring of outgoing messages on D-channel x.
ENL RLB x	Enable remote loop back mode on MSDL DCH x.
ENL SERV x	Enable service messages on D-channel x.
ENL TEST x	Enable TEST mode on MSDL DCH x.
EST DCH x	Establish multiple frame operation on D-channel x. X11 release 17 and earlier uses command format is: EST DCHI x.

ISDN PRI maintenance 553-2901-500

MAP DCH (x)	Get physical address and switch settings for D- channels.
PCON DCH x	Print configuration parameters on MSDL DCH x
PLOG DCH x	Print protocol error log on DCH x. X11 release 17 and earlier uses command format is: PLOG DCHI x.
PMES DCH x	Print incoming layer 3 messages on MSDL DCH x.
PTRF DCH x	Print traffic report on MSDL DCH x.
RLS DCH x	Release D-channel x. X11 release 17 and earlier uses command format is: RLS DCHI x.
RST DCH x	Reset D-channel x, inhibit signaling. X11 release 17 and earlier uses command format is: RST DCHI x.
RST MON	Reset or reactivate monitoring on D-channels with enabled monitors.
SDCH DCH x	Switch to the standby D-channel x. X11 release 17 and earlier uses command format is: SDCH DCHI x.
SET MSGI x MON (0)-2	Set monitor output format level for incoming messages.

SET MSGO x MON (0)-2	Set monitor output format level for outgoing messages.
STAT DCH (x)	Get status of one or all D-channels. X11 release 17 and earlier uses STAT DCHI to get the status
STAT MON (x)	Display the monitoring status of one or all D-channel.
STAT SERV (x)	Get the status of services messages for one or all D-channels.
TEST 100 x	Perform interrupt generation test on DCH x.
TEST 101 x	Perform loopback mode test on DCH x.
TEST 200 x	Perform interrupt handler test on DCH x.
TEST 201 x	Test interrupt handler-to-link interface path.
TEST LLB x	Start local loop back test on MSDL DCH x.
TEST RLB x	Start remote loop back test on MSDL DCH x.

,

ISDN PRI maintenance 553-2901-500

DCH messages

A report is output when the D-channel is released or established. The format of this report follows.

DCH x EST hh:mm:ss mm/dd/yyyy DCH x RLS hh:mm:ss mm/dd/yyyy

Where x is the D-channel number and RLS or EST indicates if the channel was released or established. The time and date is also output.

X11 release 17 introduces enhanced D-channel reports.

Note: Complete operation of enhanced reporting requires X11 release 17 or later, and QPC757 vintage E and later.

The format of this report is:

DCH x EST REASON hh:mm:ss mm/dd/yyyy DCH x RLS REASON hh:mm:ss mm/dd/yyyy

The REASON indicates why the D-channel was released or re-established. The following reasons may be output when the D-channel is released.

- CONFIRM = Released a D-channel due to a request from SL-1 software.
- CTS DOWN = Released a D-channel because a Clear To Send signal from the DCE interface has dropped. Check the DCE interface (PRI or modem) and associated cables.
- NO EXT CLK = No external clock received from the DCE interface. Check the DCE interface (PRI or modem) and associated cables.
- NO RESPONSE = No response from far end after N200 transmissions. No action required, problem is at the far end.
- RED ALRM = Red (local) alarm has occurred. Check the PRI loop.

- REMOTE = Release was initiated by the far end. No action required, problem is at the far end.
- SABME WDM = Far end responded to SABME with DM. No action required, problem is at the far end (X11 release 18).
- TEST MODE = Release prior to entering test mode (X11 release 18).
- WRONG MODE = Release a D-channel due to an incorrect master/slave configuration (see prompt SIDE in LD17).
- YEL ALRM = Yellow (remote) alarm has occurred.

The following reasons may be output when the D-channel is re-established.

- AUTO REC = Re-established a D-channel due to auto-recovery.
- CONFIRM = Established a D-channel due to a request from SL-1 software.
- DMFO FRAME REC = Re-established a D-channel after receiving a DM frame in the timer recovery state (X11 release 18).
- FRAME REC = Re-established a D-channel after receiving an undefined frame from the far end.
- FRMR REC = Re-established a D-channel after receiving a Frame reject from the far end.
- INDICATION = Established a D-channel.
- INFO FRAME REC = Re-established a D-channel after receiving a frame type with an information field not allowed (X11 release 18).
- N(R) REC = Re-established a D-channel after receiving a bad N(R) from the far end.
- N201 REC = Re-established a D-channel after receiving a frame with an information field longer than N201 from the far end.
- N2X4 RNR REC = Re-established a D-channel after receiving a N2X4 consecutive RNR frames (X11 release 18).
- TIMER REC = Re-established a D-channel due to timer recovery.
- WRONG HDRL REC = Re-established receiving a frame with a incorrect header length (X11 release 18).

With MSDL D-channels the layer 2 can respond with a reason for link reset or disable condition. The output is:

DCH : xx I PRIMI : RESET_IND TIME: hh:mm:ss RESET_IND - rrrrrr

DCH : xx I PRIMI : DSBL_IND TIME: hh:mm:ss DSBL_IND - rrrrrr

Where, rrrrrr is the reason for the reset or disable as follows.

NO RESOURCES – Reset the MSDL and try again. If the NO RESOURCES reason is still received, then configure the D-channel on a different card.

DTE/DCE or RS232/R422 – Check switch settings on MSDL card and far end.

LAYER 2 ERROR – Disable the DCH and enable with force download option.

The following is a brief discussion of the messages relating to D-Channel operation. For a complete discussion, refer to *X11 input/output guide* (553-3001-400).

- DCH001 ISDN package is not equipped.
- DCH002 Command not allowed.
- DCH003 DCHI is disabled.
- DCH004 Prior to X11 release 17, only one link can be monitored at one time.
- DCH005 Undefined link/DCHI state. There is a software/hardware mismatch. Action: 1. Disable and re-enable the DCHI card.
 - 2. Check DCHI status.
- DCH006 DCHI not responding. Action:1. Disable and re-enable the DCHI card.2. Check DCHI status.
- DCH007 Command invalid at this state.
- DCH008 Invalid source to the overlay.
- DCH009 Invalid command entered.
- DCH010 Invalid parameter #1.
- DCH011 Invalid number of parameters.
- DCH012 DCHI is not configured.
- DCH013 Invalid message type.
- DCH014 Invalid IE type.
- DCH015 Invalid link monitor status.
- DCH016 Invalid link/DCHI number.
- DCH017 Invalid key entered.
- DCH018 Invalid total keys entered.
- DCH019 Invalid table number.
- DCH020 Transmit buffer is not empty.
- DCH021 Receive buffer not ready. Action: Check DCHI status.
- DCH022 Invalid Octet number.
- DCH023 Unexpected loop input.
- DCH024 Backup DCH is not configured.

ISDN PRI maintenance 553-2901-500

DCH025 DCH is already active. When using the SDCH DCH x command, be sure to enter the standby D-channel number. Specified DCH is not established. DCH must be in established state before switch **DCH026** command can be carried out. **DCH027** DCH already established. **DCH028** Command only valid for D-channels on MSDL card. **DCH029** DCH has to be enabled first. DCH030 DCH has to be in Test Mode first. DCH031 Unable to enable the local loopback substate because the sub state is not idle. **DCH032** Unable to disable the local loopback sub state because it is not in the local loopback sub state. **DCH033** Unable to enable the remote loopback sub state because the sub state is not idle. **DCH034** Unable to disable the remote loopback sub state because it is not in the remote loopback sub state. DCH035 Unable to run the local loopback test because the link is not in a local loopback sub state. DCH036 Unable to run the remote loopback test because the link is not in a idle sub state. Invalid DCH number for ENL command. **DCH038 DCH039** Invalid DCH state for enabling the link. DCH040 Wrong number of input parameters for the enable command. **DCH041** Input enable command not recognized. **DCH042** MSDL card has to be in operational state. **DCH043** Invalid DCH number. **DCH044** Test or DCH maintenance command is not supported for D-channels configured on the MSDL card. MSDL card is disabled. **DCH045 DCH046** Invalid maintenance request for DCH link. DCH300 Test 200, interrupt handler interface, failed. Action: If test continues to fail, report software problem. **DCH301** Test 201, interrupt handler-to-link interface, failed. Action: If test continues to fail, report software problem. **DCH302** DCHI test 101 failed. No interrupt, but good data. Action: Replace DCHI.

DCH303	DCHI test 101 failed. There is interrupt, but bad data. Action: Replace DCHI.
DCH304	DCH test 101 failed. No interrupt and bad data. Action: Replace DCHI.
DCH305	DCHI test 100 failed. Stuck interrupt. Action: Replace DCHI.
DCH401	That command is not allowed. This is a single octet information element.
DCH402	Only three message types can be specified in one command.
DCH403	Only one feature can be monitored at one time.
DCH404	Invalid TN or no TN was entered.
DCH405	Only five TNs can be specified for incoming or outgoing messages.
DCH406	This TN has been specified already.
DCH407	TN does not associate with the selected D-channel.
DCH408	Backup D-channel is not allowed; primary D-channel should be used.
DCH410	The ENL SERV command cannot be executed when the primary D-channel and, if equipped, the backup D-channel are in the established state. Disable both D-channels before entering the ENL SERV command.
DCH411	SDCH command is allowed only when IFC== SL1 and RCVP = No in LD17.
DCH1001	Invalid primitive-ID. Action: Check DCHI status.
DCH1002	Unexpected primitive. Action: Check DCHI status.
DCH1003	Protocol error. Action:1. If the error continues, check DCHI card status.2. If the problem still continues, report it.
DCH1004	PRI is out of service.
DCH1005	Link release error. Action: 1. Check DCHI status 2. Check the PRI-to-DCHI cable 3. Check PRI status
DCH1006	Link establishment error. Action: 1. Check DCHI status 2. Check the PRI-to-DCHI cable 3. Check PRI status
DCH1007	Interrupt was lost. Action: If more than 10 times per day, run DCHI tests 200 and 201.

DCH1008	Output request buffer overflow. Action: If more than five times per day, reset D-channel output buffer size in LD17, using prompt OTBF.
DCH1009	PRI reported DCHI is out of service. Action:1. Check DCHI status2. Check PRI status3. Check the PRI-to-DCHI cable
DCH1010	DCHI is software disabled.
DCH1011	Late link establishment. Action: 1. If the far end is disabled, no action needed 2. If the far end is active, increase the timer threshold in LD17, using prompt T200
DCH1012	Late link release. Action: 1. If the far end is disabled, no action needed 2. If the far end is active, increase the timer threshold in LD17, using prompt T200
DCH1013	Invalid DCHI status due to software/hardware mismatch. Action: 1. Disable and re-enable the DCHI card 2. Check DCHI status
DCH1014	Invalid DCHI status due to software/hardware mismatch. Action: 1. Disable and re-enable the DCHI card 2. Check DCHI status
DCH1015	Receive buffer full. Action: If more than five times per day, disable and re-enable DCHI.
DCH1016	Transmit buffer full. Action: Check the DCHI card.
DCH1017	No end-of-message. Action: Definitely a DCHI problem. Check the DCHI card.

DCH1018	No transmit buffer available. Action: 1. Check PRI to DCHI cable 2. Check PRI status 3. Check DCHI status
DCH1019	DCHI is hardware disabled.
DCH1024	The DCH port on the MSDL card could not be enabled because the MSDL card is not in an operational state.
DCH1025	Did not receive a confirmation from Layer 2 for a MSDL DCH test state event, therefore a timeout has occurred.
DCH1026	An invalid timeout occurred for the DCH test state. No further action is required for this event.
DCH1027	A invalid test confirmation was received from layer 2. No further action is required for this event.
DCH1028	The DCH has to be on the MSDL card for the maintenance task requested.
DCH1029	Resynchronization of the flow control counters failed when a flow control condition was detected by the MSDL DCH Handler application.
DCH1030	Output request buffer overflow for D channels on the MSDL card. Increase the size of the output request buffer.
DCH4283	Both D-channels have been released. Action: Establish the D channel.

121

DTA messages

These messages relate to the commands used in LD60. They support the following hardware.

- QPC472 Digital Trunk Interface (DTI)
- QPC536 2.0 Mb/s Digital Trunk Interface (DTI)
- QPC720 Primary Rate Interface (PRI)

i

- QPC471 and QPC775-Clock Controller
- QPC785 2.0 Mb/s Digital Trunk Interface (DTI)

	The following is a brief discussion of the messages relating to DTA. For a complete discussion, refer to $X11$ input/output guide (553-3001-400).
DTA001 loop	Define the datablock threshold in LD73.
DTA002 loop	Message received with wrong chip field.
DTA003 loop	Power up message received.
DTA004 loop	Phase lock loop (PLL) clear message is received without phase lock loop alarm.
DTA005 loop	Yellow alarm (remote alarm) has occurred.
DTA006 loop	Yellow alarm (remote alarm) 24-hour threshold has been exceeded. Manual intervention is required.
DTA007 loop	Yellow alarm (remote alarm) is cleared.
DTA008 loop	Yellow alarm (remote alarm) is disabled.
DTA009 loop	Phase lock loop alarm has occurred.
DTA010 loop	Phase lock loop alarm has cleared.
DTA011 loop	Bit error rate warning threshold reached.
DTA012 loop	Bit error rate out of service limit reached.
DTA013 loop	Too many bit error rate out of service occurrences in 24 hours.
DTA014 loop	Bit error rate alarm has cleared.
DTA015 loop	Frame slip – tracking – maintenance limit.
DTA016 loop	Frame slip – tracking – out of service limit.
DTA017 loop	Frame slip-free run (non-tracking)-maintenance limit.
DTA018 loop	Frame slip – free run (non-tracking) – out of service limit.
DTA019 loop	Frame alignment maintenance limit.
DTA020 loop	Frame alignment out of service limit.
DTA021 loop	Frame alignment alarm persisted for 3 seconds.
DTA022 loop	Frame alignment alarm has cleared for at least 15 seconds.
DTA023 loop	PRI loop is up.
DTA024 loop	System initiated (automatic, LD45 or LD60) self-test on PRI loop failed. All channels are disabled, loop is put into red alarm (local alarm).

and the second second

DTA025 loop	System initiated (automatic, LD45 or LD60) self-test on PRI loop L passed. Channels were previously disabled due to self-test fault or a loop-level self-test. Channels are enabled and red alarm (local alarm) is removed.
DTA026 loop	Non-tracking frame slip out of service limit is reached while monitoring frame slip improvement. Trunks remain out of service and the improvement timer (prompt SRIM in LD73) is restarted.
DTA027	The non-tracking frame slip guard timer has expired. The trunks affected are kept out of service. Software is checking for slip rate improvement. The improvement criterion is the number of maintenance messages the system gets during the guard time.
DTA028 loop	Slip rate improvement criterion is not met. Trunks remain out of service, improvement timer is reset (prompt SRIM in LD73).
DTA029 loop	Non-tracking frame slip rate improvement criterion is met. Trunks being returned to service.
DTA100 l s c u	Far-end hardware corresponding to Virtual Terminal 1 s c u is disabled.
DTA101 l s c u	Far-end hardware corresponding to Virtual Terminal 1 s c u is enabled.
DTA102 loop	Power is up on the PRI2 board.
DTA103 loop	Problem in loop or channel message of PRI2.
DTA104 loop	Channel self-test report for PRI2.
DTA105 loop	Loop self-test report for PRI2.
DTA106 loop	PRI2 Loop is in acceptable state.
DTA107 loop	PRI2 Loop is in G1 MNT state.
DTA108 loop	PRI2 Loop is in G1 NNC state.
DTA109 loop	PRI2 Loop is in G1 OOS state.
DTA110 loop	PRI2 Loop is in G2 MNT state.
DTA111 loop	PRI2 Loop is in G2 NNC state.
DTA112 loop	PRI2 Loop is in G2 OOS state.
DTA113 loop	PRI2 Loop is in OOS state with no auto-start.
DTA114 loop	PRI2 loop is disabled, and message received is not power up.
DTA115 loop	Unsolicited PRI2 message received.
DTA116 loop	PRI2 loop is in G1 NNDC state.

DTA117 loop	PRI2 loop is in G2 NNDC state.
DTA200 loop	The DTI2 (NI and CI-1) firmware has initialized.
DTA201 loop	The Carrier Interface (CI-1) firmware has initialized.
DTA202 loop	The Network Interface (NI) firmware has initialized.
DTA203 loop e	A Group 2 error was detected by the DTI card. Error (e) = 0 to 1F (HEX).
DTA204 loop e	The NI firmware has encountered a problem. Refer to DTI009 for NI microprocessor error codes (e).
DTA205 loop e	The CI-1 firmware has encountered a problem. Refer to DTI009 for CI-1 microprocessor error codes (e).
DTA206 loop	Response to channel status poll has timed out. The channel was disabled.
DTA207 loop s c	An invalid signal has been received from the DTI, where, s = ABCD signal received from DTI; c = channel.
DTA208 loop s c	An invalid signal has been requested to be sent to the DTI, c = channel s = signal type requested.
DTA209 loop	DTI loop is in acceptable state.
DTA210 loop e	DTI loop is in Group 1 MNT state, where error (e) is one or more of: BV–Bipolar Violation FV–Frame Alignment Violation SV–Slip Violation
DTA211 loop e	DTI loop is in Group 1 NNC state, where error (e) is one or more of: BV–Bipolar Violation FV–Frame Alignment Violation SV–Slip Violation
DTA212 loop e	DTI loop L is in Group 1 OOS state, where error (e) is one or more of: BV–Bipolar Violation FV–Frame Alignment Violation SV–Slip Violation

ISDN PRI maintenance 553-2901-500

1.10

DTA213 loop e	DTI loop is in Group 2 MNT state, where error (e) is one or more of: C3–B3 TSO non-FAS (far-end Out of Service) C6–B6 TS16 frame 0 (far-end lost MFA signal) AS–64-Kbit Alarm indication signal AI–Alarm Indication signal LM–Loss of Multi-frame alignment LF–Loss of Frame alignment
DTA214 loop e	DTI loop is in voice Group 2 NNC state, where error (e) is one or more of: C3–B3 TSO non-FAS (far-end Out of Service) C6–B6 TS16 frame 0 (far-end lost MFA signal) AS–64-Kbit Alarm indication signal AI–Alarm Indication signal LM–Loss of Multi-frame alignment LF–Loss of Frame alignment
DTA215 loop e	DTI loop is in Group 2 OOS state, where error (e) is one or more of the following: C3–B3 TSO non-FAS (far-end Out of Service) C6–B6 TS16 frame 0 (far-end lost MFA signal) AS–64-Kbit Alarm indication signal AI–Alarm Indication signal LM–Loss of Multi-frame alignment LF–Loss of Frame alignment
DTA216 loop e	DTI loop is in Group 1 MNT state, where error (e) is one or more of: BV–Bipolar Violation FV–Frame Alignment Violation SV–Slip Violation
DTA217 loop e	DTI loop is in Group 1 NNC state, where error (e) is one or more of: BV–Bipolar Violation FV–Frame Alignment Violation SV–Slip Violation
DTA218 loop	DTI loop is in Group 1 data OOS.

DTA219 loop e	DTI loop is in Group 2 MNT state, where error (e) is one or more of the following:
	C3–B3 TSO non-FAS (far-end Out of Service)
	C6–B6 TS16 frame 0 (far-end lost MFA signal)
	AS-64-Kbit Alarm indication signal
	AI–Alarm Indication signal
	LM-Loss of Multi-frame alignment
	LF–Loss of Frame alignment
DTA220 loop e	DTI loop is in Group 2 NNC state, where error (e) is one or more of the
	following:
	C3-B3 TSO non-FAS (far-end Out of Service)
	CO-B6 1516 frame 0 (far-end lost MFA signal)
	AI-Alarm Indication signal
	LM–Loss of Multi-frame alignment
	LF-Loss of Frame alignment
DTA221 loop	DTI loop is in G2 data OOS.
DTA222 loop	DTI loop is in OOS state with no auto-start.
DTA223 loop s ch	An invalid signal has been received from the DTI. It matches CCITT fault signal. Far end may be disabled. $c = channel$, $s = ABCD$ signal received from DTI.
DTA224 loop ch	DTI loop audit has found channel (ch) to be in an invalid
-	HALFDISCONNECT state (trunk lock-up). An disconnect attempt is being made on the CHNL.
DTA225 loop	DTI loop is in G1 NNDC state.
DTA226 loop	DTI loop is in G2 NNDC state.
DTA300 loop	A slip repetition has occurred on PRI2 loop.
DTA301 loop	A slip deletion has occurred on PRI2 loop.
DTA302 loop	A slip repetition overflow has occurred on PRI2 loop.
DTA303 loop	A slip deletion overflow has occurred on PRI2 loop.
DTA304 loop	A BPV unavailable condition has occurred on PRI2 loop.
DTA305 loop	A CRC unavailable condition has occurred on PRI2 loop.
DTA306 loop	A FAP unavailable condition has occurred on PRI2 loop.
DTA307 loop	A BPV no-new-calls condition exists on PRI2 loop.

ð

DTA308 loop	A CRC no-new-calls condition exists on PRI2 loop.
DTA309 loop	A FAP no-new-calls condition exists on PRI2 loop.
DTA310 loop	A BPV maintenance condition has occurred on PRI2 loop.
DTA311 loop	A CRC maintenance condition exists on PRI2 loop.
DTA312 loop	A FAP maintenance condition exists on PRI2 loop.
DTA320 loop	DTI loop error reporting was disabled due to an overload of input messages.
DTA321 loop	Error reporting reenabled on DTI loop after being disabled by an input overload (DTA320).

í

ISDN PRI maintenance 553-2901-500

DTC messages

The following is a brief discussion of the messages relating to DTC. For a complete discussion, refer to *X11 input/output guide* (553-3001-400).

- DTC001 Clock controller tracking on primary source loop.
- DTC002 Clock controller tracking on secondary source loop.
- DTC003 Clock controller cannot be accessed.
- DTC004 Clock controller indicates clock aging error (not locked on in 5 seconds).
- DTC005 Reference clock switched to secondary source from primary.
- DTC006 Reference clock switched to free run mode from secondary or primary.
- DTC007 Active reference clock is set to retrack primary.
- DTC008 Active reference is free run or the clock controller cannot be accessed.
- DTC009 Clock controller has been switched.
- DTC010 UART error is detected. Active CC cannot contact other CC.
- DTC011 Clock controller self-test failed; error exists.
- DTC012 Clock controller has reference clock problem.
- DTC013 Clock controller has tracking problem.
- DTC014 Clock controller set to free run.
- DTC015 Clock controller set to secondary.
- DTC016 Clock controller restored from free run or secondary to tracking on primary.
- DTC017 Clock controller restored from free run to tracking on secondary.
- DTC018 Cannot switch or restore to a reference clock because automatic reference clock switching option is disabled.
- DTC100 An invalid error message was received from the clock controller.
- DTC101 You can only disable the secondary clock reference.

DTC102	You can only enable the secondary clock reference.
DTC103	System is locked to primary clock reference.
DTC104	System is locked to secondary clock reference.
DTC105	System is locked to free run.
DTC106	Supposed to free run but hardware is tracking to primary.
DTC107	Supposed to free run but hardware is tracking to secondary.
DTC108	Supposed to track on primary but hardware is tracking to secondary.
DTC109	Supposed to track on secondary but hardware is locked to primary reference clock.
DTC110	Supposed to track on secondary but hardware is tracking to primary.

i
DTI messages

	The following is a brief discussion of the messages relating to DTI For a complete discussion, refer to <i>X11 input/output guide</i> (553-3001-400).
DTI000	LD60 identifier.
DTI001	Invalid input character.
DTI002	Invalid command.
DTI003	Incorrect number of parameters.
DTI004	Incorrect customer number.
DTI005	Invalid parameter.
DTI006	Loop specified is not a DTI/PRI loop.
DTI007	DISI request already active.
DTI008	DISI command is completed.
DTI009 loop ch	DTI/PRI channel failed hardware self test. For DTI009 L M E, the output data is L = loop M = N for NI microprocessor (see Table 1, in <i>X11 input/output guide</i> (553-3001-400)) M = C for CI microprocessor (see Table 2 in <i>X11 input/output guide</i> (553-3001-400)) E = error code for debug purposes.
DTI010 loop c	System clock c cannot be switched in to replace active clock; or another loop is already in loopback mode.
DTI011 c	System clock c cannot be switched in because loss of service will result to the peripheral signaling pack listed.
DTI012 loop	Network card does not respond from IOTEST; loop is disabled.

132 DTI messages

DTI013 loop	No channel is available on loop for diagnostic test. No self-test is performed on this loop.
DTI014 loop	Loop is in remote loop-back mode; command not allowed.
DTI015 loop	Loop is not specified as primary or secondary clock reference source.
DTI016	The DTI package is restricted; LD60 is not allowed to load.
DTI017	Previous command in progress; enter END to abort.
DTI018 loop	DISI command aborted.
DTI019	The loop/channel is not disabled for self-test or it is already in the requested set/reset loop-back mode.
DTI020 loop	Loop is already disabled. No action is taken.
DTI021	Attempt was made to disable input TTY loop.
DTI022 loop	Loop is already enabled or the Peripheral Signaling card is disabled.
DTI023 loop ch	Cannot disable/enable the specified channel.
DTI024	Loop is enabled but no response from hardware.
DTI025 loop ch	Terminal is not equipped.
DTI026 c r	Invalid input parameter to LOVF command for customer c, route r.
DTI027 loop	Loop is not in loopback test mode.
DTI028 loop ch	No test result received before timeout from the specified loop or channel.
DTI029 loop	Loop is enabled but red (local) and yellow (remote) alarms exist.
DTI030 loop	Loop is enabled but red alarm (local alarm) exists.
DTI031 loop	Loop is enabled but yellow alarm (remote alarm) exists.
DTI032 loop	Loop is in yellow alarm (remote alarm) state or is waiting for "yellow alarm sending ceased" message from hardware. Do not perform automatic self-test.
DTI033 loop	Loop is in red/yellow/audit state. Command not allowed.
DTI034 loop	Switching of clock controller is not allowed for this machine type.
DTI034 loop m	Loop microprocessor m failed echo message selftest; m = N for NI microprocessor, m = C for CI microprocessor.
DTI035	Clock controller does not exist.

i

ISDN PRI maintenance 553-2901-500

DTI035 loop ts	Network map in software indicates that timeslot ts of network loop is idle but the connection memory word for that slot on network pack is not idle. Probably a software fault
DTI036 loop	Continuity checker on loop is faulty. Network pack probably faulty.
DTI037 loop	Unable to read partial alarm counts from DTI hardware on loop. Following alarm counts are not complete.
DTI038 loop	No channel is available on loop for diagnostic. Self-test was not performed.
DTI038 loop	Loop not responding. Check enable switch on Network card (P1).
DTI039 loop	Continuity test failed on loop.
DTI040 loop ch	Loopback test failed on loop and channel.
DTI041 loop	Network memory test failed. Replace network pack.
DTI042 loop ch	No timeslots available for loopback test. Loopback test not tested on channel. If loop level test, all channels greater than and including channel ch not tested.
DTI043	Another channel already in loopback mode.
DTI044 loop	Loop enabled by midnight routine.
DTI045 loop	Self-test not performed on loop because loop was disabled manually.
DTI046 loop	Self-test not performed on loop because unable to access the loop.
DTI047 loop	Self-test not performed on loop since loop in remote loop back mode.
DTI050 loop	Continuity checker on loop is faulty. The network pack is probably faulty.
DTI051	Data link is not defined.
DTI052	Tracking rejected. Reference primary is not specified.
DTI053	Unable to track on primary.
DTI054	Tracking rejected. Reference secondary is not specified.
DTI055	Unable to track on secondary.
DTI056	Unable to access clock controller.
DTI057	Unable to free run.
DTI058	Supposed to free run but hardware is tracking on primary.
DTI059	Supposed to free run but hardware is tracking on secondary.
DTI060	Supposed to track on primary but hardware is tracking on secondary.
DTI061	Supposed to track on primary but hardware is free run.

134 DTI messages

DT1062	Supposed to track on secondary but hardware is tracking on primary.
DTI063	Supposed to track on secondary but hardware is free run.
DT1064	Cannot determine which CPU is in use.
DTI065	System clock must be switched before proceeding.
DTI066	Idle CPU must be switched in for active CPU before proceeding.
DTI067 c	System clock generator specified is already enabled.
DTI068 c	System clock generator specified is not responding.
DTI069 loop	Unable to track on Loop.
DTI070	Clock cannot be switched. Unable to track the reference loop.
DTI071	The ENCH L C command is not allowed here because the channel is busy.
DTI072	The ENCH L C command is not allowed because the associated D-channel is not established.
DTI073 loop	If loop is a OPC720, then the pack is not responding. If loop is a QPC472, then ignore this message.
DTI081	B-Channel cannot be enabled until a DCH Link is established.
DTI098	Command entered applies to 1.5 Mb DTI only.
DT1099	Command entered applies to 2.0 Mb DTI only.
DTI100 loop	DTI link loop is associated with an indirect command and Status Link. This loop cannot be disabled until the CSL is disabled.
DTI101	Server using channel for maintenance, cannot Remove Link.
DTI200	Warning: There is an active Clock Controller on board of the digital trunk card. If your intend is to remove the card from the shelf, please disable the
	Clock Controller before removing the card from the shelf.
DTI4130	Clock Controller before removing the card from the shelf. Incompatible protocol between the interfaces. If this error continues, report it.
DTI4130 DTI4131	Clock Controller before removing the card from the shelf. Incompatible protocol between the interfaces. If this error continues, report it. Incompatible protocol between the interfaces. If this error continues, report it.

1

e e la 🖌 a companya da anticipat da

MSDL messages

	The MSDL provides 4 ports for applications such as
	— ISDN Primary Rate D-channel (DCH)
	- Application Module Link (AML)
	 Input/Output devices (TTY)
	The MSDL messages report problems with the MSDL card and its applications. The MSDL commands are provided in LD37, LD48, and LD96.
	The following is a brief discussion of the messages relating to MSDL. For a complete discussion, refer to <i>X11 input/output guide</i> (553-3001-400).
MSDL001	The number of parameters for the MSDL command is incorrect.
MSDL002	The card number in the command is out of range or invalid.
MSDL003	Since this command is only valid for use on the MSDL card in this overlay, the first parameter must be MSDL.
MSDL004	Cannot reset the card (or execute self tests) right now because the card is not in Manually Disabled state (MAN DSBL).
MSDL005	Failed to reset; could not write command to card. Card is probably not present, or the switch settings on the card do not agree with the database.
MSDL006	Cannot enable the card unless it is in Manually Disabled (MAN DSBL) state.
MSDL007	Cannot disable card unless it is in the ENBL state.
MSDL008	Cannot reset the card (or execute self tests) on the card right now since the device enabled bit is set, meaning a message response is currently pending.
MSDL011	No response received to the enable card command.
MSDL012	The response message from the card to the overlay indicates failure to enable/ disable.

136 MSDL messages

MSDL014	No response received to the disable card command. The card is set to the Manually Disabled (MAN DSBL) state anyway.
MSDL015	The command that was entered requires that a message be sent to the MSDL. The Meridian 1 was unable to build the message since the buffer was not free. Try again later.
MSDL016	Failed enable attempt. If this message is not accompanied by any other error message, the card may be in the process of performing self-tests or the self-tests may have already failed. Wait a few minutes, then execute the self-tests with the SLFT MSDL x command. If self-tests pass, try to enable the card again.
MSDL017	At least one of the ports on the MSDL is currently enabled. Disabling the card is disallowed when ports are enabled unless the DIS MSDL x ALL command is used.
MSDL018	The fourth parameter of the command is unrecognized or unimplemented.
MSDL019	The command entered required that information be read from the MSDL. The specified MSDL is not present in the system, and the information could not be read.
MSDL020	The command entered required that the application information block on the MSDL be read by the Meridian 1. The block is currently being updated by the MSDL, and the system could not read the block. Try again.
MSDL021	Began to download the MSDL basecode but stopped before finishing. There should be an SDL error message; refer to the information on that message as to the reason for the failure.
MSDL022	The rest of the information output in response to this command is resident on the card. The card is not enabled, and the information can not be read.
MSDL024	The Meridian 1 began to download an MSDL application but stopped before finishing. There should be an SDL error message; refer to the information on that message as to the reason for the failure.
MSDL025	There is currently maintenance activity on the application in question. Wait a few minutes and try again.
MSDL026	Disabling the MSDL when the active TTY is supported by it is not allowed.

í

MSDL027	Time out waiting for the self tests to complete. Wait at least five minutes, then try again.
	<i>Note:</i> Under certain unusual circumstances, self tests can take approximately five minutes, but this should only occur when the flash EPROM on the card is new or has been completely erased.
MSDL028	Unable to enable the card as it is not present in the system. If the card in question is believed to be present, check if the switch settings on the card agree with the device number entered in this command.
MSDL029	Incorrect password entered in response to the ENL MSDL x DBG command.
MSDL030	The debug option for this card has already been turned on.
MSDL031	The ENL MSDL x ALL command is only valid when the MSDL is in the ENBL or MAN DSBL state.
MSDL032	The MSDL card was removed from its slot, or the card reset itself during the self-tests. If the card was removed, execute the self-tests again and do not remove the card from its slot until the tests are complete. If the card was not removed, execute the self-tests again. If this message appears more than twice, replace the MSDL card.
MSDL100 x	The CSTAT and CSUBSTAT fields on MSDL x indicate the card is Manually Disabled. The Meridian 1 believes the card is Enabled. The card is placed in the System Disabled - Selftests Passed state, and within the next few minutes, the Meridian 1 will attempt to enable the card.
MSDL101 x	The CSTAT field on MSDL x indicates the card is no longer Enabled. The Meridian 1 will attempt to return the card to an Enabled state within a few minutes. Under certain conditions, this message is output at the same time as MSDL302.
MSDL102 x	No response was received from MSDL x to a background polling message sent periodically to each MSDL card. The purpose of this message is to ensure that the card is capable of receiving and sending messages.
MSDL103 x	An overlay was waiting for a message from MSDL x. Most likely, the overlay is no longer loaded. The message the overlay was waiting for was never received.
MSDL104 x	The MSDL background audit sent a message to MSDL x, and did not receive a response. ,

.

MSDL105	The CSTAT value read from the MSDL is invalid. This indicated one of two error conditions:
	- The card has encountered a severe hardware fault so that it is unable to report the error to the Meridian 1.
	- There May be multiple cards in the system with the same device number (switch settings) as the MSDL. When the CSTST is read from the MSDL, it may not be the MSDL card that is responding.
	Be sure no other cards in the system share the device number. If so, change the device numbers. If not, replace the card.
MSDL106 x appl	The MSDL audit detected that there was no response to a maintenance message originated by application "appl" on MSDL x.
MSDL107 x appl	The Meridian 1 was unable to determine if downloading was necessary. Three fields accompany this message: the MSDL card number, and the application name. The third field contains a value for internal use only.
MSDL108 x appl	Application "appl" on MSDL x needs to be downloaded to the card. Downloading begins as soon as there is no overlay loaded.
MSDL112 x	MSDL x has been reset in order to begin automatic recovery. Immediately following this message, the card is executing self tests. When they are finished, provided they pass, the Meridian 1 will attempt to enable the card.
MSDL201 x appl	MSDL x sent a message to the Meridian 1 indicating application "appl" data space has been corrupted.
MSDL202 x appl	MSDL x sent a message to the Meridian 1 indicating that application "appl" on the card unexpectedly disabled itself (performed a "close").
MSDL204 x appl	The Meridian 1 searched the system disk to find a version of an application "appl" for MSDL x, and found none.
MSDL205 x appl	An error was encountered when searching the system disk to find a version of application "appl" for MSDL x. Refer to an accompanying SDL error message for the exact error reason. This message indicates that Meridian 1 attempts to enable the application in question if a version exists on the card.
MSDL206 x appl y z	An error was encountered when comparing a version of application "appl" on the system disk with a version on MSDL x. Refer to an accompanying SDL error message for the exact error reason. This message indicates that the Meridian 1 will attempt to enable the application in question if a version exists on the card.

MSDL207 x	An error was encountered when downloading application "appl" to MSDL x.
appl y z	Refer to an accompanying SDL error message for the exact error reason. The
	entire enable sequence has been aborted.

- MSDL208 x When preparing to download the base software to MSDL x the card indicated that some kind of fatal error was encountered. Execute selftests before attempting any other action regarding this card.
- MSDL209 x y z Some memory was reclaimed for from the MSDL for future use. An application on MSDL x requested that a buffer pool be freed. When this occurred, there was at least one outstanding buffer. The Basecode waited for the buffer(s) to be returned to the pool before freeing it, but it never returned. The buffer pool was forcibly freed by the Basecode.
- MSDL210 Failed to enable the MSDL for one of the following reasons:
 The card in question is not an MSDL card. For example, there may be a card in the system with switch settings that correspond to the MSDL, but is in fact not an MSDL card.
 There is at least one other card in the system with switch setting identical to the MSDL's. Remove the card with the same device number as the MSDL.
- MSDL300 data The MSDL background audit has changed the card state. In the cases where the card was previously enabled and now is no longer enabled, another MSDL message will indicate the reason for the state change. When making a state transition due to a fatal error on the card, the reason for the fatal error is displayed in this message. This is an informational message and requires no action by the craftsperson.
- MSDL301 x y z An expedited data unit was received. The Meridian 1 is not expecting MSDL x to generate any messages in its current state. Following transition to disabled state, a pending message may cause this message to be displayed.
- MSDL302 x y Access to the memory space shared by the Meridian 1 CPU and the MSDL (Shared RAM) has been momentarily suspended by MSDL x. There is no specific action to be taken as a result of this message, however it indicates that message transfer between the Meridian 1 and the card ceased momentarily.
- MSDL303 x y The Meridian 1 detected corruption in either the receive ring, transmit ring, or both, causing access to the memory space shared by the Meridian 1 CPU and MSDL x (Shared RAM) to be momentarily suspended. Take no action because of this message, however it indicates that message transfer between the Meridian 1 and the card ceased momentarily.

MSDL305 x	The Meridian 1 has received 50 or more messages from the MSDL x within two seconds. At this level of message transfer, there may be some impact to the overall system performance. The level of message transfer does not warrant removing the card from service. Y indicates the rate of message transfer from the card to the Meridian 1 (in terms of messages per second).
MSDL306 x y	The Meridian 1 has received 50 or more messages from MSDL x within two seconds. At this level of message transfer, there may be some impact to the overall system performance. The level of message transfer warrants removing the card from service. Y indicates the rate of message transfer from the card to the Meridian 1 (in terms of messages per second).
MSDL307 x data	MSDL x encountered a fatal error. The output data is information read from the card regarding the error and is intended for internal use only.
MSDL308 x y appl data	MSDL x reported that it received a message with an invalid (bad) Socket ID (y). Appl is the application name, and data is up to 8 words of hex data representing the message sent.

PRI messages

	PRI messages are provided for, and give information concerning, the following.
	 Responses to commands entered in LD 60
	 Database errors relevant to PRI interfaces
	 Protocol errors associated with a PRI link
	The following is a brief discussion of the messages relating to PRI. For a complete discussion, refer to $X11$ input/output guide (553-3001-400).
PRI000 loop v	No problem. Correct version ID (s) was received from PRI loop.
PRI001 loop	No problem. DCHI ready to transmit, PRI ready to receive.
PRI002 loop	PRI channel 24 not ready to receive. Action: 1 Check PRI status. 2 Check PRI to DCHI cable.
PRI003 loop	DCHI not ready to transmit. Action: 1 Check PRI status. 2 Check PRI to DCHI cable. 3 Check the DCHI status.
PRI004 loop	PRI not ready and DCHI not ready.
PRI005 loop v	Incorrect version ID (v) was received from PRI loop. The X11 software release is not compatible with the PRI hardware vintage.
PRI006 loop	 Response timeout, no version ID received. Action: 1 Be sure QPC720 is being used, not QPC472. 2 Be sure PRI hardware and software are correctly installed. 3 Check PRI status.
PRI010 loop	Disabling of this loop not allowed. Associated DCHI must be disabled first

142 PRI messages

PRI011 loop	DCH port number mismatch between PDCH block and PPRI loop block. Action: This is a software problem. Report it to the technical assistance center.
PRI100 loop ch	The B-channel indicated in the outgoing SETUP is locked out because the far-end is using an alternate B-channel.
PRI101 loop ch c	 The B-channel (ch) is locked out because a RELCOMP or RELEASE message has been received with one of the following cause (c) values: 82 = channel does not exist 44 = requested channel is not available 6 = alternate channel acceptable
PRI200	Protocol Error: A Global CREF number is needed for any service message. Format: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI201	Protocol Error: Invalid maintenance state in the service message. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI202	Protocol Error: Incorrect value for extension bit. Output data: DCH: x DATA: y z x = D-channel number y = Message type z = Information Element (IE) Action: Report problem if condition persists.
PRI203	Protocol Error: Mandatory Notification description invalid. Output data: DCH: x DATA: y z x = D-channel number y = Message type z = Information Element (IE) Action: Report problem if condition persists.

1.

PRI204	Database Error: Feature is not allowed for this interface. Output data: DCH: x DATA: y z x = D-channel number y = D-channel interface ID z = ESL or ISA Action: Verify data is correct in the configuration record and the route data block.
PRI205	 Protocol Error: NSF IE is missing from the SETUP message received from the far end. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Check the database in the far end switch to ensure the NSF IE is included as part of the call origination.
PRI206	 Protocol Error: The length of the incoming call reference value was incorrect. The length allowed in North America is 1 or 2. For some other interfaces only a length of 2 is allowed. There may be a compatibility problem with the far end. Output data: DCH: x DATA: y x = D-channel number y = Call reference length Action: Report problem if condition persists.
PRI207	Protocol Error: Wrong message type. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI208	Protocol Error: Wrong information element (IE) for message type. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI209	Protocol Error: Undefined information element (IE) for message type. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.

PRI210	Protocol Error: Wrong coding standard. Output data: DCH: x DATA: y x = D-channel number y = Coding standard Action: Report problem if condition persists.
PRI211	Protocol Error: Incorrect extension bit. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI212	Protocol Error: Bearer capability (BC) – Information transfer not supported. Output data: DCH: x DATA: y x = D-channel number y = Transfer capability Action: Report problem if condition persists.
PRI213	Protocol Error: Bearer capability (BC)—Information transfer rate/mode not supported. Output data: DCH: x DATA: y x = D-channel number y = Transfer rate Action: Report problem if condition persists.
PRI214	Protocol Error: Bearer capability (BC) – Layer 1 protocol ID not correct. Output data: DCH: x DATA: y x = D-channel number y = Protocol ID Action: Report problem if condition persists.
PRI215	Protocol Error: Bearer capability (BC)—Rate is not correct. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI216	Protocol Error: Bearer capability (BC)—Rate is not correct. Output data: DCH: x DATA: y x = D-channel number y = Rate Action: Report problem if condition persists.

PRI217	Protocol Error: General location not supported. Output data: DCH: x DATA: y x = D-channel number y = General location number Action: Report problem if condition persists.
PRI218	Protocol Error: Cause value not supported. Output data: DCH: x DATA: y x = D-channel number y = Cause information element (IE) Action: Report problem if condition persists.
PRI219	Protocol Error: Channel ID octet 3 error. Output data: DCH: x DATA: y x = D-channel number y = Octet 3 Action: Report problem if condition persists.
PRI220	Protocol Error: Channel ID octet 5 error. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI221	Protocol Error: Channel ID octet 5 error. Incorrect BCH standard. Output data: DCH: x DATA: y x = D-channel number y = B-channel standard Action: Report problem if condition persists.
PRI222	Protocol Error: Channel number does not exist. Output data: DCH: x DATA: y x = D-channel number y = B-channel number Action: Report problem if condition persists.
PRI223	Protocol Error: CREF flag in SETUP message is incorrect. Output data: DCH: x DATA: y x = D-channel number y = Call reference number Action: Report problem if condition persists.

PRI224	Protocol Error: State message error, protocol violation. The state IE is not appropriate for the current state. Output data: DCH: x DATA: a b c d e
	x = D-channel number a = Pointer to PRI message call register b = UTN
	c = StatePM d = Message type e = Call reference number
DD1227	Action: Report problem if condition persists.
PRI225	Protocol Error: State message error, protocol violation. Release complete received in U11 or U31 state. Output data: DCH: x DATA: y x = D-channel number
	y = Message type Action: Report problem if condition persists.
PRI226	Protocol Error: No RESTart ACK message received.
	Subput data: DCH: x DATA: y x = D-channel number y = UTN
	Action: Report problem if condition persists.
PRI227	Protocol Error: Message received in NULL state. Output data: DCH: x DATA: y x = D-channel number y = Message type
	Action: Report problem if condition persists.
PRI228	Protocol Error: Mandatory Channel ID missing in ALERTing. Output data: DCH: x DATA: y x = D-channel number y = NONE
	Action: Report problem if condition persists.
PRI229	Protocol Error: Mandatory Channel ID missing in incoming CONNect message. Output data: DCH: x DATA: y x = D-channel number
	y = NONE Action: Report problem if condition persists.
	r r r Perovent

PRI230	Protocol Error: Incoming NSF contains a mismatch between the route defined by the SID and the call type defined for that route. Output data: DCH: x DATA: a b c x = D-channel number a = Facility value b = ISA service type c = Route number Action: Report problem if condition persists.
PRI231	Database Error: NSF error. Invalid service or feature type. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Coordinate fields with far end switch.
PRI232	Protocol Error: PROGRESS INDICATOR not supported. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI233	Protocol Error: ZERO length for mandatory information element (IE). Output data: DCH: x DATA: y x = D-channel number y = Information element (IE) identifier Action: Report problem if condition persists.
PRI234	Protocol Error: ZERO length for optional information element (IE). Output data: DCH: x DATA: y x = D-channel number y = Information element (IE) identifier Action: Report problem if condition persists.
PRI235	Protocol Error: Bearer capability (BC) – Layer ID is not correct. Output data: DCH: x DATA: y x = D-channel number y = Layer ID Action: Report problem if condition persists.

ŕ

PRI236	Protocol Error: Incorrect Transit Network Selection (TNS) Network ID Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI237	Protocol Error: Message length exceeds buffer size. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI238	Protocol Error: Protocol discriminator is not compatible with the message received. Output data: DCH: x DATA: y x = D-channel number y = Protocol discriminator Action: Report problem if condition persists.
PRI239	Protocol Error: Maintenance message is not allowed for this DCH interface. Output data: DCH: x DATA: y x = D-channel number y = Message typc Action: Report problem if condition persists.
PRI240	Protocol Error: No service ack message received. Output data: DCH: x DATA: y x = D-channel number y = UTN Action: Report problem if condition persists.
PRI241	Protocol Error: No response from far end to this PRI call. Output data: DCH: x DATA: y x = D-channel number y = B-channel number Action: Report problem if condition persists.

PRI242	Protocol Error: Received a PRI message with an unsupported service identifier. Output data: DCH: x DATA: y x = D-channel number y = Service identifier Action: Report problem if condition persists.
PRI243	Protocol Error: Service discriminator is not supported by PRI. Output data: DCH: x DATA: y x = D-channel number y = Service discriminator Action: Report problem if condition persists.
PRI244	 Protocol/Database Error: Facility reject message received. Output data: DCH: x DATA: a b c d e x = D-channel number a = Originating PNI b = Originating number c = Destination PNI d = Destination number e = Reason Action: Verify that the PNI values are correct in the customer and route data blocks and are consistent with the switch on the other end of the link.
PRI245	Database Error: Missing PNI number in the customer data block. Output data: DCH: x DATA: y z x = D-channel number y = Customer number z = Service ID Action: Look into the customer data block to configure the PNI.
PRI246	Protocol Error: Received bad facility information element (IE). Output data: DCH: x DATA: y x = D-channel number y = Error indication Action: Report problem if condition persists.
PRI247	Database Error: PNI missing in Route Data Block. Output data: DCH: x DATA: y x = D-channel number y = Service identifier Action: Configure the PNI in the route data block.

PRI248	Protocol Error: ROSE component sent is being rejected. Output data: DCH: x DATA: y x = D-channel number y = Service identifier Action: Report problem if condition persists.
PRI249	 Protocol Error: ISDN: Received a Status message with CAUSE = 30. This is normally received in response to a Status Enquiry but the Meridian 1 did not send out a Status Enquiry message. The Status message is ignored. Output data: DCH: x DATA: y x = D-channel number y = D-channel interface ID Action: Report problem if condition persists.
PRI250	Protocol Error: Received information element (IE) is in the wrong codeset. Output data: DCH: x DATA: y x = D-channel number y = Information element (IE) identifier Action: Report problem if condition persists.
PRI251	 Protocol Error: The Presentation Method of Protocol Profile (PMPP) is wrong in the High Layer Compatibility IE. Output data: DCH: x DATA: y x = D-channel number y = High Layer Compatibility PMPP Action: Report problem if condition persists.
PRI252	Protocol Error: The Interpretation of High Layer Characteristics ID is wrong in the High Layer Compatibility IE. Output data: DCH: x DATA: y x = D-channel number y = High Layer Compatibility INTERPRT Action: Report problem if condition persists.
PRI253	 Protocol Error: The High Layer Characteristic ID is wrong in the High Layer Compatibility IE. Output data: DCH: x DATA: y x = D-channel number y = High Layer Compatibility CHAR ID Action: Report problem if condition persists.

PRI254	 Database Error: The DCH is interfacing with a software issue not supported by the application. Output data: DCH: x DATA: y z x = D-channel number y = Release ID z = Service identifier Action: Verify that the release ID in the configuration record is the same as the software release running on the far end switch.
PRI255	 Protocol Error: Information request type is not supported. A message error or a protocol error will be generated depending on whether the I.E. is mandatory or not. Output data: DCH: x DATA: y z x = D-channel number y = Message type z = Information element (IE) identifier Action: Report problem if condition persists.
PRI256	 Protocol Error: Wrong length for information request I.E. The length on the received I.E. is beyond the range. A message error or a protocol error will be generated depending on whether the I.E. is mandatory or not. Output data: DCH: x DATA: y z x = D-channel number y = Message type z = Information element (IE) identifier Action: Report problem if condition persists.
PRI257	 Protocol Error: Information request specific is not supported. A message error or a protocol error will be generated depending on whether the I.E. is mandatory or not. Output data: DCH: x DATA: y z x = D-channel number y = Message type z = Information element (IE) identifier Action: Report problem if condition persists.

ŕ

PRI258	 Protocol/Database Error: An attempt is being made to insert more that 8 digits in the calling party number for a call originating or tandeming through this switch. Only eight(8) digits can be included in the calling party number, or the digits are truncated to the right (AXE-10 Australia interface only). Output data: DCH: x DATA: TANDEM or ORIG x = D-channel number Action: For originating calls modify I D 15 PEX1 and PEX2 so that
	PFX1+PFX2+DN is less than 8 digits. For tandeming calls, notify far end of incoming trunk that more than 8 digits are being sent.
PRI261	 Database Error: The D-channel interface for routing Network Message Service (NMS) facility messages is not an Meridian 1 interface. Output data: DCH: x DATA: a b c d x = D-channel number a = Operation code for TCAP protocol b = Originating digits c = Terminating digits d = Customer number Action: Verify database configuration.
PRI262	 Protocol Error: Invalid value for the interface identifier field of channel ID information element from an incoming message. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI263	Protocol Error: Invalid value for the class field of restart indicator information element from an incoming message. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.
PRI264	Protocol Error: Received an invalid call reference from far-end switch. Output data: DCH: x DATA: y x = D-channel number y = Message type Action: Report problem if condition persists.

ISDN PRI maintenance 553-2901-500

3. j. j.

بالبيقيل بالانجار المستعد بقيع والبط

PRI265	Database Error: A Facility Reject message was received. Destination digits cannot be translated. Output data: DCH: x DATA: a b c d e x = D-channel number a = TCAP package type b = Problem (NOXLAN/NONMS) c = Originating digits d = Destination digits e = Customer number Action: Verify numbering plan databases are consistent between the near and far end switches.
PRI266	Protocol Error: TCAP Package type is not recognized by Network Message Center (NMC) feature. Output data: DCH: x DATA: a b c d e f x = D-channel number a = TCAP package type b = TCAP component type c = Problem d = Originating digits e = Destination digits f = Customer number Action: Report problem if condition persists.
PRI267	Protocol Error: TCAP Package type is not recognized by Network Message Center (NMC) feature. Output data: DCH: x DATA: a b c d x = D-channel number a = TCAP package type b = Originating digits c = Destination digits d = Customer number Action: Report problem if condition persists.

,

PRI268	Protocol Error: TCAP Component is not recognized by Network Message
	Center (NMC) feature.
	Output data: DCH: x DATA: a b c d e
	x = D-channel number
	a = TCAP package type
	b = TCAP component type
	c = Originating digits
	d = Destination digits
	e = Customer number
	Action: Report problem if condition persists.
PRI269	Protocol Error: TCAP Operation is not recognized by Network Message
	Center (NMC) feature.
	Output data: DCH: x DATA: a b c d e f
	x = D-channel number
	a = TCAP package type
	b = TCAP component type
	c = Operation
	d = Originating digits
	e = Destination digits
	t = Customer number
	Action: Report problem if condition persists.
PRI270	Protocol Error: TCAP parameter is not recognized by Network Message
	Center (NMC) feature.
	Output data: DCH: x DATA: a b c d e f g
	x = D-channel number
	a = TCAP package type
	b = TCAP component type
	c = Operation
	d = Parameter
	e = Originating digits
	T = Destination digits
	g = Customer number Action: Deport problem if condition percists
	Action. Report problem if condition persists.

1999 (M. 1997) 1997 (M. 1997) 1997 (M. 1997)

and the state of the second second second

PRI271	 Database Error: LDN0 must be defined for the customer for ISDN DID calls in order to determine the number of digits expected for successful call termination. Output data: DCH: x DATA: y x = D-channel number y = Customer number Action: Configure LDN0 in the customer data block.
PRI272	Message is ping-pong between 2 nodes.

SL-1 ISDN Primary Rate Interface

Maintenance

Copyright © 1989 Northern Telecom All rights reserved. Information subject to change without notice. Release 6.0 Standard August 1, 1993 Printed in the U.S.A.

