
Amanda Portal System Reference Manual

Version 1.27E

The Amanda Company, Inc.

January 9, 2003

Contents

1 Introduction 5

1.1 Core Features . 6

1.2 Tcl As An Extensible Glue Language . 6

1.2.1 An Introduction to Tcl . 7

1.2.2 Tcl and Multithreading . 28

1.2.3 Tcl and State . 29

1.2.4 Assigning Scope to Procedures . 29

1.3 Control Flow . 32

1.4 Waiting for Events . 34

1.5 Loadable DLLs . 35

1.6 Resource Manager . 36

2 Security Model 40

2.1 Ancestors and Descendents . 40

2.2 Privileges . 40

2.3 Login and Logout . 44

3 How Amanda Portal Interacts with Telephone Switches 46

4 Mailboxes 49

4.1 Box Manipulation Functions . 50

4.2 Box Settings . 54

1

5 Multimedia Objects (MMOs) 63

5.1 Messages and Folders . 70

5.2 MMO Database . 80

5.3 Announcements . 84

5.4 Published MMOs . 88

6 Voice and Fax Devices 90

6.1 OOP Model . 90

6.2 Interconnection Limitations . 91

6.3 Make local and Default Commands . 91

6.4 Network Device Commands . 93

6.5 VP Commands . 98

6.6 Port Messages . 109

6.7 Miscellaneous Commands . 110

7 Fax Commands 113

8 Internet E-Mail 115

9 Serial Devices 121

10 Miscellaneous Databases 125

10.1 List Mapping Database . 125

10.2 Trie Mapping Database . 129

11 The Configuration Database 133

12 Triggers 138

12.1 Autoschedules . 138

12.2 Notifications and the Job Queue . 141

12.2.1 The Notify Record Database . 142

2

12.2.2 The Notify Instance (Job Queue) Database . 144

12.2.3 The Notify Template Database . 147

12.3 Data Triggers . 149

13 Persistent Procedures 162

14 Integration 164

14.0.1 Serial Integration Modules . 166

15 Call Queueing 168

16 Connecting to External Databases (ODBC) 191

17 Miscellaneous 197

17.1 The tokens Command . 200

17.2 Time Functions . 203

17.3 Terminating Threads . 206

17.4 Logging . 207

17.5 Speech Processing . 208

17.6 Web Client Access . 211

17.7 TCP Client Connections . 212

17.8 VoIP Appliance Access . 213

17.9 COM/OLE . 217

A Error Codes and Messages 218

3

Preface

In all of the function definitions in this document, if there is a ‘*’ next to the function name, you can execute
the function when you aren’t logged in. Otherwise, you must be logged into the system. In a related vein,
many functions have the notion of a current box. When you don’t give the -box option, they operate on the
current box. When you are not logged in, there is no notion of a current box and these functions require the
-box option.

Commands syntax is verb noun. Normally, if a command can return one or more results, the ‘s’ suffix is
left off the command (e.g., set box setting rather than set box settings). This makes it easier for the
programmer to remember the name of the command. Commands that require a box parameter (e.g., is box)
do not use the -box syntax; the box is simply given as a required parameter. The -box syntax is for options
only.

A fundamental theme in Amanda Portal is the notion of the box hierarchy and permissions related to the
box hierarchy. Boxes create other boxes in an ancestral tree structure. Generally, unless specified otherwise,
boxes only have permission to modify their box settings and the settings of their descendents. They cannot
modify the setting of their proper ancestors.

Every command in this document can get a “usage” error if you call the command wrong. In this case,
errorCode will be set to USAGE and interp->result will be the usage of the function.

Many commands in this system may process half an argument list before discovering an error. This means
that half of the arguments changed values in the database and the other half didn’t. Care is taken to
alleviate this problem as much as possible though, for example, by checking the syntax of the arguments
before executing transactions against the database.

4

Chapter 1

Introduction

The Amanda Portal system consists of a core set of functionality, which defines basic building blocks from
which a variety of call processing systems can be built. A variety of plug-in modules, in the form of Windows
DLLs, can be installed which augment the functionality of the core. By using plug-in DLLs, a system can
be configured to load only the code and features that it requires. Since third parties can also develop these
DLLs, there is a great deal of flexibility and extensibility in the system. The core and the plug-in modules
together define an API which is similar to that of an operating system. They define a security model, provide
networking features, etc.

Above this “API” layer is a scripting language, the Tool Command Language (Tcl), which is now familiar
to over one million programmers world-wide. The scripting language serves two different purposes:

1. It acts as a “glue” to tie together the functionality of the different loadable modules (DLLs). As such,
it acts as a very high level language for voice processing needs.

2. It allows quick and easy customization of an existing system, or rapid development of whole new voice
processing solutions. The entire Amanda@Work.Group Telephone User Interface (TUI) consists of
only a few thousand lines of Tcl code.

This architecture has several advantages:

• It separates functionality (how a particular task is implemented) from behavior (why a particular task
should happen, such as a certain sequence of DTMF digits were input by a user).

• Because Tcl is the only interface to the system, network and telephone clients use exactly the same
interface to accomplish tasks within the system. There is exactly one function which can be used to
send voice mail to a mailbox, for instance; this function is used by all types of clients.

• Because the functionality is implemented in C++, it operates very efficiently, while the telephone user
interface is scripted because this is where a great deal of flexibility is required. The TUI Tcl script
is basically just implementing flow of control across all the possible functional calls (record, play, get
digits, send voice mail, etc.).

• Since all the functionality is implemented in C++ and is not maliable, it is possible to implement a
secure system. Users are allowed to execute any Tcl commands that are made available to them but
cannot side-step the security model that is built into the system at the lower level.

5

• This architecture allows the TUI to be completely flexible without having to reimplement any func-
tionality at lower levels. For instance, it would be quite possible to build a speech-recognition based
voice mail system which would be quite different from the DTMF-based, Amanda@Work.Group-like
interface that is currently provided. The menuing system would presumably be much “flatter,” but
the underlying features such as sending and listening to voice mail, changing mailbox settings, etc.,
would remain exactly the same at the C++ level.

1.1 Core Features

The core module implements a number of fundamental objects in the system: mailboxes, MultiMedia Objects
(MMOs), a number of databases (the MMO lookup table, the voice mailbox database, etc.), an autoscheduler,
a notifier and outbound call job management system, etc.

As part of the system’s security model, mailboxes are arranged in a hierarchy. Every mailbox has a “parent”
mailbox which is the one which created it. A mailbox may be given the right to create subordinate, or
children, mailboxes. A top-level mailbox’s parent is itself, since no mailbox created it, and such a box is
referred to as a superbox in this manual. Such a mailbox is given certain special privileges in Amanda Portal,
similar to the “root” user on a Unix system. Unlike Unix, however, there can potentially be more than one
top-level mailbox (a “forest” of mailbox trees), although it is unlikely that this feature will be needed in
practice.

Mailboxes have several components: they have some settings (the list of settings is extensible to make
development of new applications more flexible), they have a set of privileges which have known semantics to
the core, they may have messages which they have received, and the messages in turn may have zero or more
MMOs associated with them. Boxes may “publish” MMOs for others to use, such as greeting recordings.
Boxes can establish autoschedule and notify records which cause the system to execute Tcl code on their
behalf when certain events happen or certain times arrive.

1.2 Tcl As An Extensible Glue Language

Tcl makes a good embedded systems language because it is high-level, easy to extend the language by adding
C functions as Tcl primitives and has security mechanisms built in using the nested interpreter model and
“code injection”1. Nested interpreters give you an operating system like “system call” interface where you
write your “system calls” in Tcl. In this model, the system calls always exist in your interpreter. If you are
not allowed to perform a call, the system call returns an error. The master interpreter operates in “kernel”
mode and the slave interpreter operates in “user” mode.

Code injection works slightly differently. The protected calls you need to use don’t check whether you have
permission to execute them; instead, the calls don’t exist in your interpreter until a specified event happens
(such as you log in). At this point, the call is inserted into your interpreter and you can use the new calls.
When you log out, the calls are removed from your interpreter.

Tcl is a Lisp like language so writing code with it is quite “functional.” You often write code like

eval modify elements [get elements handle]
1A tAA defined term.

6

where get elements returns the operands to operate on as a Tcl list and modify elements operates on
those operands. Tcl also helps extensibility by being interpreted. This means that you can add code on the
fly to your program and modify the behavior of the code shipped with the system. Tcl also has associative
arrays built in; these are the regular Tcl array variables. Internally, they are implemented as hash tables
so lookup on them is very speedy. Multi-dimensional arrays can be simulated in Tcl by using concatenated
indices in regular arrays.

1.2.1 An Introduction to Tcl

Safe interpreters are simply regular interpreters with certain “unsafe” calls removed; that is, they are inter-
preters where some unsafe code has already been “dejected.” All Tcl interpreters in Amanda Portal are of
the “safe” variety, and as such, they have only the following standard Tcl commands: append, array, break,
case, catch, concat, continue, error, eval, expr, for, foreach, format, gets, global, if, incr, info,
interp, join, lappend, lindex, linsert, list, llength, lower, lrange, lreplace, lsearch, lsort, proc,
regexp, regsub, return, scan, set, split, source, string, switch, time, trace, unset, uplevel, upvar,
and while.

This subsection gives a brief description of each of these commands. Those who are already familiar with
Tcl should skip ahead to the next section. There are many books available which cover the Tcl language,
including Tcl and the Tk Toolkit, by Tcl’s author, John Ousterhout, and Tcl For Dummies, in the famous
“Dummies” series. While those books should be consulted for in-depth examples, they also cover many more
features of Tcl, plus the Tk graphical extensions, which are not used in Amanda Portal.

Tcl Variables

Programming languages contain two fundamental elements: variables and procedures. Object-oriented lan-
guages combine these two features into objects (naturally). Variables in Tcl have three attributes:

name The variable’s name allows access to its contents.

scope The scope of a variable determines how long it will live. When it goes out of scope, a variable is
automatically destroyed.

value Finally, each variable has a value.

In many programming languages, variables have a fourth attribute, a type, which determines the kind of
data that the variable can have as its value, the size of the date (range of values, length of a string, etc.). In
these languages, variables are declared, and a variable can exist without having a defined value.

Tcl’s variables, like those of Amanda@Work.Group, do not have a specific type. Internally, they are all
represented as strings and are converted on-the-fly as needed to other types (floating point, integer) when
necessary. This feature makes Tcl programming easier. A variable springs into existence the first time it is
used. This also means that it’s impossible to have a variable which does not have any value.

To create a variable in Tcl, you use the set command, like this:

set variable value

For example, to set the variable myname to Tim, you would simply type

7

set myname Tim

To access the value of a variable, put a dollar sign in front of its name. For sample, to copy the value of the
variable myname to a second variable called firstname, you would type

set firstname $myname

This process is called variable substitution: the name of the variable is replaced by its value.

Each executable statement in Tcl consists of a single command line, which is terminated with a newline or
a semicolon. For instance,

set x 14
set y 27

could just as easily be written

set x 14; set y 27

Tcl evaluates each command line using a two-step process: parsing and execution. During parsing, the
command line is divided into space-separated arguments, then variable substitution and other processing is
performed on the arguments. At this point, Tcl doesn’t attach any meaning to the arguments themselves;
it’s just doing simple string substitutions.

In the execution step, the first argument of the line is treated as a command name to be run. The other
arguments on the command line are passed on to the command, which will apply meaning, if any, to them.
The command will return a string value as the result of its processing. In each of the examples above, the
command name was set.

What would happen if you tried to execute the command

set name Tim Morgan

This is a problem because set will see three arguments rather than the two it’s expecting (a variable to set
and a value to set it to). Just as in Amanda/DOS, we can overcome this problem by using quotation marks
to “hide” the space from the parser:

set name "Tim Morgan"

Now suppose that we have two variables, firstname and lastname, and what we need is the person’s full
name. We can achieve this by writing

set name "$firstname $lastname"

8

On the other hand, if we write

set name {$firstname $lastname}

then no variable substitution will be performed. We can also mix and match:

set salary "$firstname $lastname \$30,000"

This would expand the values of firstname and lastname, but it would leave the dollar sign before 30,000.

Be careful of the following types of commands:

set x 4
set y x
set z x+y
set $y 5

The first sets x to 4, as expected, but the second command sets y to the string x, not to the value of x.

Remember that Tcl does not associate any meaning with the arguments as it parses them. Therefore, the
third command simply sets variable z to the string x+y. We’ll learn how to accomplish addition shortly.

The last command sets x to 5, not y.

We have already seen an example of backslash substitution when we used $ to produce a literal dollar sign
character in a string. Many of the backslash substitutions are the same as those in Amanda/DOS:

Symbol Meaning
\a Audible alert (bell)
\b Backspace
\f Formfeed
\n Newline
\r Return
\t Tab
\v Vertical tab
\ddd Octal value
\xhh Hex value
\newline Single space
\$ Dollar sign
\\ Backslash
\[Open square bracket

Tcl Lists

A Tcl list is an ordered collection of strings. In its simplest form, a list is simply a string, with spaces
separating the list’s elements. In this case, the elements cannot contain spaces.

Lists are usually written surrounded by curly braces. Sublists, or elements with spaces, are denoted by inner
braces. For example,

9

set x {a b {c d e} f}

sets x to a list containing four elements. The third element is the list (or string) c d e.

Tcl contains a number of built-in functions for manipulating lists.

Built-In Commands and Procs

So once the command to execute has been determined, and Tcl knows what the arguments are, what happens
next? Tcl will look up the command name to verify that it’s valid. If it isn’t, then an error is generated.

If it is a valid command, then there are two possibilities: the command is a “built in” one or it’s a “Tcl
procedure.”

Commands (procedures, or “procs”) which you define in Tcl are indistinguishable from the built-in com-
mands, except that the built-in ones are faster and can access operating system and device driver level
calls.

A “built in” Tcl command has its underlying implementation in C. In this case, Tcl invokes the corresponding
C procedure and processing of the command is done in compiled code. The set command is a built-in, for
example.

Tcl defines a number of built-in commands, and applications using Tcl can define additional built-in com-
mands. Not surprisingly, Amanda Portaldefines quite a few application-specific commands which will be
covered in the Amanda PortalProgramming class.

So far, we’ve seen two kinds of substitutions which happen automatically to commands: variable and back-
slash. We also know that all Tcl commands (procedures) return a value. This leads to the third type of
substitution, command substition. To illustrate it, we’ll introduce another built-in command, expr.

Expressions

The expr command concatenates all its arguments into one long string, then it evaluates that string as an
expression, and it returns the resulting value as its procedure value (remember that all procedures return a
value in Tcl).

Here are some example interactions with Tcl:

% expr 2*3
6
% set x 4
4
% expr $x * 7
28
% expr ($x * $x) / 2
8
%

10

Now we’re ready to discuss the third type of substitution, command substitution. Recall that every command
returns a string result. Command substitution allows us to replace a complete Tcl command with its result
for use in an enclosing command. To use it, just enclose a command inside square brackets: []. For example:

% set x 4
4
% set y 7
7
% set z [expr $x * $y]
28
%

Arrays

So far, the variables we’ve used have been simple variables, also called scalar. Tcl also provides another
kind of variable, called an associative array. An associative array is a collection of different values which are
indexed by a string (the element name). This is a very powerful mechanism, and associative arrays are used
extensively in Amanda Portal.

Array elements thus have two names: the name of the array plus the name of the element. The element
name is enclosed in parentheses. It may be a constant or a variable (or a combination), so long as it doesn’t
contain a space. If the element name has a space, then the entire variable name must be quoted to “hide”
the space.

For example, we could collect information on a person this way:

set person(name) "Tim Morgan"
set person(age) 37
set person(address) "23822 Brasilia Street"
set person(city) "Mission Viejo"
set person(state) California
set person(zip) 92691

On the other hand, if we have information about a number of people, we might use one array per attribute,
and use the names as the indices:

set age(Tim) 37
set address(Tim) "23822 Brasilia Street"
set city(Tim) "Mission Viejo"
set state(Tim) California
set zip(Tim) 92691
set age(Siamak) 36
set address(Siamak) "26321 Eva Street"
set city(Siamak) "Laguna Hills"
set state(Siamak) California
set zip(Siamak) 92656-3108

We can use the values in the array pretty much just as with simple variables:

11

% set foo $age(Tim)
37
% set name Tim
Tim
% set foo $age($name)
37
% set foo [expr $age(Tim) + $age(Siamak)]
73
%

Besides set, Tcl defines a few other built-in functions for working with variables:

append Appends one or more values to a variable.

incr Adds a value to an existing numeric variable.

unset Deletes one or more variables.

array Returns various information about array variables.

The syntax for the append command is as follows:

append varname value . . .

If varname is an existing variable, then value will be appended to it, as will any additional values.

If varname didn’t exist previously, then it is set to value as if the set command had been used.

Like set, append returns the new value of varname as its result.

The incr command is exactly like the + token in Amanda/DOS. It allows you to do an arithmetic addition
to an existing numeric variable. The value added may be positive or negative, and it defaults to 1.

% set i 1
1
% incr i
2
% incr i 2
4
% incr i -3
1
%

The variable must exist and have an integer value. The incr function returns the new value as its result.

The unset command is used to delete a variable and its associated value(s). If an array variable is deleted,
then all of its elements are deleted. The general syntax for the command is:

unset var . . .

12

The unset command always returns an empty string as its result:

% set age(Tim) 37
37
% set age(Siamak) 36
36
% unset age
%

The Array Command

The array command allows you to obtain information about a Tcl array. The general syntax is:

array cmd name args

where cmd is a special keyword for the array command. Some of the available keywords are:

names ary Returns a Tcl list of the names (valid indices) for array ary.

size ary Returns the number of elements in array ary.

exists var Returns whether var exists and is an array.

get name pattern Returns a list of pairs of element names and values from the array name. If pattern is
specified, then only those elements whose names match pattern will be returned. A list of name and
value pairs is called an a-list.

set name list Sets elements of the array name from list which should be of the same form as is returned
by array get.

Normally, the array command will be used in conjunction with command substitution along with some other
commands which we’ll examine next week. In the mean time, here are some standalone examples of array,
using the age array we defined earlier:

% array size age
2
% array names age
Tim Siamak

Notice that the result of the array names command will list the names in arbitrary order. If you want it
sorted a particular way, you can use the lsort command discussed on page 16.

Tcl Expressions

Expressions combine values with operators to produce a new value. Simple examples follow everyday arith-
metic rules. For example:

13

% expr (8+4) * 6.2
74.4
%

In addition to the usual binary operators +, -, *, and /, there are a number of other important unary and
binary operators (and there are some less important ones which we won’t mention). There’s also %, which
computes the remainder from a division (this is the “mod” or “modulo” operator).

Most operators are called binary because they work on two values. For instance, + is a binary operator since
it is used to add two different values, which are written on either side of it.

Unary operators, in contrast, are operators which work on a single value which comes after the operator.
The most familiar one of these is unary minus, which negates the value of its operand.

% set x 4
4
% set y [expr -$x]
-4
%

The other important unary operator is logical not, which is written !. It changes true values to false, and
false values to true.

In Tcl, as in C, logical values are represented as numeric values. A false value is represented as 0, while a
true is any non-zero value. Therefore,

% set x 4
4
% set y [expr !$x]
0
% set x [expr !$y]
1
%

Relational operators are binary operators to compare one value to another. They all work on integer, real
(floating point), and string values.

Syntax Result
a<b 1 if a < b else 0
a>b 1 if a > b else 0
a<=b 1 if a ≤ b else 0
a>=b 1 if a ≥ b else 0
a==b 1 if a = b else 0
a!=b 1 if a 6= b else 0

Often you want to combine the results of more than one logical test. The logical operators allow you to do
so. They follow the same syntax as in the C language.

14

Logical and is represented as &&. The expression a&&b is true (1) if both the expressions a and b are non-zero,
and zero otherwise.

Logical or is represented as ||. The expression a||b is true (1) if either of the expressions a or b is true,
and zero otherwise.

As in C, these operators are short-circuit : the second operand is not evaluated if the first shows the result
of the whole thing.

Here are some examples of logical operators:

% set a 1
1
% set b 0
1
% expr a&&b
0
% expr a || b
1
% expr b || a
1
% expr b && exp(sin(sqrt(2.0))) > 4
0
% expr a || exp(sin(sqrt(2.0))) > 4
1
%

In the last two examples, function foo is not called, because the result can be determined from the value of
the first argument alone.

List Commands

Tcl defines quite a few commands for operating on lists. We’re going to look at the following ones:

lindex Retrieves individual elements from a list.

llength Returns the length of a list.

lsort Returns a new list resulting from sorting an existing list.

lappend Appends new items to an existing list (variable).

split Returns a list by spliting up a string at each point where a given substring occurs.

The lindex function returns as its value an element of a list. The general syntax is:

lindex list index

The index must evaluate to an integer. The first element of the list is number 0. For example:

15

% set mylist {a b {c d e} f}
a b {c d e} f
% lindex $mylist 1
b
% lindex $mylist 2
c d e
% set x {a b c d e}
a b c d e
% lindex $x 4
e
%

The llength function simply returns the number of elements in a list. Its syntax is

llength list

Continuing from the previous example:

% llength $x
5
% llength $mylist
4
% set len [llength [lindex $mylist 2]]
3
%

The lsort command returns a new list which is created by sorting an existing list. The syntax is:

lsort flags list

The flags parameter can be a combination of a type and a direction. The types are:

-integer Treat the list elements as integers.

-ascii Treat the list elements as strings (default).

-real Treat the list elements as floating point (real) numbers.

The direction can be one of the following:

-increasing Sort the items in ascending order (default).

-decreasing Sort in decending order.

Here are some examples of lsort:

16

% set x {22 12 9 97}
22 12 9 97
% lsort $x
12 22 9 97
% lsort -integer $x
9 12 22 97
% set sorted_list [lsort -integer $x]
9 12 22 97
%

The lappend command appends one or more values to a variable as list elements. It creates the variable if it
doesn’t already exist. It differs from append because with lappend, the items are appended with separating
spaces and will be given braces where necessary to keep items separate; append simply appends each string
as-is.

The general syntax is:

lappend varname value . . .

The lappend function returns the new value of varname as its result value.

Here are some examples:

% set x {a b c}
a b c
% lappend x d e f
a b c d e f
% lappend x "Tim Morgan" "Carl Doss"
a b c d e f {Tim Morgan} {Carl Doss}
% llength $x
8
%

Notice that in the second lappend command, two values are being appended. This is reflected in the result
of llength: there are eventually 8 items in the list.

The split command creates a new list by splitting up a string. You can specify a set of separator characters
as the second argument, or let it default to standard white-space characters.

% split "abc/def/ghi" "/"
abc def ghi
% split "abc.def/ghi" "/."
abc def ghi
%

17

* linsert

Description

linsert can be used to insert items into an existing list variable at a particular index.

* lrange

Description

lrange can be used to extract a range of items from a list (returning a new list).

* lreplace

Description

lreplace can be used to create a new list from and old list with a range of items replaced by a new set of
items (not necessarily the same number of items).

Eval

One final note on parsing. Sometimes you have a list of items in a variable, and you want to pass that list
as arguments to some command, such as lappend. Here’s an example of the problem:

% set mylist {a b c}
a b c
% set additional_items {d e f}
d e f
% lappend mylist $additional_items
a b c {d e f}
%

What we really wanted was to get a resulting list of {a b c d e f}, not {a b c {d e f}}. The eval
command lets us solve this and other similar problems.

18

The eval command takes one or more arguments and concatenates them into one long string. It then
evaluates (executes) this string as as a Tcl command. Let’s look at how we’d use eval in the previous
example:

% set mylist {a b c}
a b c
% set additional_items {d e f}
d e f
% eval lappend mylist $additional_items
a b c d e f
%

Why does this work? The eval command sees three arguments: lappend, mylist, and a string “d e f”
(the quotation marks aren’t part of the string). It appends all of these strings together, with separating
spaces, arriving at the new command string “lappend mylist d e f” (again, the quotation marks aren’t
part of the string). Then eval executes the command, and mylist gets three new elements instead of one
sublist element.

Control Flow

Normally, a program is executed sequentially, one statement after the previous one. Most programming
languages, including Tcl, provide two basic ways to vary this.

Branching means skipping to or past some statements. This is provided with the if and switch commands.

Looping allows a set of statements to be repeated zero or more times. This is provided by the while, for,
and foreach commands, along with their helper commands break and continue.

The general syntax for the if statement is:

if test1 body1 [elseif test2 body2 . . .] [else bodyN]

The testn values may be any expression which evaluates to a Tcl boolean value (zero or non-zero). Typically,
they will include relational operators. The bodyn values may be any Tcl statement or list of statements.
Remember that statements may be separated by semicolons or returns, and uninterpreted lists may be
written using curly braces, and they “hide” any embedded returns.

19

This means you can write statements like:

if {$x < 0} "set x 0"
if {$x < 0} {set x 0; set y 7}
if {$x < 0} {

set x 0
set y 7

}

But you may not write

if {$x < 0}
{

set x 0
}

The most common way to write if statements is like this:

if {$x < 0} {
...

} elseif {$x == 0} {
...

} elseif {$x == 1 && $y == 7} {
...

} else {
...

}

The switch statement allows you to match a string against a number of patterns, and if a match is found,
to execute some code. The pattern matching may be one of:

-exact The strings must match exactly.

-glob Wildcards * and ? can be used, just like the DOS DIR command; this is the default).

-regexp Regular expression pattern matching is applied—see the manual for details.

Suppose that you want to test $x to see if it’s any of the strings a, b, or c. You could do this with if:

if {$x == "a"} {
incr t1

} elseif {$x == "b"} {
incr t2

} elseif {$x == "c"} {
incr t3

}

20

With the switch statement, you can write this more clearly:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}

}

While while statement’s syntax is:

while test body

Here’s an example of reversing a list a, putting the result into list b:

% set a {1 2 3 4 5 6}
1 2 3 4 5 6
% set b {}
% set i [expr [llength $a] - 1]
6
% while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}
-1
% set b
6 5 4 3 2 1
%

The for statement is usually used to perform a loop for a specified number of times, using a control variable
to count the number of iterations. The Tcl syntax, like that of C, is more general:

for init test reinit body

The for statement executes the init statement. Then while the test is true, it executes body and reinit.
Thus, for is really a while statement with a few other statements thrown into the mix. You can accomplish
the same things with either statement. When a loop is controlled by a variable, then using for will result
in more easily understood code.

21

To iterate variable i from 1 to 10, you would write

for {set i 1} {$i <= 10} {incr i} {
set array($i) "This is item $i"

}

To reverse list a, putting the results in b:

set b {}
for {set i [expr [llength $a] - 1]} {
$i >= 0} {incr i -1} {
lappend b [lindex $a $i]

}

The foreach statement is used very frequently in Tcl. It iterates a control variable through each item in a
Tcl list, executing a body of statement(s) each time. So to reverse a list, one could write

set b {}
foreach i $a {

set b [linsert $b 0 $i]
}

To reset each element of an array to an empty string, one could write:

foreach i [array names a] {
set a($i) ""

}

Sometimes you want to leave a loop or repeat a loop from somewhere in its interior. This is the purpose of
the break statement. Suppose you know that ary(n) is equal to 7, for some value of n. To determine n,
you could write:

foreach i [array names ary] {
if {$ary($i) == 7} {break}

}
At this point, $i is the index into
"ary" for the value "7"

Using continue within a for causes the reinit code to be executed. With both for and while, the condition
must still be true before the body will repeat again.

Tcl Procedures

A Tcl procedure is a command defined solely in Tcl. It may use other Tcl procedures or built-in commands
to do its work. You may (re)define Tcl procedures whenever you wish using the procproc command. Tcl
procedures have three attributes:

22

name This is, of course, the command name which will invoke the procedure.

arg list This is a list of the formal parameters of the procedure. That is, it’s a list of the names by which
this procedure will refer to its arguments. The number of arguments passed on the command line must
normally match the number of arguments in the list.

body The body is a list of Tcl commands to be executed. It’s just like the bodies of the if, while, etc.,
statements.

* proc name arg list body

Description

The proc command is used to (re)define a procedure. You always give it three argments: the name, the
argument list, and the procedure body. If a procedure (or a built-in) with the specified name already exists,
then the old one is deleted and replaced by the new one.

Procedures can return an explicit value by using the return statement. If the last statement of the procedure
body is not return, then the result of the procedure will be the result of that statement.

23

That means that the following two procedure definitions produce equivalent results. The first one is slightly
slower, but it’s clearer to someone reading the code that it’s intended to return the sum of the two arguments.

proc plus {a b} {return [expr $a + $b]}
proc plus {a b} {expr $a + $b}

Either way, you can use the new plus command as follows:

% proc plus {a b} {expr $a + $b}
% plus 2 3
5
%

Notice that the arguments which are written on the command line (2 and 3) are passed to the procedure
and it “knows” them by the names a and b.

% plus 2

no value given for parameter "b" to "plus"

% plus 2 3 4

called "plus" with too many arguments

We can also write a procedure which takes a variable number of arguments and returns the sum of all of
them, using the keyword args, whose value will be the list of the arguments passed:

% proc sum {args} {
set result 0
foreach i $args {incr result $i}
return $result

}
% sum 1 2 3
6
%

Notice in the previous example that we used a “helper” variable called result, inside procedure sum. When-
ever the set or related commands is used to create a variable inside a procedure, that variable is local to that
procedure. That is, its value is independent of any other variables named result in other procedures, and
when the procedure returns, this particular variable result and its value will be destroyed. This process is
called “going out of scope”—once no code can possibly access that variable, then there’s no need for it any
more.

Thus, by default variables in Tcl are local. It is good coding practice to avoid the use of global variables
whenever possible.

Global Variables

As we’ve already seen, variables can exist outside the scope of any procedure. These variables are called
global, and they can be accessed from within procedures by declaring them with the special keyword global
prior to accessing them.

24

Here’s an example of a procedure accessing a global variable x. It accepts one argument a, adds it to the
global variables x and y, and returns that result.

% set x 4
4
% set y 5
5
% proc foo {a} {

global x y
return [expr $x + $a + $y]

}
% foo 3
12
% set x 6
6
% foo 3
14
%

Local variables, as well as arguments, are created separately each time a procedure is invoked. This allows
writing recursive procedures. Recursive procedures are procedures which may call themselves.

The classic example of a recursive procedure is one to calculate factorials. As you remember, by definition

n! = n× (n− 1)× . . . 1

so we can write a factorial function in Tcl as follows:

% proc fact {x} {
if {$x <= 1} {return 1}
expr $x * [fact [expr $x - 1]]

}
% fact 5
120
%

So far, every example of passing arguments to procedures has been pass by value: that is, the value of the
variable is passed to the procedure, which knows that value by its own name. What if, instead, we want to
write a procedure which can modify a variable which is passed as an argument?

To do this, or to pass an array as an argument, we need a way to pass arguments by reference. The upvar
command allows us to do so. When declaring a procedure which is to receive an argument by reference, use
a dummy name to mark the argument, then use upvar to assign this to a local name.

25

Notice that the variable foo is set to a new value by myproc:

% proc myproc {a} {
upvar $a myvar

set myvar 4
}
% set foo 3
3
% myproc foo
4
% set foo
4
%

Notice in this example that we can pass a whole associative array as an argument:

% proc array_size {a} {
upvar $a myarray

return [array size myarray]
}
% set age(Tim) 37
37
% set age(Siamak) 36
36
% array_size age
2
%

Errors and Exceptions

In older programming languages, all error conditions had to be handled by explicit checking throughout the
code. For instance, when you open a file, you have to check the return value to see if the open was successful,
and if not, take some action.

An exception is something out of the ordinary which occurs as a program is running. For instance, if you
divide by zero, an exception might be raised, and it would usually cause the operating system to abort the
execution of your program. Even DOS detects divide by zero exceptions, for example.

Modern thinking on programming languages is that exception and error handling should be concentrated in
a few places within a program rather than sprinkled throughout. This has several benefits: primarily, that
the code which does the “normal” work is much easier to read and understand (and therefore more likely to
work correctly), because it doesn’t have all the exceptional code interspersed.

When a Tcl procedure or built-in wants to raise an exception, it can execute a variation of the return
statement to return not only the normal return string (which would probably be an error message of some
type), but also an exception (or return) code. A code of 0 is the normal, non-error return. Codes 1, 2, and
3 are used for exception, break, and continue events. Other codes can be defined by the application.

26

When a non-zero return code is returned, Tcl will keep returning the code up the call stack until it either
reaches the top level or it reaches a procedure which is prepared to handle an exceptional return.

The Tcl command used to catch exceptional returns is catch. The easiest way to use it is

catch script var

This will execute the command(s) in script. If it and any procedures it calls all return normally, then
processing simply passes to the subsequent command. Otherwise, the catch command returns as its value
the error code, and var will be set to the error message (string) which was returned from the script.

Amanda Portal is designed to minimize the number of places that an application programmer will need to
use catch.

27

Here’s an example of using catch, plus the error which can be used to raise an exception:

proc foo {a} {
if {$a != "bar"} {

error "The argument was invalid"
}
return "Everything ok"

}

proc foo {} {
set code [catch {foo baz} result]

if {$code} {
puts "Error received: $result"
Pass the error up the stack
return -code $code $result

} else {
puts "Execution ok: $result"

}
}

The info command is used to get various pieces of information from the Tcl interpreter. It has many
different options. The ones which are likely to be of interest are:

args proc Returns the list of arguments for procedure proc.

body proc Returns the body of procedure proc.

commands pattern Lists the built-in and Tcl procedures whose names match pattern. If no pattern is
specified, all names are returned.

exists var Returns true if var is currently a valid variable name. You might do this before trying to access
its value under some circumstances.

procs pattern This is like commands, but it returns only procedures defined in Tcl (those matching pattern
if it’s specified).

tclversion Returns the version number of the interpreter.

vars pattern Like commands, but it returns a list of variables (those matching pattern if it’s specified).

1.2.2 Tcl and Multithreading

Tcl originally did not support multithreading in any way. Because Amanda Portal has a need for multiple
threads because so many things are happening at once, tAA added multithread safety to Tcl. Upcoming
versions of Tcl will include Unicode support for multiple languages and multithread safety; when Tcl 8.1 is
released, Amanda Portal will be switched to use that version.

28

The multithreading that was added only allows one thread per interpreter. This is a good thing because the
global variables errorCode and errorInfo are per interpreter and should not be shared between threads.
Interpreters (and the threads which are tightly bound to them) are spawned off whenever a new “task” needs
to be executed. A “task” is spawned for some event such as a call coming in. When a call comes in, for
instance, the core creates a new interpreter and a new thread to handle the call. The entry point in the Tcl
code can vary depending on configuration parameters used by that DLL.

1.2.3 Tcl and State

Tcl allows you to store state in a number of places. You can store state globally, on the stack (local variables)
and in arrays. (Sort of. Tcl treats the variable as a single value with respect to scoping but you can store
aggregate information in the array.)

Tcl allows you to attach internal state to Tcl functions and interpreters and to install triggers on Tcl
variables. Interestingly, internal Tcl state cannot be attached to Tcl variables. Tcl state is attached to
functions through the ClientData parameter. This parameter gets set when you create the function. Internal
Tcl state is attached to an interpreter with the Tcl SetAssocData() and Tcl GetAssocData() functions.
Triggers (called “traces” in Tcl) can be attached to variables that fire off whenever the variable is read,
written or deleted.

1.2.4 Assigning Scope to Procedures

Procedures in Tcl are not scoped. This is unfortunate because we want to make VP and LS device handles
and MMO handles into functions and be able to call the functions in an object-oriented fashion like

$vp play $mmo

which would play the sound associated with the MMO handle on the specified VP device. Since procedures
are not scoped, the handles would not disappear if the stack returned. That is,

proc play_greeting {} {
grab_res vp vp_proc ;# Get a single VP device. Return new proc name.
Get greeting 1 from box 10. Return new proc.
lookup_mmo -box 10 "Grt 1 English" mmo_proc
$vp_proc play $mmo_proc ;# MMO specific data in ClientData of $mmo_proc.

}

would not delete the procedures named by the values of the variables vp proc and mmo proc when the
procedure is done because procedures are not scoped.

29

We can get around this problem by noticing two things: variables are scoped and behavior can be attached
to variables (through triggers) when variables are deleted. Therefore, to solve this problem, we instead
create both a variable and a procedure when we create an LS, VP or MMO handle. The variable has a
deletion trigger attached to it. When the variable leaves scope, the deletion trigger automatically deletes
the procedure, giving the procedure scope semantics.2 The variable created is special: the Tcl variable has
a deletion callback attached to it internally. Most Tcl variables don’t. Also, the procedure handle created
has internal state associated with it (through ClientData). This state stores such things as the internal C
information associated with the VP device (for VPs) or the internal C information stored with the MMO
(for MMOs). Most regular Tcl commands don’t have internal state associated with them.

Let’s explore this idea with an example. Suppose you want to play an MMO on a VP device. First you grab
a VP device with the function grab res:

grab_res vp vp_var # Grab a single VP resource and put in vp_var

Grab res does the following when it is called:

1. It looks for a VP device and allocates it to the caller. If no valid VP device is found or available, an
error is returned.

2. It creates a new command, say “ vp0” and sets up that command to call an internal C function which
implements the behavior of VP devices. It sets the ClientData parameter for this procedure to the
internal state allocated for the new VP device.

3. It sets the variable vp var to the name of this new command and it sets a deletion callback on this
variable that will delete the command vp0 when the variable is deleted.

So if you now say

set vp_var # Returns variable’s value

you will get back the string vp0. What you won’t see is that the variable vp var has a deletion callback
assigned to it.

2This is also useful in C++. C++ has destructors that are fired off whenever a variable leaves scope, even when an exception is
raised. These destructors can execute code you want executed every time a procedure on the stack returns. Suppose for example
you are calling a procedure that needs to execute in a critical section. You also have two functions: EnterCriticalSection and
LeaveCriticalSection that are put at the beginning and end of the procedure, respectively. The function looks like

int foo()

{
EnterCriticalSection();

...do some processing...
LeaveCriticalSection();

return 0;

}
It is imperative that you call LeaveCriticalSection or your code will have a serious bug. To be absolutely sure that your
code calls LeaveCriticalSection, you can have the system call it for you by putting the call to it in a deletion trigger of a
dummy variable in the scope of foo. When foo finishes, the deletion trigger is called and LeaveCriticalSection is executed.
For example,

int foo()

{
CriticalSectionObj dummy; // Calls EnterCriticalSection on creation.

// Deletion trigger for this variable calls

// LeaveCriticalSection.

...do processing here...
}

30

1. set r $v1 # Regular variable gets MMO handle.
2. set v1 $r # MMO handle set to regular variable.
3. set v1 $v2 # MMO handle = MMO handle.

Figure 1.1: Different assignment scenarios.

Now suppose we want to play an MMO handle on this VP device. I’ll assume we have an MMO handle
stored in the variable mmo var which references the command mmo0 (MMO handles work just VP handles).
To play the MMO, we say

$vp play $mmo

The Tcl parser expands this to

_vp0 play _mmo0

and executes the command vp0 with the arguments play mmo0. The vp0 command then does the following:

1. It sees that it is a play command and looks for MMO functions as arguments to the play command.

2. It looks up the command named mmo0 and extracts the ClientData. It now has the internal C
information it needs to play this MMO. It also has the internal C information about the VP device
because this was passed in the ClientData parameter when vp0 was called.

Variable handles created this way are immutable. That is, they can be created and destroyed but not
assigned to. Let’s examine why this is so. Suppose r is a regular variable and v1 and v2 are MMO handle
variables. Figure 1.1 shows the three assignment scenarios that we need to be concerned with.

The first scenario cannot be prevented because Tcl doesn’t provide triggers on arbitrary non-existent vari-
ables. That is, you can set a write trigger on the variable r, but how do you know a priori which new
variables will be created? The semantics of operation 1 are to set r to the name of the procedure associated
with the variable v1. No deletion trigger is copied to r so setting r in this manner will create a “handle”
which doesn’t obey the scope rules. The handle function may fail if v1 leaves scope.

The second statement trashes an MMO variable. If this were allowed, the deletion trigger on v1 would have
to be executed on a write to delete the associated procedure and then v1 would revert to a regular variable.
This is not rocket science and could easily be accommodated.

31

The last assignment is the problem. In this scenario, an MMO handle is assigned to another MMO handle.
What do we do here? Do we execute the trigger on v1 to delete the procedure associated with it and then set
up v1’s deletion trigger to be the same as v2’s? This won’t work. Deleting v1 will delete the procedure when
it is still in use by v2. We would need reference counting in the procedure deletion logic. We could also make
the operation turn v1 into a regular variable by running its deletion callback and setting the variable to the
name of v2’s procedure. This isn’t very useful though and doesn’t fit the clean definition of assignment. For
this reason, handles are immutable. (By the way, read-only access on the variable is simply implemented by
setting a “write” trigger which doesn’t allow assignment.)

1.3 Control Flow

The Tcl code that defines the behavior of Amanda is called the Telephone User Interface or TUI. Tcl gives
the TUI great flexibility and extensibility and is Amanda Portal’s trump card. There are basically two ways
we could have structured the control flow in Amanda when doing a “task”:

1. Use a state machine. As each menu is presented, the user selects an option. When the option is
selected, the next state is traversed and the next menu is presented. The advantage of this approach is
that it uses a small stack and traversing from one unrelated state to another is easy. The problem with
the approach is that it is hard to understand the state table and to update it. This is the approach
used in many other voice mail systems and in Amanda@Work.Group.

2. Stack based procedure calling. This approach more naturally follows the flow and structure of the
menus being presented. Its main problem is that it is hard to get from one place in the tree to a
completely different place in the tree without using exceptions (you have to pop the stack and reload
it with different procedures corresponding to the new place in the menu hierarchy). Fortunately, we
don’t do this very much.

Figure 1.2 shows the general structure of the menu system and the Tcl stack at each point in time.

Errors in most Amanda primitive functions are handled differently than is normally done in Tcl. Normally,
when an error occurs in Tcl, an exception is raised, the message is returned in the “result” and errorCode
is set to the error code of the error. To detect errors, you have to use catch and check the errorCode to see
what the error was.

This is troublesome in Amanda because the people writing the Tcl code may not be programmers and
won’t understand exceptions. Secondly, it makes the code in the functions above unclean because you have
to handle two different cases, those where the function succeeded (catch returned 0) and those where it
failed (catch returned 1) quite differently. It would be better to simply return sentinel values for error
codes that don’t match any valid successful return value, then you could just use a big switch statement.
Lastly, exceptions pop the stack. Most of the time we don’t want to pop the stack. Error code returns are
appropriate in this case.

The rule is this: if you think the user of this function is going to want to stay in the same procedure and take
some action on an error, return a sentinel value. If you think this error is serious and we need to abort out
of the menu system, raise an exception. Some errors such as hangup are exceptions, so they are expressed
that way at the Tcl level. We want to unwind the stack and abort processing on hangup. Exceptions may
also be raised manually in the programmer’s Tcl code if he needs to unwind and go to another part of the
menu tree (not ancestrally related).

32

Login Menu
“Please type your
box number and. . . ”

login menu

?

Main Menu
“To listen to your
messages, press 1,
. . . ”

login menu

main menu

?

Play Message
“You have 1 new
message. . . ”

login menu

main menu

play msg

?

Set Options
“To set your
options, press. . . ”

login menu

main menu

set options

?

?

�
���

����

H
HHH

HHHj

Figure 1.2: Flow control in Amanda Portal

33

To further make the TUI code clean, each VP device has a DTMF buffer that stores the digits that the
user has typed in. Certain kernel calls such as get digits will inspect this buffer before actually listening
for digits and return any digits that the user has previously pressed. This separates the synchronization
required between the time a user types a digit and the time the Tcl code listens for a digit. The get digits
call will return the digit the user typed, regardless of whether the user typed the digits before or after the
get digits Tcl call.

1.4 Waiting for Events

In Amanda Portal, it is often useful to start off one or more threads asynchronously and then do other things
while waiting for the threads to finish. If you start off more than one thread, you may wish to wait and be
notified when a thread either finishes or needs to notify you about an event that occurred. You also need
a way to identify the different threads. This is done through “handles.” Handles are variables that point
to the name of an internal function that implements the behavior of the object the handle refers to (see
section 1.2.4). These handles serve a dual purpose: they have member functions that you can execute to
query and modify the objects the handles refer to and they can be used as synchronization mechanisms for
threads associated with the handle. If a different thread is associated with a handle, the thread is either
started when the handle is created or by a member function on the handle. When you delete a handle, your
“ownership” of that object ceases and the object referred to by the handle is either freed or released for
other users to use. Any threads associated with that handle are killed too.

Currently the only two type of handles that can start off asynchronous threads are VP device handles and
call queueing handles. VP device handles wait until an event like playing a message finishing or the user
hanging up. The queue handles wait for events like a call changing its position in the queue or a call reaching
the top of the queue. Each type of handle that allows you to fork off asynchronous threads must have a stop
member function that “stops” the operation in progress, whatever that means. In the case of VP device,
it will stop the play in progress; in the case of call queueing handles, it is a no-op. Stopping is necessary
because you often want to stop all the other threads from running when an event occurs. The basic wait
logic looks like

Wait on various handles
After an event, foreach handle that event didn’t occur on {

Stop the handle by issuing a stop command.
}

Fortunately, it is easier to stop the various other handles than by running this loop each time. The wait
command by default stops the other handles when it returns.

Here is the definition of the wait command:

* wait [-nostop] [-timeout milliseconds] [handle func]. . .

Description

34

This is the main synchronization function for threads. Threads are referenced by handles and the functions
associated with handles are passed into this command. Normally, once an event occurs and wait returns,
all the handles are stopped (that is, “handle func stop” is executed automatically on all the other handles).
You can specify -nostop if you don’t want wait to stop any of the other handles. You can then stop them
individually if you wish. The -timeout option is used to return after a specified time. The -all option
waits for all the handle funcs to return.

Return values:
TIMEOUT A timeout occurred. Only returned if -timeout is given.
A list of 2-tuples. The first part of each 2-tuple is the function handle name and the second

part is the return result from the thread. Normally the second part will
also be its own list of the form

reason args. . .

Only one 2-tuple is returned unless you give the -all option. In this
case, more than one 2-tuple can be returned.

Error codes:
CMDNOTEXIST handle func
CMDNOTHANDLE handle func
NOTHREAD handle func

1.5 Loadable DLLs

Amanda Portal comes with a small core which defines fundamental behavior such as the security model, the
model for boxes and messages, etc. Additionally functionality is loaded as DLLs. DLLs have a standard
interface that they must support when they are loaded into the Amanda Portal system. Loading external
DLLs leaves the system open to extendibility and modularizes components.

The list of DLLs that are loaded when Amanda Portal starts up is listed in the Configuration Database (the
dlls setting). When a DLL starts up, the DLLMain procedure initializes any information that the DLL may
need. For example, it may interrogate the Dialogic boards in the system to see how many resources they
have and then register these resources with the resource manager.

Some DLLs perform all their functionality in C (e.g., the SMTP DLL) while (most) others spawn a Tcl
interpreter and a new thread of control when an event happens (such as a call comes in). Privileges are
associated with an interpreter (through Tcl SetAssocData), so DLLs that don’t spawn a Tcl interpreter
cannot log in to a box and cannot have privileges associated with them.

Certain function names in a DLL are recognized as being special and are called at certain times by the
Amanda Portal system. For example, when you log in to a box, a special function is called in the DLL
(interp login). This function can inject new privileged commands into the interpreter that only logged in
users can use (the injection model). Also, on logout, another function is called that removes the privileged
commands that were added on login (interp logout).

The idea is to provide a set of commands for unauthenticated users that is a subset of the commands for
authenticated users. The Internet DLL provides good example of this. You can telnet into the Amanda
System and get a Tcl prompt. You have a limited set of commands you can use until you log in. When you
log in, you can do more privileged things like grabbing resources (such as a voice or fax device).

35

You can view this set of DLLs as a forest of different C code threads listening for events and spawning
interpreters when events happen. The TUI is loaded and started by the core. Each incoming call spawns
a separate Tcl interpreter so multiple instances of the TUI will be running at once. You may call different
entry points in the Tcl code if you want different behavior in the TUI. For example, you may have the rule
that if calls come in on lines 1–3, we call the Tcl function amanda voicemail and if the call comes in on
lines 4–5 we call the Tcl function amanda forward.

1.6 Resource Manager

The resource manager is a central registry where DLLs register the resources they provide and how many of
them they provide. The resources are typed. There are port resources (LS devices), voice processing devices
(VP devices), Fax devices, etc. When an interpreter is created and a new thread is started by a DLL, the
thread may have to acquire some resources to perform its “task.” To acquire these resources, the task checks
the resources out of the resource manager and checks them back in when it is done. If the interpreter dies
for some reason, the resources are automatically checked back in because the Tcl variable the resource is
associated with gets deleted and its deletion callback fires.

When acquiring resources, it is important to be able to acquire all the resources you need atomically to avoid
deadlock. For example, suppose there are only two LS resources and there are two tasks that need both LS
resources. If task 1 acquires the first LS resource and then task 2 acquires the second LS resource, they both
will not be able to continue until one of them releases their resource. To avoid this, Amanda allows you to
allocate all the resources you need atomically.

Most resources are indistinguishable. One fax resource is interchangable with another. Telephone ports, on
the other hand, are not. Furthermore, an administrator may wish to designate only certain ports to be used
for certain operations, such as notifications. For this reason, port groups exist. When you request a port
from the resource manager, you may specify that it must be a member of a given group, such as the notify
group. These group names are not known to the system; they are created on an as-needed basis simply by
assigning the ports to the groups in the configuration database.

A common scenario for a task is to acquire a single LS resource and single VP resource. For example, a call
may come in and the LS resource is allocated for the port the call came in on and a VP resource is allocated
to listen to the caller or the buttons the caller presses on his telephone. The caller can then possibly leave
voice mail. If the call needs to be forwarded, another LS device could be allocated to send the call out on
another phone line.

The resource functions are defined as follows:

* list resource types

Description

Lists the resource types.

Return values:
A Tcl list of the different kinds of resource types.

36

* get resource stats resource type

Description

This function returns information on resource allocation. The array returned contains the following indices:

total defined Total resources of this type that exist.
current available Total resources of this type that are currently available.
max ever used Maximum resources of this type that have ever been used at once. (This

is not the maximum number of resources that have ever been used at
different times. That is, suppose you have three resources, LS1, LS2 and
LS3. All three LS resources have been used at one point in time, but
only one resource has been in use at once.) This value is useful to see
how close you are getting to saturation of a certain resource type.

times denied This value is also used to monitor saturation. The return value is another
a-list. One index into the a-list is all, which indicates how many times
a resource allocation of the resource type failed. When allocating port-
type devices, you can specify an individual port or group you wish to
allocate from. Denials for these ports or groups are tallied separately.
The indices are the port numbers or group names. For non port-type
devices, only the all index is set. The number of units asked for does
not effect the denial number; that is, even if the process asks for 5 devices
and is denied, the denial count gets incremented by 1.

current wait This value returns the number of resource units being waited on. Again,
the return value is an a-list as with times denied. However, the number
of units asked for does effect the count returned. For example, if there is
one person waiting on a type and he is waiting for 3 units of that type,
3 is returned for that type.

max ever wait This is the maximum number of units that have ever been waited for
at once. That is, it is the maximum value current wait has ever been.
Again, the value is an a-list like times denied and current wait.

Return values:
A list of the statistics for the resource type given. The list is returned as an a-list as described above.

Error codes:
INVALIDRESTYPE type

resources with group group name

Description

This function returns a (possibly empty) list of all resource types which have one or more units in group
group name. This function can be used when you are writing code which you know wants to use, say, a notify
port, and you don’t want to care whether the system is installed with T1 or LoopStart lines. The output of
this command can then be used in arguments to the grab and grab res functions.

37

Return values:
A Tcl list of all resource types which have one or more units in group name.

grab res [-timeout tmo] [-unit unit] [-port port] [-group group] [-specific type specific type] [-min
min] [-max max] [-ascending] [-descending] type var

Description

This function attempts to allocate a resource of type type. If successful, the selected unit’s control function
will be installed in the interpreter and assigned to var. The value of type can be any of the values returned
by the list resource types or the resources with group function.

If -group is specified, then the returned unit must be in the named group (this is used only to select ports
by logical group names rather than by number). Otherwise, you may limit the unit numbers by specifying
-min and -max, or as a shorthand, -unit (which just sets min = max = unit). Using -port is another
variation of -group; it will only return resources with that same port number associated with them, which
will normally identify a specific port-type resource within the system.

If -specific type is specified, then the returned resource must be of that specific type. This option is useful
when requesting a port resource, if you need to specify exactly what type of port, loop start (ls) or T-1 (t1),
you require. If -specific type is not specified, then when requesting a port, any type of port which meets
the other criteria will be returned.

Within the group/range specified, if more than one item is available for immediate selection, then the one with
the lowest unit number will be returned if -ascending is specified, the highest one available if -decending
is specified, and otherwise the least recently used one. This gives you great flexibility in how ports are used
to place outbound calls. For indistinguishable objects such as fax resources, use the LRU method since it
takes the least amount of time to perform the allocation because it doesn’t have to search all the available
units to see which one has the highest or lowest unit number (the list of units is maintained in LRU fashion,
so the LRU case simply takes the first available off the list).

If -timeout is not specified, then grab res will wait infinitely until a qualified unit (one in the group or
range specified) is available. You may specify any non-negative integer for tmo, including 0. A value of 0
effects a poll—if a qualified unit is available, it’s returned, or else no unit is selected.

When allocating items of more than one type, take care to allocate them always in the same order. Otherwise,
deadlocks can occur. Also, beware of requesting a group, specific type, port, and/or unit number which does
not exist in the system. Doing so will block forever, unless -timeout was also specified.

Return values:
If grab res fails to allocate a resource as requested, it returns -1. Otherwise, it returns the number of the
unit selected.

Error codes:
INVALIDRESTYPE type
NOTNONNEG tmo

grab [-group group] [-unit unit] [-port port] [-type type] [-specific type specific type] [-net net] [-vp
vp] [-ascending]

38

Description

The grab command is a convenience function which allocates a network device from of type type. The default
is to allocate from type port in descending order.

The device handle (Tcl variable) will be called net, which defaults to net. A DSP resource will then be
attached to net, called vp (defaulting to vp). Resources will be allocated as in grab res -decending order
unless the -ascending option is used. The -group argument is the same as for grab res; you may use it
or -unit, but not both simultaneously. Similarly, -specific type and -port are the same as for grab res
and have the same restrictions on its use as with that function.

If net and vp are defaulted, then the function also performs a make local net vp command to make those
handles’ member functions be “locally” available in the interpreter.

Return values:
A return of -1 indicates that the network device type type was unavailable, while -2 indicates that the
subsequent dsp attach failed. Otherwise, an empty string is returned to indicate success.

39

Chapter 2

Security Model

Amanda Portal has a two-dimensional security model. One dimension is “who” or the identity of the user
and the second dimension is “what” or what they can do. (Other systems often have a third dimension
“where”). The “who” dimension is the box number. When you log in, you are assigned that number. The
“what” dimension is your privileges.

2.1 Ancestors and Descendents

Boxes are related to each other ancestrally. When a box creates another box, it is the ancestor of the box
and the created box is a descendent. Box creation occurs in box creation trees. The structure of these trees
is maintained internally by the system and the tree structure cannot be violated. That is, if you want to
delete a box, it must be a leaf node; you cannot delete internal nodes of the tree until all their descendents
are deleted.

Boxes start off with a set of privileges based on those of the box they are cloned from, intersected with the
set of privileges that the creating box has. You can later assign any privileges you have to a box, but you
cannot assign any privileges you don’t have to another box.

The topmost box of each tree is special. They are known as “superboxes” and they automatically get all
privileges. Currently there is only one tree hierarchy with box 999 as the root, but in the future there may
be a forest of these trees. Each topmost box in the forest will have all privileges but will only be able to
control the boxes in the tree under it.

2.2 Privileges

The “what” dimension of the Amanda authentication system is handled by privileges. Each box is assigned
a set of privileges that that box has. A user of a box can grant those privileges to descendent boxes, but
only the privileges that the box owns. To acquire a new privilege, a proper ancestor must give it to you.
The privileges are mutually exclusive and not hierarchical; that is, owning a certain privilege does not imply
the ownership of any other privilege.

40

The top-most box can assign any privilege to any other box. Thus, the top-most box can extend the
privileges in the system by making up new ones. Child boxes can then assign those privileges to other boxes,
ad infinitum. However, the system only has built in knowledge of the privileges it is shipped with. The
interpretation of any user-defined privileges is up to the Tcl code the end-user writes.

There is an interesting anomaly with privileges: you can’t revoke your own privileges. You can only modify
the privileges of your proper descendents and since you are not a proper descendent, you cannot create or
revoke your own privileges. Your parent must do it.

Privileges are tested for using the has privilege command. When you are not logged in, you have no
privileges. When you log in to a box, you get the privileges associated with that box. Certain commands
are associated with privileges and you will not get these commands “injected” into your interpreter unless
you have the privilege. For example, if you don’t have the EDIT PMETHOD privilege, you won’t get the
store proc command.

Because privilege state is internal, there is no way to give yourself more privileges than you already have.
You have to modify privileges through the calls built into Amanda and these calls only let you manipulate
privileges in predefined ways.

Privileges are actually stored as internal state attached to an interpreter with Tcl SetAssocData. Therefore,
because Tcl SetAssocData is used, privileges can actually have values. This currently isn’t used but may
be in the future. Today, we only test for privilege existence.

The different privileges are

ANNOUNCEMENTS This privilege allows you to create and modify announcements in your box.
BOX CREATION This privilege allows you to create non-guest boxes.
CALL SCREEN Allows you to set the call screening (CALL SCREEN) and modified call screening

(MOD CALL SCREEN) setting on a box.
CHANGE METHOD This privilege allows you to change the CALLER CODE, USER CODE, DONE CODE,

RNA CODE, BUSY CODE or MENU* CODE methods for a box.
CHANGE TMAPPING This privilege allows you to change entries in the a trie mapping database (see

page 129).
CONFIGURATION You can change the Configuration Database settings.
COPY TO This privilege allows you to change the list of boxes another box’s messages are

copied to. You change this list using the “list mapping” functions in section 10.1.
CREATE QUEUE This privilege allows you to create a queue for your box or any descendent box

using the create queue call. It also allows you to set queue parameters with
set queue setting.

CREATE TMAPPING This privilege allows you to create and destroy trie mapping database.
CTRIGGER This privilege allows you to change and add notify records (“conditional triggers”)

to boxes.
CTRIGGER CODE This privilege allows you to create and modify the bodies of notify templates

(“conditional triggers”).
DND Allows you to set the DND setting on a box.
EDIT PMETHOD This privilege allows you to create or change one of the persistent methods.
EXTENSION Allows you to set the extension (EXTENSION) or location (LOCATION) on a box.
GENERAL ANNOUNCE This privilege allows you to create and modify announcements in the announc-

ment mailbox.
GREETING This privilege allows you to change your greeting, to set a maximum length on a

greeting (GREET LENGTH), or to set the delay after saying a greeting (DELAY).

41

KILL This privilege allows you to kill all the threads of a specific user or an individual
thread running on behalf of a user.

MESSAGE MOVE This privilege allows you to move messages from one box to another
(move msgs to box).

MONITOR This privilege allows you to get status updates of tracing, ports, resources, and
system.

NOTIFY ANY BOX This privilege allows you to schedule a notify within another mailbox.
RESET PORT This privilege allows you to reset a port on a board.
RECORD MSGS This privilege allows you to change whether a box receives messages

(RECORD MSGS) or not and to change the maximum length of the received messages
(MAX MSG LEN).

RESET STATS This privilege allows you to reset the statistics gathering counters for a box (the
reset box stats call).

SCHEDULE LOCK You can create/modify autoschedule records (“time triggers”)—see page 138).
SHUTDOWN This privilege allows you to use the shutdown command, described on page 197.

The privilege commands are as follows

has privilege [-box box] [-use db] privilege

Description

This function is a predicate to determine whether your box has a certain privilege. If -box is given, test the
given box instead. You can only test the privileges of your box or descendents of your box. If you are testing
the privileges of the box you are logged in under, then the test is done against the state associated with the
interpreter (i.e., Tcl SetAssocData). If you test another box’s privileges, then the test occurs against the
privilege database. You can test against the database even when testing your own box by using the -use db
flag.

Return values:
0 or 1

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box

set privilege value box privilege [value]

Description

This function sets a privilege on a box to the value given or the empty string if no value is given. You may
not set the value for your own privilege; you must give a descendent box. Also, you can only set privileges
that you yourself own. This function only sets the state in the database. Any existing interpreters logged
into the box set will not see the changes. The values currently are mostly unused. Only the privilege’s
existence is checked for. Therefore, the default empty string is a reasonable default.

As mentioned earlier, the superbox is allowed to set any privilege for any box, including itself.

42

Return values:
Value privilege was set to.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
INVALIDVALUE value

get privilege value [-box box] [-use db] [privilege]. . .

Description

This function returns the value of the privileges for the given box. You can only inspect your privileges
or descendent box privileges. If you inspect the privileges of your own box, the state associated with the
interpreter is used. If you inspect the privileges of another box, the privileges are looked up in the privilege
database. You can retrieve against the database with your own box by using the -use db flag. The only
time the values would be different is if another thread modified you privileges from under you.

Return values:
An a-list with the privilege as the index.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
PRIVNOTEXIST privilege
INVALIDVALUE value

delete privilege box [privilege]. . .

Description

This function deletes the privileges associated with the box given. You may not delete your own privileges.
You may only delete the privileges of proper descendents. The root box has all privileges implicitly and
cannot revoke any of its privileges.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
PRIVNOTEXIST privilege

43

errorCode
INVALIDVALUE value

get privilege keys [-box box] [-use db]

Description

This function lists all the privileges for the current box or the box given. If you retrieve the privileges of
your own box, the state associated with the interpreter is used. If you retrieve the privileges of another box,
the privileges are looked up in the privilege database. You can retrieve privileges from the database even
when specifying your own box by using the -use db flag.

Return values:
A Tcl list.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
INVALIDVALUE value

2.3 Login and Logout

When you log into a box, you get the box’s privileges and new commands may be injected into your interpreter
that give you additional functionality. In addition, your password and your box number are set in the global
array taaPriv. When you log out, your password and box id are removed from the global variable taaPriv.

The login related commands are defined as follows:

* login box password

Description

This function logs you into a box. Many new commands are added once you log in. If the Configuration
Database parameter max login attempts is defined, then after that many failed login attempts in a row,
your interpreter will be killed. This command only exists when you are not logged in.

Return values:
Empty string.

Error codes:
LOGINFAILED

44

logout

Description

Logout of a box. Messages may be expunged if EXPUNGE LOGOUT is set for the box. This command exists
only if you are logged in.

Return values:
Empty string.

* verify sac box password

Description

This function verifies the password is the correct password for box.

Return values:
0 or 1

Error codes:
KILLED

45

Chapter 3

How Amanda Portal Interacts with
Telephone Switches

Commonly, Amanda Portal is used “behind” a telephone switch, acting as a voice mail system and/or an
autoattendant. Figure 3.1 shows Amanda hooked up to a phone switch. A number of outside lines come
into the phone switch. Amanda is hooked up to a number of phone switch lines and may be handling more
than one call at a time on these different lines. Phones are also connected to the switch. In figure 3.1 these
are referenced by the users “Tim” and “Scott.” Each connection on the switch is known as an “extension.”
Each connection on the back of the Amanda system is known as a “port.” Notice that the numbers need
not be the same. There is a mapping in the Configuration Database that tells Amanda which extension
is hooked up to which port. There is also a mapping in Amanda that tells which extension on the phone
switch is associated with which voice mail box in Amanda (in addition to other info such as the message
light status, phone set name, etc). Lastly, there may be a serial line connected from the phone switch to
Amanda to give Amanda information on calls being transferred to it if the switch uses “serial integration”
(explained later).

Switches come with a variety of “smarts” and each phone switch has its own peculiar way of doing things
(i.e., there is no standard). Smart switches generally cost more than dumb switches but both types of
hardware are extremely reliable.

Every phone switch can be told to transfer calls from one extension to another and every phone switch has
an audio jack for “hold” music where you can hook up a CD player or radio to play music to the person
when the person is put on hold. The switch automatically plays the music from this jack whenever a call is
put on hold. If you don’t hook anything up, the caller will hear silence or periodic beeps.

Integration information is information from the phone switch to Amanda that tells Amanda why the call was
transferred to Amanda, which extension the call is or was destined to go to, and possibly which extension the
call is coming from. Integration comes in two forms: “in-band integration” and “out-of-band integration.”
With in-band integration, Amanda is told information about a call by a sequence of DTMF tones on the
line the call came into Amanda on. Out-of-band integration, or “serial integration” (since the data comes
over a serial line), gives Amanda the call information through a separate serial line. This information
says something like “The call that just came in on extension 6 was destined for extension 8 and was from
extension 3.” Amanda has to associate this information with the call on extension 6. Many switches send
the out-of-band integration information over the serial line according to a specification called SMDI from
Bellcore.

46

phone
switch

Amanda

outside lines

hunt
group
lines

ext. 3 ext. 8

port 5

port 3

ext.
6

ext.
2

Tim Scott

6

serial integration

Figure 3.1: How Amanda and the Phone Switch are Connected.

With in-band integration, switches have settings in them that tell the switch which lines to send DTMF
integration information on and which lines not to. For example, in Figure 3.1, the lines going to Amanda
have “integration information on” and the other lines have “integration information off.” If the non-Amanda
lines didn’t have “integration information off,” then when you picked up the phone to answer a call you would
hear the integration information from the switch.

Some switches don’t send any integration information. With these types of switches, Amanda can’t be as
intelligent. When a call comes into Amanda, it can’t differentiate whether a call was destined for a user’s
phone and the user wasn’t there or whether a person just dialed in from the outside and should receive
the company greeting. In the first case, Amanda should give the voice mail greeting for the box the call
was destined for. In the second case, Amanda should begin call processing by playing a general greeting.
Without integration information, Amanda must always give the general greeting.

If the switch provides integration information to the voice mail system, then the phone switch allows an
autoattendant to do “blind-transfers.” With blind-transfers, Amanda can simply transfer a call to another
extension and drop the line. Once the line is dropped, Amanda can use it for other calls, such as a new
incoming call from the outside. If the person does not answer the phone or the extension is busy, the switch
automatically routes the call back to Amanda’s hunt group1 and integration information tells Amanda that
the call was destined for the extension but didn’t answer or was busy.

1The switch is set to call or not call Amanda back on a per extension basis according to settings in the Configuration
Database. The switch is configured according to these settings when Amanda starts up.

47

When blind transfers are not possible, Amanda must to a “supervised transfer.” With a supervised transfer,
Amanda must keep the line open and listen if the person picks up the line or is busy. The port cannot be
used for other purposes such as incoming calls during this time, so this form of transfer is less desirable.
There are two types of supervised transfer:

1. The switch tells whether the person answered or the phone is busy through in-band DTMF. In this
scenario, the switch gives different DTMF tones whether the person answered or whether the extension
is busy. Amanda listens for these tones.

2. Without such integration information, Amanda must do “Programmed Call Progress Monitoring” or
PCPM. With PCPM, Amanda actually listens on the phone line for the ringing, busy signal, or the
human voice to determine whether someone picked up the phone or not. With these types of switches,
the caller may miss the first part of the speech of the callee. The reason is that there is a delay in
recognizing the human voice and transferring the call to the callee’s extension. While the callee is
talking, Amanda is busy transferring the caller to that extension and the caller misses the first part of
the callee’s speech.

The lines running to Amanda from the phone switch are not special in any way. Amanda has the ability to
transfer a call to another extension only because the call was sent to Amanda. Amanda has no idea what
other calls are currently going on in the phone switch, the state of the extensions, etc.

Of course, Amanda need not be used as an autoattendant. The system can be configured to take voice mail
for each mailbox without trying to transfer the caller to the user’s extension first. Also, since the voice
processing boards in Amanda are capable of performing switching themselves over an internal TDM bus,
the Amanda system can act as a PBX itself by installing the proper boards and writing appropriate driver
and TUI code.

48

Chapter 4

Mailboxes

Each user in Amanda has one or more boxes (usually one). This box stores a variety of messages and each
message can have a number of MMOs in it. The messages in boxes are arranged in folders (see page 70).
Usually the messages in a box consist of a single voice MMO (i.e., a single voice mail message from someone).
You must login to a box to listen to the messages in it. Each box has a password so other people can’t listen
to your messages if they don’t have the password.

There are two types of boxes: guest boxes and non-guest boxes. When you create a guest box, the system
picks the box number for you. You may not select the box number to create. This is useful for something
like a law office where each lawyer may create boxes for his clients so that he can leave them confidential
messages for later pickup. Each client would have a different password on their box. Which box number is
selected is not important. When creating non-guest boxes, the creator gets to select the box number. There
are separate privileges for creating guest and non-guest boxes. To create non-guest boxes, you need the
BOX CREATION privilege. To create guest boxes, you simply need a positive BOXES LEFT setting on your
box. Every time you create a new non-guest or guest box, this number is decremented. So even if you have
the BOX CREATION privilege, you still must have a positive BOXES LEFT setting to create a non-guest box.

When you create a box, you clone the box from another box. Cloning copies the notify and autoschedule
records, the copy to lmapping mailing list, and the basic settings on the box. When you create a box, you can
specify which box to clone from. If you do not specify a box to clone from, a default box is used if it exists.
There are two default boxes in the Configuration Database: one for guest boxes (guest defaults) and one
for non-guest boxes (defaults box). These entries list the box number to clone from for the appropriate
box type. Having two different default “box clone” entries is important because guest boxes may not even
have a phone associated with them and non-guest boxes usually always will.

49

When a box is created, the password assigned depends on a number of factors. If there is no default box for
the box type or if its password is blank, the password assigned is the box number; otherwise, the password
is set to the same password as the default box. The intention here is to set the box password to something
known if there is no password, so the user gets a reasonable default. However, we don’t want people from
the outside breaking into the system because they know that the box password is set by default to the
box number on creation. To get around this, we allow the Amanda system administrator to set the default
password in the clone box to something he knows. This prevents outside users from breaking into the system.
Note that this behavior is the current behavior in Amanda@Work.Group.

4.1 Box Manipulation Functions

* is box box

Description

This function is a predicate to determine whether a box exists.

Return values:
0 or 1

create box [-clone box] [-box box]

Description

This function creates a new box. If -box is given, then a non-guest box is created with the appropriate box
number; otherwise, a guest box is created. You will need the BOX CREATION privilege to create boxes
using the box number. You will need a positive BOXES LEFT box setting to create guest boxes. Every time
you create a guest box, this number is automatically decremented by the system. Also, every time you give
a child the ability to create guest boxes, your BOXES LEFT count is decremented. That is, you cannot create
more guest boxes than you are allocated by giving more boxes to your child boxes. When you give boxes to
your children, you do it by adjusting the child’s MAX BOXES setting. This value is intimately tied with the
BOXES LEFT setting but you cannot set the BOXES LEFT setting. It is maintained by the system.

If -clone is given, then the box is cloned from the indicated box number. If this flag isn’t given, the
defaults box and guest defaults boxes from the configuration database are used for cloning if they exist.
Autoschedule records, notify records, copy to lmapping records, privileges, and box settings are cloned.

Return values:
The box number created.
GBOXLIMIT

Error codes:
NOTNONNEG box

50

errorCode
PERMDENIED
SYSBOXFULL
BOXEXISTS box
BOXNOTEXIST clone box

delete box [box]. . .

Description

Delete boxes. The boxes must be leaf nodes. If a box deleted is a guest box, then the immediate parent of
the box has its BOXES LEFT count incremented.

Return values:
Empty string.
BOXLOGGEDIN delete box

Error codes:
NOTNONNEG box
PERMDENIED login box deletion box
BOXHASCHILD delete box child box
INVALIDVALUE value

reparent box [move children] move box new parent

Description

Changes the parent of a box. The box must not be currently logged in. The box and its new parent must
be descendents of the logged in box making the call. The box must not currently be an ancestor of its new
parent. The new parent must have enough guest allowances. This command will fail if the box has children
and move children is not specified.

Return values:
Empty string.

Error codes:
PERMDENIED login box move box
BOXNOTEXIST move box
BOXHASCHILD move box child box
BOXLOGGEDIN move box
GBOXLIMIT move box BOXES LEFT

* next box box

51

Description

This command returns the next box (numerically) in the system after box. If -1 is given for the box, return
the first box.

Return values:
Box number or empty string if box given is last box.

Error codes:
errorCode Description
NOTINTEGER box
OUTOFRANGE box User gave negative number besides -1.

* previous box box

Description

This command returns the previous box allocated in the system before box. If -1 is given for the box, return
the last box.

Return values:
Box number or empty string if box given is first box.

Error codes:
errorCode Description
NOTINTEGER box
OUTOFRANGE box User gave negative number besides -1.

* get box children [-box box]

Description

Returns the child boxes of the current box or the box given. If you are not logged in, you must give the
-box option.

Return values:
A Tcl list containing the child boxes.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
BREQNLOGIN
INVALIDVALUE value

52

* get root [-box box]

Description

Returns the top most box in the box tree containing the current box or the box given. There may be a forest
of box trees. If you are not logged in, you must give the -box option.

Return values:
The top most box number.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
BREQNLOGIN

set box password [-box box] password

Description

Sets the password for the current box or the box given. You can only set the password for your box or one
of your descendent boxes. There is no way to inspect the password of a box. You must reset the password
if you forget it.

Return values:
Empty string.

Error codes:
errorCode Description
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
INVALIDPASSWORD password Password can only be numeric.

set box encrypted password [-box box] encrypted password

Description

Sets the password for the current box or the box given. You can only set the password for your box or one
of your descendent boxes. There is no way to inspect the password of a box. You must reset the password
if you forget it.

This function is exactly the same as set box password except that it takes an already-encrypted string
as the password for the box, whereas set box password takes the plain-text version and encrypts it before
storing it in the database.

53

Box Key Mutability Deleteability Value
1 setting name read-only

read-write
ancestor-read-write

deleteable
non-deleteable

Figure 4.1: Box Settings Attributes

Return values:
Empty string.

Error codes:
errorCode Description
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box

4.2 Box Settings

Each box has a number of settings that apply to it. Some of the settings are built into the system and some
have special semantics when they are set. You can also add new settings to a box if you wish. If you do, the
interpretation of those settings is up to the Tcl code you write. Each box setting has a number of attributes
as shown in Figure 4.1.

Each setting is assigned to a box number and has a name and a value. If a setting is read-only, you or your
ancestors can’t set it. Only the superbox can create and set read-only settings. If a setting is read-write,
you or any of your ancestor boxes can set it. If a setting is ancestor-read-write, only your proper ancestors
can create or set the value. Also, settings can be deleteable or non-deleteable. If a setting is deleteable,
then you or your ancestors can delete the value from the table. If the setting is non-deleteable, then it
cannot be deleted from the table. The settings which are built into the system cannot be deleted, though
any additional settings which were added and marked non-deletable can be deleted by the superbox.

The box settings functions are as follows:

* get box setting attrs [-box box] [keys]. . .

Description

This function returns information about the mutability and deleteability of each of the keys given. If -box
isn’t given, get the attributes of the currently logged in box. You can read any box’s attributes, including
your ancestors.

Return values:
An a-list of a-lists. The first a-list is indexed by the keys given. The second a-list has two indices:
deleteability and mutability. Their values are the deleteability and mutability of the key.

54

Error codes:
NOTNONNEG box
KEYNOTEXIST box key
BOXNOTEXIST box
BREQNLOGIN
INVALIDVALUE value

set box setting [-deleteability deleteable|non-deleteable] [-mutability read-only | read-write
| ancestor-read-write] [-box box] [key value]. . .

Description

Set the value of box settings atomically. If the key doesn’t exist, it is created. You can only change the
settings on your box or a descendent box. Only the superbox for the tree of the box in question can set a
setting to non-deleteable and only a superbox can delete a non-deleteable box setting.

The -mutability flag has varying restrictions depending on its value. Only the superbox can create and set
a setting with the read-only attribute. If you wish to set a value with the ancestor-read-write mutability,
you must set a value on one of your proper descendent boxes only. You cannot set a setting on your own
box with this mutability or you wouldn’t be able to modify or delete the setting. You can create a setting
with read-write mutability on your box or any of your descendent boxes.

The -deleteability and -mutability options apply to all the key/value pairs on the command line. If
you wish to issue separate attributes, you have to use different commands. The defaults are a deleteability
of deletable and a mutability of read-write.

Boolean values can be given as yes, true, 1 and no, false, 0. Integer values can be given in base 10, 8 or
16.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
KEYNOTEXIST key
PERMDENIED box key

The following error codes depend on the key in question:

Error codes:
errorCode Description
INVALIDVALUE key value
GBOXLIMIT limit For MAX BOXES only.

delete box setting [-box box] [key]. . .

55

Description

Delete the settings from the indicated box. If the mutability is read-only, only the superbox can delete
the setting. If the mutability is read-write, you or any of your ancestors can delete the setting. If the
setting is ancestor-read-write, then only your proper ancestors can delete the setting. Only the superbox
for the tree in question can delete deleteable settings. Of course, the deleteability attribute overrides the
mutability attribute.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED key
KEYNOTEXIST box key
INVALIDVALUE value

* get box setting [-box box] [key]. . .

Description

This command gets the value of the settings of keys for a particular box atomically. You can read any box’s
settings, including your ancestors’.

Return values:
Value is returned as an a-list.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
KEYNOTEXIST box key
BREQNLOGIN
INVALIDVALUE value

* get box setting keys [-box box]

Description

Get all the keys associated with a box.

Return values:
A Tcl list containing the keys for the box.

56

Error codes:
NOTNONNEG box
BOXNOTEXIST box
BREQNLOGIN
INVALIDVALUE value

Currently, the built-in box settings are as follows. Each key is non-deleteable.

Key Type Mutability Semantics
ABBREV DATES bool read-write Controls how Amanda says the date if it is

today or yesterday. If true, say “today” or
“yesterday.” If false, say the date. Default:
true.

ABBREV GREETING bool read-write If true, say “Please leave a message at the
tone.” If false, say “Please leave a message
for. . . ” Default: false.

BEGIN REC PROMPT bool read-write This setting controls the playing of the “Begin
recording at the tone. . . ” prompt for callers to
this mailbox.

BOXES LEFT num read-only The number of guest boxes left for this box to
allocate. If you allocate some boxes to your
children, this number will be decremented.
This number is decremented for guest boxes
only.

BUSY CODE str read-write Code to execute when a transfer for this box
detects a busy signal.

BUSY HOLD bool read-write Determines whether a caller can hold for a
busy extension.

CALLER CODE str read-write Tcl code to execute when someone calls this
box. Usually you will set this to a procedure
name in the persistent method database. You
need the CHANGE METHOD privilege to set
this value.

CALLS COUNT num read-only Number of times someone has called into this
box or transferred to this box via one of the
code callbacks. This value is set with the
set internal box setting call.

CALL SCREEN bool read-write Call screening boolean. If on, the caller must
identify themselves to the system before the
call will go through. Then when the phone
rings, the system speaks the name they gave.
You need the CALL SCREEN privilege to
modify this field.

57

Key Type Mutability Semantics
CALLS SECS num read-only The cumulative number of seconds that the

* CODE settings are run for this box. This value
is initialized with the
set internal box setting call and
terminated with the finish call time call.

CALLS TIME num read-only When a caller calls into this box and one of the
* CODE settings is run, this is the time that the
code started. This value is set with the
set internal box setting call.

COMMENT str ancestor-read-write Free-form comment.
CONNECT COUNT num read-only # of times a connection has been made

between caller and the person this box belongs
to. The person for this box must actually pick
up the phone. This count is not incremented if
the caller is sent to voice mail. This value is set
with the set internal box setting call.

CONNECT TIME num read-only Set when a connection between a caller and the
person the box belongs to is made. This value
is set with the set internal box setting call.

CONNECT TONE bool read-write Play a beep or don’t play a beep when the
called party connects to the phone.

CREATE TIME num read-only Time that this box was created in number of
seconds since midnight, January 1, 1970, GMT.

CTRIGGER COUNT num read-only # of times that a notify record has been
executed for this box.

CTRIGGER TIME num read-only Time the last notify record executed.
CUSTOM BUSY bool read-write Does user want his custom busy message to

play? If so, the custom busy message is looked
up in the MMO Lookup Table under the key
busy msg.

DATE TIME bool read-write Play the date/time when before listening to
messages. Boolean.

DND bool read-write Do not disturb boolean. If on, the box’s
greeting is never played. You need the DND
privilege to change this value.

DONE CODE str read-write Code to execute when a caller has finished
executing the instructions in this mailbox. You
need the CHANGE METHOD privilege to set
this value. The value is Tcl code to execute
and is usually a procedure name from the
persistent method database.

END REC MENU bool read-write This value controls the playing of the
post-record menu for both users and callers of
this box.

EXPUNGE DAYS num read-write If read messages exist for longer than these
number of days, delete them.

EXPUNGE LOGOUT bool read-write Expunge the deleted messages on logout.
EXTENSION str read-write Extension the phone is on. May also contain

Amanda@Work.Group-style tokens. Need
EXTENSION privilege to modify.

58

Key Type Mutability Semantics
GREET LENGTH num ancestor-read-write Maximum number of seconds that a person’s

greeting can be. This is enforced in the Tcl
code only; therefore, if a person uses the telnet
interface, they can access the MMO Lookup
Table directly and get past this restriction.
This is not critical though.

CUR GRT num read-write Number of the current greeting. You must have
the GREETING privilege to change this
number.

DELAY num read-write Delay in seconds after saying the greeting. It
gives the user time to think. You need the
GREETING privilege to modify this value.

ID CALLEE bool read/write When doing a supervised transfer, and we
detect that the callee has answered the call,
then the system announces mailbox which is
transferring the call (e.g., for Tech Support, for
Scott Simpson, etc.) This allows you to have
two people using the same extension, or one
person acting in several capacities (sales, tech
support, and accounting, for example) to
answer the phone with an appropriate greeting.

LANGUAGE str read-write Current language for the box. If set to a
non-empty string, then the TUI will attempt to
load this language whenever the user logs into
this box.

LOCATION str read-write Location of user. Used for call routing. May
eventually store IP address or whatever. You
need the EXTENSION privilege to modify this
value.

LOGIN COUNT num read-only # of times user logged in.
LOGIN DURATION num read-only Time that this box has/was logged in in

seconds.
LOGIN TIME num read-only Last login time.
MAX BOXES num ancestor-read-write Maximum number of guest boxes that this box

can create. This value can only be modified by
a proper ancestor. This value is intimately tied
with the BOXES LEFT setting. Ancestors can
modify this value but they cannot change the
BOXES LEFT value. If you change this setting
for a child, then your BOXES LEFT setting is
decremented appropriately. If you try to reduce
MAX BOXES for a child, you can only reduce the
value by an amount less than or equal to the
BOXES LEFT value for the child.

59

Key Type Mutability Semantics
MAX MESSAGES num ancestor-read-write Maximum number of messages allowed for this

mailbox. If this values is 0 then an infinite
number of messages can be stored. The
RECORD MSGS attribute take precedence over
this attribute. You’ll need the
RECORD MSGS privilege to change this value.

MAX MSG LEN num ancestor-read-write Maximum length of message in seconds. You’ll
need the RECORD MSGS privilege to change
this value.

MENU0 CODE
. . .
MENU9 CODE str read-write Code to execute when a caller presses 0

through 9 while listening to this box’s greeting.
You need the CHANGE METHOD privilege to
change these values.

MOD CALL SCRN bool read-write Announce name and company when doing call
screening if false else announce the name and
extension if true. You need the
CALL SCREEN privilege to modify this
setting.

MOD BOX bool read-only The last box to modify the settings on this box.
MOD TIME num read-only Time that any settings in this box were last

changed.
MSG HI WATER num read-only Highest number of messages in box at one time.
MSGS RECEIVED num read-only Count of the number of messages that have

ever been received by this box over all time.
NEW FOLDER num read-write Folder number for new non-urgent messages.

(See also URGENT FOLDER.)
PARENT num read-only Parent box. Empty string for root box.
PLAY FROM bool read-write Play back who the message was from (either

the box number or the name of the person).
PLAY NEW FIRST bool read-write Play the first unheard message first else play

the messages in order, regardless of whether
they were heard or not.

PLAY SKIP num read-write The amount to skip forward or backwards when
this user is playing a message (see the -skipby
option of the play command on page 100).

RECORD MSGS bool read-write Whether this box can record messages or not.
You need the RECORD MSGS privilege to
change this value.

RNA CODE str read-write Code to execute when doing a supervised
transfer and a ring-no-answer condition is
detected. You need the CHANGE METHOD
privilege to set this value.

RNA RINGS num read-write Ring No Answer count. Ring this many times
before deciding that the extension isn’t going
to answer. Default: If 0, then the value of
n rings parameter in the Configuration
Database; if that value is not set, then 4.

60

Key Type Mutability Semantics
STAT EPOCH num read-only Time that statistical information started for

this box. This value is modified by the
reset box stats call. You must have the
RESET STATS privilege to use the
reset box stats call.

URGENT FOLDER num read-write Folder number for new urgent messages. (See
also NEW FOLDER.)

USER CODE str read-write Tcl code to execute when user logs into their
box. You need the CHANGE METHOD
privilege to set to set this value.

reset box stats [-box box]

Description

This command starts statistical information over for the specified box. The specified box must be either the
current box or a descendent box. Also, you need the RESET STATS privilege to execute this call.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED

* set internal box setting box CALLS|CONNECT

Description

This command sets the box settings CALLS TIME and CALLS COUNT if CALLS is given or the settings
CONNECT TIME and CONNECT COUNT if CONNECT is given. This command is used in the TUI Tcl code. (This
call and finish call time are always called when you aren’t logged in.)

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box

* finish call time box

61

Description

This command tells the system that a caller who visited this mailbox is chaining to another box or has hung
up; in either case, he is leaving this box, so the system should record the duration value in the CALLS SECS
setting. To be effective, of course, the TUI Tcl code must call this function when appropriate.

Return values:
Empty string.

Error codes:
errorCode Description
NOTNONNEG box
BOXNOTEXIST box
CTIMENOTSET box The call time hasn’t been set through the set internal box setting

call.

62

Chapter 5

Multimedia Objects (MMOs)

Amanda Portal deals with a variety of media types such as voice, fax, text, etc. Most the objects in the
system are voice messages such as prompts to play to the user when he dials up his voice mail, greetings and
messages people leave in other people’s boxes. However, there are also received faxes and e-mail messages in
the system too. To handle all these media types, Amanda Portal has the notion of a Multimedia Object or
MMO. An MMO is a handle to one of these multimedia objects. MMOs are persistent and are not deleted
until the last reference to them is deleted (i.e., they are reference counted). If the system dies ungracefully,
Amanda Portal runs an MMO integrity check program at startup to see if there are any MMOs stored on disk
that don’t have any references to them. If there are, they are deleted or moved to a recovery box. To move
them to a recovery box, you need to set the recovery box (recovery box) and folder # (recovery folder)
in the Configuration Database.

MMOs are typed, are read-only or read-write, and are forwardable or non-forwardable. MMOs “know” the
exact type of data that they hold; this is known as the MMO’s format. For convenience, you can also ask an
MMO what category of content it has, such as voice, fax, or text. If an MMO is read-only, you cannot change
its contents because there may be other references to that same MMO; you can only dereference it yourself.
When you overwrite writable MMOs, you may use a different type if you wish. If an MMO is “forwardable,”
then you are free to forward this MMO to another person’s mailbox. If an MMO is “non-forwardable,” then
you cannot store it in any way, typically such as forwarding it to another mailbox. Only you can read it.
The idea is that if someone sends you a message only they want you to listen to, you shouldn’t be able to
forward it to someone else so they can listen to it and you can’t store a copy of it somewhere where someone
else can access it.

MMO have “access implies listen” semantics; that is, if you can get a handle to an MMO, you can listen
to it. However, you cannot get access to an MMO except through a certain set of functions provided by
the Amanda system. These sets of functions specifically restrict you from getting handles to MMOs you
shouldn’t have handles to.

MMO handles are immutable; that is, you can get MMO handles and delete MMO handles but you cannot
set them to a value. If you have a variable v that is an MMO handle and you try to do

set v 1

it will fail. This is implemented through the Tcl trigger mechanism which allows you to run code whenever
a variable is read, written or deleted. The reason for their immutability will be discussed later. However,
you can unset the variable and then set it to accomplish the same end result.

63

Every type of MMO has the following member functions:

* mmo func read only

Description

This function determines whether an MMO handle is read-only or read-write.

Return values:
0 or 1

* mmo func forwardable

Description

This function determines whether an MMO handle can be forwarded to a user or not.

Return values:
1 MMO is forwardable.
0 MMO is not forwardable.

* mmo func ref count

Description

This function returns the number of references to the MMO.

Return values:
Reference count.

* mmo func type

Description

This function returns the type of the MMO handle.

64

Return values:
audio An audio MMO.
fax A fax MMO.
text A textual MMO.
unknown The type is unknown. Until an MMO is assigned to after creation, its

type is unknown. You can reassign a new value to a writable MMO and
give it a different type.

* mmo func length

Description

This function returns the length of the MMO. The length value returned depends on the MMO type.

Return values:
seconds For audio MMOs, the length returned is the number of seconds of audio.
pages For fax MMOs, the length of the fax in pages.
characters For textual MMOs, the length of the text in characters. For Unicode,

it is still the character length, which will be half the byte count since
Unicode uses 16-bit characters.

Error codes:
errorCode Description
UNKNOWNTYPE The MMO has not been assigned to yet so the type is unknown.

* mmo func audio length

Description

This function is just like the length member function, but it returns the length of an audio recording in
milliseconds rather than in seconds. The extra precision is sometimes needed in the TUI.

An MMO of a category other than audio will return 0 as the result of this function.

Error codes:
errorCode Description
UNKNOWNTYPE The MMO has not been assigned to yet so the type is unknown.

* mmo func format

Description

This function returns the format of the MMO. The format returned depends on the MMO type.

65

Return values:
Audio type only

mulaw Mu-law.
alaw A-law.
wave Wave. Header specifies format.
wave8 Wave file known to be 8-bit mulaw.
wave16 Wave file known to be 16-bit linear.
wavegsm Wave file known to contain audio in MS GSM format (GSM 6.10).
gsm MS GSM format.
g72x G.721 adpcm.
oki-24 Oki 24K adpcm.
oki-32 Oki 32K adpcm.
sx9600 SX9600 (I-Link proprietary) compressed audio
basic Sun proprietary Audio-Basic format (Mu-law)
rht-24 “Rhetorex” proprietary 24K adpcm.
rht-32 “Rhetorex” proprietary 32K adpcm.
linear 16-bit PCM “Linear”.

Text type only.
html HyperText Markup Language.
unicode Unicode.
ascii Ascii.

Fax type only.
tiff Fax TIFF/F image.

Other
grammar Compiled SAPI speech recognition grammar.

Error codes:
UNKNOWNTYPE

* mmo func date

Description

This function returns the last-modified date on the file underlying this MMO. The date is returned as an
integer number of seconds since midnight, January 1, 1970, GMT (i.e., the Coordinated Universal Time).

* mmo func convert to format

Description

This function can be used to change the format of a writable audio MMO. It could be used, for example,
just after the MMO has been recorded and before it is stored (which will convert it to non-writable). The
format value must be one of the audio formats listed above.

66

* mmo func append fax MMOs. . .

Description

This function can be used to append FAX-format MMOs together. This can be useful, for example, when
you have several documents that are to be sent to the same recipient in the same FAX transmission.

The mmo func may be either a FAX-format MMO or it may be an empty (typeless) MMO. In the former
case, the other MMOs will be appended onto the end of mmo func. Naturally, the MMOs may be read-only,
while mmo func must be writable.

* mmo func path

Description

This function returns the actual location (path) on the disk of the backing store of this MMO.

* mmo func date

Description

This function returns the last-modified timestamp on the file underlying this MMO. The result is the number
of seconds since 1/1/1970 GMT.

* mmo func id

Description

Returns a unique identifier for each MMO within the system. The same underlying MMO will give the same
unique id back regardless of how the handle to it was acquired or the name of the handle. This value can be
used for checking MMO equivalence.

* mmo func copy to format copy from mmo

Description

67

This function copies the copy from mmo into the current mmo using the specified format .

Return values:
Empty string.

* mmo func append to copy from mmo

Description

This function appends the copy from mmo into the current mmo. The format of both mmos must be the
same.

Return values:
Empty string.

The following calls are specific to textual MMOs. That is, they exist as member functions of textual MMOs,
but not of other MMOs.

* mmo func get text

Description

This function returns the text associated with the MMO.

Return values:
Text. Unicode MMOs currently come back as strings since Tcl doesn’t currently support Unicode.

* mmo func set text [-html] [args]. . .

Description

This function sets the value of the textual MMO to the arguments passed. If multiple arguments are passed,
it concatenates the strings using spaces. Of course, the MMO itself must be writable. If -html is specified,
then the MMO type is set to HTML, and otherwise it is set to ASCII.

Return values:
Text value MMO is set to.

Error codes:
MMODISKFULL

68

When you want to create a new MMO, you use the following function:

* create mmo [var]. . .

Description

This function creates a new MMO. A list of variable names should be given. A new MMO is created in
each variable. The MMOs created have no type. Types are assigned to them when you set the MMO. Any
existing variables with the same name are deleted first.

Return values:
Empty string.

Error codes:
MMODISKFULL

* dup mmo var

Description

Duplicate an existing MMO handle into a new variable var. The new variable will represent its own reference
to the MMO, so calling this function will increment the MMO’s reference count. It does not copy the contents
of the MMO into a new backing store location.

Return values:
Empty string.

print mmo var printer name

Description

Print an existing, viewable, MMO handle using the appropiate application through shell extensions.
This will use the specified printer name. This function uses the printto shell extension. By default,
Microsoft Notepad is used to print text and html files. Tiff files, however, do not print well with the default
Microsoft viewer. We recommend using Amanda Messenger to print tiff files.

Return values:
EMPTY The var has no content.
NON PRINTABLE The var is not viewable.
NO PRINTER Unable to get the default printer.
NO PRINTER DATA Unable to get the printer information.
INVALID PRINTER printer name is invalid.

69

-

? ? ?

msg 0 1 2
msg#35
folder 0
urgent
unread
non-deleted
private
mmos

msg#14
folder 3
normal
read
deleted
public
mmos

Figure 5.1: Internal Message Representation.

PRINT FAILURE Failed to print the var .

5.1 Messages and Folders

Messages consist of zero or more MMOs and some other metadata (such as the priority, privateness, who
it is from, etc.). The most common messages contain a single voice MMO; when a user calls you and you
aren’t in, they leave a message in your box. This message contains a single voice MMO. You can receive
faxes too and these can be stored in messages. Messages with multiple MMOs usually have been forwarded
to you from another user who recorded a prefix. You may receive a fax message and then decide to forward
the fax message to someone else. When you do this, you decide to precede the fax message with a voice mail
message that says “Jim, check out the prices for the new Gateway 2000 computer on this fax” followed by
the fax. You then forward these two MMOs to somebody else as a new message. When the recipient listens
to the message, Amanda announces that the current message contains a fax and then plays the voice portion.
The recipient can then receive the fax over the same phone line, send it to a printer, etc., by selecting the
appropriate option from the voice menu.

Some messages are private. Private messages cannot be forwarded onto other users. Messages also have a
priority level which is “urgent” or “normal.” This priority level is independent of the “privateness.” Each
message is also marked with as “read” or “unread” (i.e., “heard” or “unheard” for voice messages). You
mark a message as “read” by setting the -read flag to the set msg attr command (see page 74).

Messages are divided up into folders numbered 0 through 9. In your box settings, you specify where you want
received messages to go (see NEW FOLDER and URGENT FOLDER). When you log in, the TUI may announce
how many new normal and urgent messages you have.

Each folder also has the concept of a “current” message. As you move forward or backward in the folder,
the internal current message pointer gets updated. When you switch from one folder to another, you start
before the first message in the folder (i.e., you must do a get next msg call to get the first message).

All the messages in all the folders are actually stored in a single file for efficiency. When a new message
is added to any folder, it is simply appended to the file. The internal representation looks like Figure 5.1.
Whenever message numbers are passed into or returned by Tcl calls, the internal message numbers (35 and
14 in figure 5.1) are used. You never pass in the relative message numbers (the 0, 1, 2 above) in the folder
and you will never get them back from the internal functions.

70

Deleted messages are not deleted right away. Instead, they are marked for deletion. Later they can be
undeleted by using the set msg attr command. To delete a message permanently, you can use the expunge
command. The second box above shows a permanently deleted message. Permanently deleting a message
leaves a gap in the file that may be garbage collected at a later time. When the file contains only permanently
deleted messages on the end, it is truncated to a shorter length. Notice that each message is not labeled
with a number within its respective folder; its location is computed by searching left to right. Also, there is
only one current message pointer for all folders so when you switch folders, the current message pointer is
reset to the beginning.

Message may be expunged automatically according to a setting on your box (EXPUNGE LOGOUT). If this is
set to true, deleted messages will be expunged on logout or when the interpreter is deleted (deleting an
interpreter executes the logout function automatically).

To simulate the Amanda@Work.Group functionality using this scheme, we can simply stick all messages
in folder 0 and use the normal/urgent and read/unread flags to determine the message status. For non-
Amanda@Work.Group behavior, we can stick urgent messages in one folder and normal messages in another
folder.

The following are the message related functions:

change folder folder

Description

This function changes the folder to the one given. The current message is set to right before the start of the
first message in the folder. That is, you must use get next msg to get the first message in the folder.

Return values:
Empty string.

Error codes:
NOTNONNEG folder
OUTOFRANGE folder

get current folder

Description

This function returns the current folder number. When you first log in, folder 0 is the current folder.

Return values:
Current folder number.

get next msg [-urgent|-normal] [-read|-unread] [-deleted|-undeleted] [-wrap] msg var

71

Description

This function returns the next message in the current folder. You can get the next message accord-
ing to a variety of criteria. These criteria are specified by the -urgent/-normal, -read/-unread and
-deleted/-undeleted flags. Normally, if you give no flags, then the next message is received no matter
what its attributes are. If you give one of the flags, then the message found must have that attribute. Also,
you cannot give both flags in the above pairs or a match would never succeed (i.e., a message can’t be both
urgent and normal).

The -wrap option says to start over at the beginning if you don’t find the message off the end of the folder.
msg var is a variable to be filled out with information about the message. If the variable already exists, it
is deleted first. To reset the message to the beginning, set your folder to the current folder (which has the
side effect of resetting the message pointer too).

72

Return values:
If no message is found that meets the criteria, then the string NOMESSAGE is returned. Otherwise, an empty
string is returned and a variety of information is placed in msg var . This information is basically divided into
two logical sections: 1) MMO handles for each part of the message and 2) information about the message
itself. For each MMO in the message, an index is set in msg var that indicates the MMO’s position in the
message and what the internal function for the MMO is. That is, if the message contains two MMOs, then
msg var may get set as follows:

set msg var(1) mmo0
set msg var(2) mmo1

where msg var(n) is a handle that has a deletion callback for the MMO corresponding to the internal
function mmo0.
The msg var variable also gets filled with other information about the message. The indices are as follows:

Key Value
urgent 1/0
read 1/0
deleted 1/0
subject subject MMO for message. Notice that subjects can be spoken so they

are MMOs, not text. This value is not set if there is no subject.
count Number of MMOs in the message, excluding the subject.
folder folder #
private 1/0
relay phone Relay phone number. This is only returned if there is a relay phone num-

ber for this message. The relay phone number is passed in to send msg.
recipient list A list of box numbers and/or lists this message was addressed to.
from The box number this message is from. If the message was sent by a

logged out interpreter, this entry is not set.
forwarded by If the message was forwarded, who it was forwarded by. This will not be

set if the message wasn’t forwarded.
receipt message read/deleted. Only set if message is a receipt message. This message

was sent in response to another box reading the message (i.e., setting
the state of the message to read. See set msg attr). This is set on the
response message you get back, not on the message you sent. Receipt
messages have no MMOs, so this flag differentiates between a regular
message with no MMOs and a receipt message.

date time Date and time of message in # seconds since 1970 in GMT.
msg number Message number.
msg id This is an internally created number for the message that is unique within

the Amanda system. The system generates this value.
caller id Caller id for the message. If no caller id received, it is not set.
alternative This is a boolean value (0 or 1) which indicates whether the message’s

components are alternatives, in the MIME sense, or whether they are
truely separate components. This value will be set only when parsing a
multipart/alternative email message.

It is important to note that MMOs in a message are order dependent and they may be of different types.
For example, if the first MMO is a voice message that says, “The following is a fax.” and the next MMO is
a fax, then it is important that you play the messages in order. Unfortunately, you cannot simply pass all
the MMOs to the play command in one fell swoop if this is the case because the play command only plays
voice messages.

get prev msg [-urgent|-normal] [-read|-unread] [-deleted|-undeleted] [-wrap] msg var

73

Description

This function is the same as get next msg except it goes backward instead of forwards within a folder. If the
user is positioned prior to the first message in the folder (as after change folder), then get prev msg will
wrap to the last message in the folder, regardless of whether the -wrap argument is used. But if positioned
on the first message in the folder, then it will wrap to the last message only if -wrap is specified.

Return values:
See get next msg for return value.

set msg attr [-read|-unread] [-urgent|-normal] [-deleted|-undeleted] [-subject mmo func]
[msg num]. . .

Description

This function allows you to set some attributes of a message. If you don’t give any message numbers, the
current message is used. If you give a message number, the internal message number is used. (Remember,
relative message numbers are never used.) You can even change deleted messages before they are expunged.
The first time that you change an unread message to an read message or delete an unread message by
switching the state flag, a return receipt message is sent to the sender if “return receipt requested” is set. A
return receipt is also sent when the message is expunged without being read.

Return values:
Empty string.

Error codes:
NOTNONNEG msg
MSGNOTEXIST msg
CMDNOTEXIST mmo func
CMDNOTHANDLE mmo func
MMOWRONGTYPE mmo func
NOCURMSG

move msg folder [msg]. . .

Description

This function moves messages from the current folder to the given folder. When the messages are moved,
they are inserted into the new folder in time order. That is, they may be interspersed into the new folder,
depending on when the existing messages arrived in the new folder. (The messages aren’t really moved.
Their folder attribute is just changed.)

Return values:
Empty string.

74

Error codes:
NOTNONNEG folder |msg
OUTOFRANGE folder
MSGNOTEXIST msg

expunge

Description

This function permanently deletes all the messages marked as deleted in all the folders. It also sets the
folder to 0 and sets the message cursor to before the first message.

Return values:
Empty string.

get folder stats

Description

This function returns information about each message in the current folder.

Return values:
A list of 2-tuples is returned. The first part of the 2-tuple is the internal message number of the message.
The second part of the 2-tuple is an a-list describing information about the message. The location of the
2-tuple determines the relative message number. For example, the list returned may look like

46 {urgent 1 read 0 ...} 3 {urgent 0 read 1 deleted 0 ...} ...

Relative message 0 has internal message number 46, message 1 has internal message number 3, etc. The
information values returned are the same as those filled in by get next msg with the exception of MMOs
being returned.

has next prev

Description

This function returns an A-list containing two items: next and prev. Each is followed by a value speci-
fying the number of the next/previous message relative to the current message. If there is no non-deleted
next/previous message, the message number will be specified as -1.

75

get box stats [-box box]

Description

This function returns information about all the messages in a box, regardless of which folder they are in.
It is used to get summary information about a box. If -box is not specified, then information about the
currently-logged-in box is returned; otherwise, information about box is returned. When using -box, then
box must be a descendent of the currently-logged-in box.

Return values:
The return value is an a-list. The entries are

Key Value
msgs Total # of messages in all folders.
unread msgs Total # of unread messages.
deleted msgs Total # of deleted messages.
urgent msgs Total # of urgent messages.
normal msgs Total # of normal messages.
urgent unread msgs Total # of unread urgent messages.
normal unread msgs Total # of unread normal messages.

goto msg msg msg var

Description

This function goes to a message using the message number. This function automatically switches the current
message and folder corresponding to message msg when it is called.

Return values:
The return value is the same as get next msg.

Error codes:
NOTNONNEG msg
MSGNOTEXIST msg

set message box box

Description

76

This function is use to set which mailbox messages are being currently accessed. The default is that you
can only access the messages of your own mailbox. Once set for another box then you just use the same
tcl message commands as if they where your own message of your mailbox. To start accessing yoru own
messages again, just call this function again by passing in your mailbox. For security purposes the mailbox
that you want to access its message of, box , must grant you permission, unless it is your own mailbox. box
maintains a list mapping named msg access that lists all the mailboxes that has access rights to do anything
to its messages. In order to change this list, you must be the owner mailbox of the list or have the privilege
msg access prepended by the mailbox that you want to change, for example msg access100 . If a mailbox
forwards a message for the owner mailbox, the true mailbox doing the forwarding will be marked as the
forwarded by. If a return receipt is requested of a message that is first read by a mailbox other than the
owner then the return receipt will be from the mailbox causing the return receipt, not the owner mailbox.
Note that calling this function will cause a possible purge and/or expunge of the previous mailbox’s messages
that was being accessed, for example the first time you call this in a session then that purge or expunge will
be on your own mailbox, just like if you were logging out of your mailbox.

Error codes:
PERMDENIED box

Messages can be sent either to individual boxes or mailing lists. When sending to mailing lists, the contents
of the mailing list are automatically looked up in the “list mapping database” (see page 125). Recipients are
specified with the syntax:

box or list*[box]

To send to a box, you just give the box number. To send to a mailing list, you send to a list number followed
by a ‘*’. Optionally, you can also give a box number for the mailing list if the mailing list doesn’t correspond
to the box you are currently logged in under. In fact, you must give the box number if you are not logged
in. Even users that are not logged in can send messages (using send msg) and check whether a box receives
messages or not.

Here are the calls related to sending a message:

* check recipients [box |mailing list]. . .

Description

This routine validates the recipients of a message. Boxes are validated to see if they exist and store messages.
A box “stores messages” if either it stores messages directly and/or has its messages copied to another box.
This rule is not transitive. That is, if there are three boxes A, B, and C and ‘→’ indicates copying messages
and A→B→C and A receives a message, it is stored in A (if A stores messages) and in B, but not C. Mailing
lists are only validated by checking the box number (if given). We cannot check if the mailing list exists
because there is no difference between a mailing list not existing and being empty. (That is, the lmapping
routines return the same result for non-existence and emptiness). Also, if allowed to store messages then the
limit of the number of messages is checked. If you are not logged in and execute this call, the box number
for a mailing list must be given.

77

Return values:
The list of boxes or mailing lists that are invalid is returned. Invalid syntax arguments are returned also.

* send msg [-urgent] [-private] [-receipt] [-subject mmo func] [-relay number] [-mmos mmo func list]
[-at time] [-fcc folder] [-caller id number] [-expire time] [-expire absolute] [recipient]. . .

Description

Send a message to a list of recipients. Recipients can be boxes or mailing lists with the syntax as described
above. The options are as follows:

-urgent Mark the message as urgent.
-private Mark the message as private. The recipient will not be able to forward

the message or any of its contents to another user.
-receipt Send a return receipt. When the user reads the message, you will get a

message back saying it has been read. If the user deletes the message
without reading it, you will get a message back saying the message was
deleted without being read. This is implemented internally in the system
when the target box sets the unread or deleted flag on the message. When
this is done for the first time on the message, a return receipt message
with no MMOs is sent to the originating box with the receipt message
flag set to read or deleted.

-subject subject Set the subject of the message to subject . Notice this is an MMO, so it
can be voice (or a fax!).

-relay number Set the relay field in the message to number . This number can be used
by a notify template which is executed by one of the box’s notify records.
This template then can sends a page to the recipient telling him the
number in the relay field so that he can return the call directly without
having to listen to voice mail first.

-mmos mmo func list Send the MMOs listed to the person. This option will usually always
be given because you will usually be sending voice mail to people. It is
possible to send messages to somebody without any MMOs though. You
may wish to send just a subject for example.

-at time Send the message at the indicated time. time is given in the number of
seconds since 1970 and is always given in GMT. Use time manipulation
functions described in section 17.2 to manipulate time values.

-fcc folder File a copy of the message in the indicated folder.
-caller id number Set the caller id for the message. The caller id field in the message

will be set when get next msg is used.
-expire time Expire the message at the absolute time. time is given in GMT and is

the number of seconds since 1970 (the standard time count). If this is
not given, the message does not expire.

-absolute Expire the message even if it was heard.
MMOs sent by this command will automatically be made read-only if they are not already. This prevents
modification of the MMO after sending it.

Return values:
The list of recipients that the send failed to. This list is usually empty. There is a race condition between the
time that you check whether a box is valid and the time you make the send msg call. If the box is deleted in
the interim, it will be returned as the result of this function but the message will be sent to the other boxes.

78

Error codes:
INVRECIPIENT recipient
INVALIDTIME time
NOTNONNEG folder
OUTOFRANGE folder
CMDNOTEXIST mmo func
CMDNOTHANDLE mmo func
UNKNOWNTYPE mmo func
MMONOTFORW mmo func

forward msg [-receipt] [-at time] [-urgent] [-private] [-subject subject] [-mmos mmo func list] [-fcc
folder] [-expire time] [-expire absolute] msg [recipient]. . .

Description

Forwards a message to the recipients listed. The MMOs in mmo func list are prepended to the original
message MMO list. See the send msg function for a description of the options. The MMOs in mmo func list
are made read only as described in the send msg command.

Return values:
See the send msg call for the return value.

Error codes:
INVRECIPIENT recipient
INVALIDTIME time
CMDNOTEXIST mmo func
CMDNOTHANDLE mmo func
UNKNOWNTYPE subject func
MMONOTFORW subject func
MSGNOTEXIST msg
MSGNOTFORW msg

move msgs to box from box dest box

Description

This command moves all messages from one of your descendent boxes to a different descendent box. The
messages stay in the same folder and retain their other attributes. You need the MESSAGE MOVE privilege
to execute this command. Neither box can be logged in at the time and the dest box must not have any
messages already.

This command is commonly used by hotels when a guest moves to a different room.

Only the normal notify type is fired off for the mailbox that the messages were moved to, no matter what
the status (new, old) or types (normal, urgent, relay) of the messages that were moved. A pickup notify
type is fired for the mailbox that the messages were moved from.

79

lookup mmo—Forwarding OK always set in
handle in memory. Handles always stored and
returned read-only.

Owner Key Desc Access MMO
3 grt1 . . . public

private

MMO Lookup Table

get next msg—Private messages have “no for-
warding” set in handle, others set to “forwarding
OK.” Handles always stored and returned read-
only.

MMOs Box Msg# Forwardability Other. . .
5 1 forwardable

non-forwardable

Messages Table

– type
– length
– ref count

Internal MMO Database Handle in memory
– read or read/write
– forwarding/no-forwarding

(No forwarding implies no
forwarding and no storage in
MMO Lookup Table).

�

6

C
C
C
C
C
C
C
C
C
C
C
CO

�
�C

C
C
C
C
C
C
C
C
C
C
C
C
CO

Figure 5.2: Internal MMO database structure.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box

5.2 MMO Database

MMOs are stored internally on disk as files. The types of these files vary depending on whether the MMO is
a voice file, text file, etc. Also, access to MMOs is restricted by the “kernel interface” of Amanda (the calls
built in). If access were not restricted, anybody could listen to anybody else’s messages.

MMOs are stored in an internal database that is referenced by two other databases: the MMO Lookup Table
and the Messages Table. Figure 5.2 shows the architecture. The Internal MMO Database stores the MMO
information persistently (as files) and stores some meta information about the MMO such as its type, length,
and a reference count.

80

The MMO Lookup Table is a persistent MMO storage area for MMOs. It stores such things as a person’s
greeting, the names they assign to folders, etc. Entries in this table can be public or private. Public entries
can be accessed (i.e., get an in memory handle) by anyone, while private entries can only be accessed by the
owner of the box. In addition, MMO handles are always stored and retrieved from the MMO Lookup Table
read-only. When you store an MMO handle that is read-write (i.e., an MMO handle created by create mmo),
the MMO handle automatically converts from read-write to read-only as soon as you store it in the MMO
Lookup Table. This prevents you from overwriting the MMO if it is in use. No one else can have a writable
handle to the MMO because writable handles are created with create mmo and this call creates interpreter
specific handles. Any person can forward the MMO extracted from this table to anyone else. When the
MMO handle is created by lookup mmo, “forwarding OK” is always set to true.

The Messages Tables stores the MMOs that comprise an individual message in your box. You can’t access this
table directly except through the get next msg and get prev msg functions (see page 72). These functions
will return a list of MMO handles for the current message in your box. The handles returned will all be
read-only. If you then store the handles in the Lookup Table, they too will be read-only. Private messages
have “no forwarding” set in the handle when they are created by get next msg. If an MMO handle has “no
forwarding” set, you cannot forward this message to another user. In addition, if “no forwarding” is set,
you cannot store the message in the MMO Lookup Table. If you could, then you could bypass security by
extracting the message from the MMO Lookup Table which always sets forwarding to “forwarding OK.” The
whole forwarding concept is built into the system to support people sending you private messages. These
messages shouldn’t be able to be heard by anyone except the box owner the message was destined to.

Whenever you create a new MMO handle with the create mmo function, the handle is always read-write and
forwardable. As soon as you send the MMO to a person in a message, forward it or store it in the MMO
Lookup Table, the handle is immediately made read-only to prevent you from modifying it if someone else
is using it.

Recall that MMO handles are really special variables bound to internally created functions. The object-
oriented functions supported by an MMO handle are rather limited (see page 64). Functions exist for
things like querying MMO handles about the read-only or read-write aspect, whether the MMO handle is
forwardable or not, what type the MMO handle is, etc. You cannot play an MMO handle using its member
functions; to play the MMO handle, you have to use a VP device’s member function and give the MMO
handle as an argument (see Chapter 6). Also, composing a forwarded message out of any “non-forwardable”
MMO handles is verboten.

Here are the commands for manipulating the MMO Lookup Table:

* lookup mmo [-box box] key var

Description

This function looks up an MMO in the MMO Lookup Table. You can use the -box option to specify a
descendent box to look up. Every MMO returned is read-only. If var exists, it is silently replaced.

Return values:
Empty string The MMO handle was successfully filled in.
EMPTY The key was found, but the MMO handle was empty. In this case, var

is not set.
NOTFOUND Key not found.

81

Error codes:
errorCode Description
NOTNONNEG box
PERMDENIED box You are not allowed to access the MMO. See lookup mmo attr for access

rights.
BOXNOTEXIST box
BREQNLOGIN
INVALIDVALUE value

* lookup mmo attr [-box box] key [field]. . .

Description

Lookup information in the MMO table about everything but the MMO. field is a field to look up. The
permission restrictions are the same as for lookup mmo. In fact, you cannot even look up the field private if
you don’t have permission to see if the field is private. That’s OK. The lookup mmo keys command doesn’t
return private keys when you don’t have permission to look at them. The set of fields are as follows:

description Description field.
private Privateness access field
box Owner mailbox field.
key Key field.

Valid values for the private field:

world Anyone can access the MMO, even non-logged in users.
logged in Any logged in mailbox can access the MMO.
family Only ancestors, descendants, and owner can access the MMO.
owner ancestors Only ancestors and owner can access the MMO.
owner descendants Only descendants and owner can access the MMO.
owner only Only the owner can access the MMO.

Return values:
a-list An a-list of the values found.
NOTFOUND The key was not found.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
FIELDNOTEXIST field
INVALIDVALUE value
BREQNLOGIN

82

errorCode

* lookup mmo keys [-box box] [pattern]

Description

Lookup all the keys in the MMO table for the current box. If -box is given, lookup the keys for the given
box instead. In this case, the access rights if the MMO is checked. If access is granted then the key is listed.
If a pattern is given, the keys returned must start with that pattern. See lookup mmo attr for access rights.

Return values:
An regular Tcl list of all the keys.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
INVALIDVALUE value
BREQNLOGIN

store mmo [-box box] [-mmo mmo func] [-description value] [-private value] key

Description

Populate the MMO table. Values are stored under the given key. When modifying values in the table, any
values not set are left unmodified. You can set the MMO or any of the other attributes in the table using
this function. This function will also create the key if it doesn’t exist. The defaults on a newly created key
are an empty MMO handle, the empty string for the description and -private world. You may also give
the empty string to unset the MMO. If the MMO you store is currently read-write, it will magically change
to read-only after calling this function. See lookup mmo attr for the private values.

Return values:
Empty string

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
FORWNOTSTORE func name
CMDNOTEXIST mmo func
CMDNOTHANDLE mmo func
INVALIDVALUE value

delete mmo [-box box] [key]. . .

83

Description

Deletes the keys from the current box or the given box. Ancestral permission relationships apply.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
KEYNOTEXIST key
PERMDENIED box
INVALIDVALUE value

5.3 Announcements

Announcements are messages that are sent out to a group. Unlike messages, announcements are owned
throughout its life time by the one who created the announcement. Where as in messages, once it is
receive the recipient owns the message. Therefore announcements can be changed after it was created by
the one who created it. Another difference between announcements and messages is the type of recipient.
Message recipients are mailboxes or mailing list. Announcement recipients is just an object name, the
application defines what the object name is and who the true recipients are. The last major difference
between announcements and messages: is the support for different languages of the same announcement.
A message is usually in one language for it is directed at a particular recipient. MMOs are used to store
the different languages. For example the administrator of the system can have a Message of the Day
announcement that everyone in the system listens to.

Announcements can be marked heard by a particular mailbox to remember what is heard or not. But, if the
owner of the announcement changes the announcement, it is marked unheard by everyone in the system.

To be able to create and manipulate announcements you must have the ANNOUNCEMENTS privilege.

Announcements can be set up to be manipulated by several different mailboxes. The announcements are
stored in a common mailbox designated by the global configuration parameter announcement box. You must
have the GENERAL ANNOUNCE privilege to create and/or manipulate announcements in the announcement box.

The following are the commands to manipulate announcements:

owner create announcement [-category category] [-begin time begin time] [-end time end time]
[-recip type list recip type list] [-outbound total outbound total] [-general boolean] [-mmo list
mmo list]

Description

84

The function creates a new announcement. The category states the general subject of the announcement.
The begin time and end time defines when the announcement can be listened to. A recipient can not get
an announcment outside of these times. The recip type list is a list if names that the application defines
as to who gets the announcment. The outbound total defines how many times the announcement is to be
called out. The application itself handles the action of doing the outbound call. The -general defines if this
announcement is stored in the announcement box. The mmo list is a list of mmo var language pairs stating
the actual announcement in each language. The first pair will become the default if the recipient’s language
is not available. In this case the language will be called default.

Return values:
id This is the id of the newly created announcement.
INVALIDTIMES The begin time and/or end time is invalid.
PERMDENIED Not allowed to create an announcement in announcement box .
BOXNOTEXIST The configuration parameter announcement box is invalid.
BADMMOLIST The mmo list is invalid, possible bad mmo vars.

Error codes:
errorCode Description
CONFNOTEXIST
announcement box

owner edit announcement id [-category category] [-begin time begin time] [-end time end time]
[-recip type list recip type list] [-outbound total outbound total] [-mmo list mmo list]

Description

The function edits an existing announcement. The id states which announcement to edit. The category
states the general subject of the announcement. The begin time and end time defines when the an-
nouncement can be listened to. A recipient can not get an announcment outside of these times. The
recip type list is a list if names that the application defines as to who gets the announcment. The
outbound total defines how many times the announcement is to be called out. The application itself han-
dles the action of doing the outbound call. The mmo list is a list of mmo var language pairs stating the
actual announcement in each language. The first pair will become the default if the recipient’s language is
not available. In this case the language will be called default.

Return values:
INVALIDID The id of the announcement to edit is invalid.
INVALIDTIMES The begin time and/or end time is invalid.
PERMDENIED Not allowed to edit an announcement.
BOXNOTEXIST The configuration parameter announcement box is invalid.
BADMMOLIST The mmo list is invalid, possible bad mmo vars.

Error codes:
errorCode Description
CONFNOTEXIST
announcement box

85

owner delete announcement id

Description

The function deletes an existing announcement. The id states which announcement to delete.

Return values:
INVALIDID The id of the announcement to edit is invalid.
PERMDENIED Not allowed to delete an announcement.
BOXNOTEXIST The configuration parameter announcement box is invalid.

Error codes:
errorCode Description
CONFNOTEXIST
announcement box

get announcement id var

Description

The function gets an existing announcement. The id states which announcement to get. The var will be
the name of the associative array that contains the relavent information of the announcement. If the owner
of the announcement is doing the getting then all the attributes are returned. If a recipient is doing the
getting then only the following attributes are returned: category, owner, heard, mmo vars, and id. The
mmo vars uses the name of the language that each mmo represents.

Return values:
INVALIDID The id of the announcement to edit is invalid. Possibly the id is good, but

the it is not the right time as defined by the begin time and end time
PERMDENIED Not allowed to get an announcement.

owner list announcement [-general boolean] [-category category]

Description

The function gets a list of existing announcement this mailbox can manipulate. The general defines whether
or not to include general announcements. The category filters the list to only include those announcements
of the specified category.

Return values:
id list A list of announcement ids

86

Error codes:
errorCode Description
CONFNOTEXIST
announcement box
INVALIDVALUE value

recip heard announcement id

Description

The function marks that this mailbox heard the announcement.

Return values:
INVALIDID The id of the announcement to mark heard is invalid.

recip list announcement [-recip type list recip type list] [-category category]

Description

The function gets a list of existing announcement this mailbox can receive. The recip type list filters the an-
nouncements for only those recipient types. The category filters the list to only include those announcements
of the specified category.

Return values:
id list A list of announcement ids

outbound list announcement [-category category]

Description

The function gets a list of existing announcement that have a positive outbound total. The category filters
the list to only include those announcements of the specified category.

Return values:
id list A list of announcement ids

is announcement heard id

Description

The function marks that this mailbox heard the announcement.

87

Return values:
INVALIDID The id of the announcement is invalid.
0 The announcement has not been heard by the mailbox.
1 The announcement has been heard by the mailbox.

5.4 Published MMOs

Published MMOs are MMOs that are made public to the world. Anyone can publish a MMO, being logged
in is not required. Once a MMO is published then other threads can get a handle on that MMO. Publishing
a MMO can be selective on who it is published to.

Published MMOs are not persistent. When publishing an MMO a variable gets associated with the publi-
cation. When that variable is unset then the publication ends. Other threads must get the published MMO
before the variable goes out of scope. But, once the thread has a handle on the MMO then they have a valid
reference on that MMO to do as it pleases.

An example usage of Published MMOs is the following: A caller calls in and records a name and company
recording. That recording gets published to the callee. The callee can get the recording to figure out if the
callee wishes to talk to the caller, basicaly a form of call screening.

The following are the commands to manipulate announcements:

* publish mmo mmo func common key publish var [mailbox]. . .

Description

Publish the mmo func to the specified mailbox list. If no mailbox list is specified then all this is published
to everyone. If mailbox is EVERYONE then it explicitely states to publish the mmo to everyone regardless of
other mailbox in the list. If mailbox is LOGGED IN then the mmo is published only to those threads that are
logged in. The common key is used to create a unique key to represent the Published MMO. The value of
common key can be anything. The publish var is the name of the variable that is created by this function
to represent the lifespan of the publication. Once this variable goes out of scope then the MMO is no longer
published. During the published time the, the variable represents another reference on the MMO.

Return values:
BOXNOTEXIST mailbox is invalid
MMONOTFORWARDABLE mmo func is invalid

* get published mmo unique key mmo var

Description

Get the Published MMO as specified by the unique key and create a new handle for the Published MMO
that is named mmo var .

88

Return values:
KEYNOTFOUND unique key is invalid

* list published mmos

Description

Get a list of Published MMOs that you have access to. What is returned is a list of unique key that can be
used by the get published mmo function to get the actual mmo. The returned list can be empty.

Return values:
unique key list A list of published mmo unique keys

89

Chapter 6

Voice and Fax Devices

Voice devices and to a lesser extent fax and internet devices form the heart of Amanda Portal. Currently, the
only voice boards supported by Amanda Portal are a certain set of Dialogic boards which support the SCBus
and a certain set of Rhetorex boards. In addition, the Dialogic GammaLink SCBus fax resource boards are
supported. These modules are Dialogic.DLL, RhetStd.dll, and Gamma.DLL. In addition, a SoundCard
driver is available which provides essentially the same functionality as one telephone port plus a telephone.
It is used for testing and demonstration purposes, and it is called Audio.DLL.

There are two sets of numbers assigned to devices in the system—ports and units—and they are not the
same. Unit numbers are unique for each device within that device’s class. That is, each VP device will have
a different unit number but there may be an LS device with the same unit number. In addition to unit
numbers, physical telephone ports are assigned unique port numbers.

When connecting devices on an SCBus, any device can broadcast to as many devices as possible but only
listen to one device at a time. Figure 6.1 shows the concept. The VP device is listening to device LS1 and
devices LS2 and LS3 are listening to the VP device. It is possible for a device to listen to no one and send
to no one too.

6.1 OOP Model

There are two approaches to use when defining Tcl commands: action-oriented and object-oriented. In the
action-oriented approach, there is a separate command for each action taken by an object and the object is
passed as the first parameter. That is, you would call play $mmo to play an MMO object. This works well
when there is a large number of objects.

LS1 LS2 LS3

VP

6@@R ���

Figure 6.1: LS and VP device configuration

90

In the object-oriented approach, there is one command for each object and the name of the command is the
name of the object. (In our implementation, a variable and the command name are bound together.) The
first argument to the command specifies the command to execute. For example, you would say “$vp play
$mmo” to play the MMO on the VP device.

The object-oriented approach lends itself well when the number of objects is small and the operations on
the objects may vary. VP and MMO handles fit this description nicely. Also, Tcl allows you to add internal
state to functions (through ClientData) but not variables. Therefore, using the object-oriented approach
allows us to attach state to the function referenced by the $vp variable. We couldn’t do this using the
action-oriented approach. Currently we attach information about the VP or LS device in the state field.
This state is actually a C++ object that we can operate on once inside C++.

6.2 Interconnection Limitations

Dialogic puts LS and VP devices on the same board or allows you to connect the devices on separate boards
through the SCBus. This bus is a connector cable between two different boards that allows the boards to
communicate with each other at high speed. Unfortunately, some Dialogic boards have limitations on the
separate, simultaneous use of the LS and VP devices such that it is better to use a corresponding VP device
with each LS device, rather than an arbitrary one. To accomodate this limitation, each LS and T1 device
“knows” the unit number of its corresponding VP device, and has a dsp attach command which checks out
that particular VP device from the resource manager and establishes a full-duplex connection with it.

6.3 Make local and Default Commands

Each object-oriented command has a command named cmds which lists all the commands that are valid for
that device. If you type the command

$vp_handle cmds

you may get back something like

unit pause resume stop skip result play play_hold play_prompt speak
record pcpm beep load_prompt_set dialtone get_digits dial load_tones set_param

which lists all the commands that the $vp handle command will take.

91

If you have a VP resource, you may not wish to keep typing

$vp handle play mmo funcs. . .

all the time. Instead it might be nice just to say

play mmo funcs. . .

and use $vp handle as the default VP device. The built-in make local command creates a new command
for each function that the handle passed as its argument supports. When the function is called, it internally
uses the handle as its default argument. That is, make local basically works as follows:

proc make_local {handle_var} {
upvar 1 $handle_var handle

foreach func [$handle cmds] {
For every cmd this handle has, define a new command with
an implicit $handle before it.
proc $func {args} [list uplevel 1 [list $handle] [list $func] {$args}]

Delete procedure upon variable exit.
There should already be an unset trace on
this variable for handle cleanup
but we can add many more for each function we
just added.
uplevel [list trace variable $handle_var u [list _delete_cmd $func]]

}
}

Internal routine used by make_local.
proc _delete_cmd {func var index op} {

catch {rename $func {}}
}

The make local command will create a command like

proc cmd {args} {
uplevel 1 {handle} {cmd} $args

}

Notice that make local cleans up the procedures it creates when the variable leaves scope by creating an
additional trace callback for each procedure that it creates. (This callback is a “lexical closure” for you Lisp
fanatics.) The actual make local command is a built-in command, not a proc.

get board serial number board

Description

92

Returns the serial number of the indicated board. This function is available only when the Dialogic DLL
has been loaded with the system and when the logged-in mailbox has the MONITOR privilege.

Return values:
Returns the indicated board’s serial number.

Error codes:
NOTINTEGER board
INVALIDVALUE board

6.4 Network Device Commands

Each of the T1, LS, VP, and Fax commands can get internal errors generated by the Dialogic driver. If this
is the case, a Tcl exception will be raised with an errorCode corresponding to the format

BOARDERROR error num

and the Tcl result will be set to the board error message. Virtually every board related function can receive
an error of this type, so these error codes are not listed.

To allocate an LS, VP, or Fax device, you’ll need to use the grab res routine discussed on page 38 or the
dsp attach command.

The network device (T1 and LS) commands are as follows. For simplicity, we use ls to represent any kind of
network device, and note any differences that exist between the different device types which are supported
in describing the command.

* ls set hook boolean

Description

This function sets the phone on or off hook for the ls device. It is usually used when you are receiving a call
or responding to a detected hangup.

Return values:
Empty string.

Error codes:
NOTBOOLEAN boolean

* ls seize

Description

93

This function seizes a line for an outgoing call. Call this before you make an outgoing call. On an analog
line, this simply goes off hook and verifies that loop current is present. On a digital device such as a T1 line,
the seize operation is verified digitally by the far end.

Return values:
Empty string.

* ls disconnect

Description

Actively hang up on any existing phone connection and insure that the call is terminated. It is the opposite
of seize. For analog devices, the channel is held on hook long enough so that it doesn’t look like a flash hook.
This time is determined by the value of the tmo pickup parameter in the Configuration Database. For T1
lines, of course, the release operation is verified digitally by the far end.

Return values:
Empty string.

* ls connect [-half] resource func

Description

Connect the LS device to another resource. If -half is given, only a half duplex connection is set up;
otherwise, a full duplex connection is set up. With a half duplex connection, the resource func device listens
to the ls device but not vice-versa. The use of dsp attach is preferred over this command because it takes
into account dependencies between the LS and VP devices.

Return values:
Empty string.

Error codes:
CMDNOTEXIST resource func
CMDNOTHANDLE resource func
HWRONGTYPE resource func

* ls dsp attach [-timeout milliseconds] var

Description

Each LS (and T1) device which lives on a board which has both telephone network interfaces and voice
processing resources “knows” the unit number of its corresponding VP device. This command tells the
network device to check out that specific VP device and then establish a full-duplex connection with it. The
handle for the checked out VP device is put in var .

94

If -timeout is given, time out after the given number of milliseconds if the VP device isn’t available.

Return values:
If -timeout is given, then TIMEOUT is returned on a timeout. Otherwise, the return value is the empty string,
and the var is set to the device’s handle.

Error codes:
RESALLOC2BIG vp
NOTNONNEG milliseconds

* ls wait off milliseconds

Description

Wait for the other side to hang up. On an analog line, this function waits for loop current to drop. Some
phone switches do not drop loop current when the far end hangs up, so take care in using this function in
this situation—it will not return if reorder tone is detected. On a T1 line, it waits for digital indication that
the far end has hung up.

If milliseconds is given, wait a maximum of milliseconds else wait forever.

Return values:
Empty string. Success.
TIMEOUT Waited more than milliseconds.

Error codes:
NOTNONNEG milliseconds

* ls wait on milliseconds

Description

On an analog port, this function waits for loop current to start. On a digital line, it waits until the far end
attempts to establish a connection.

If milliseconds is given, wait a maximum of milliseconds else wait forever.

Return values:
Empty string. Success.
TIMEOUT Waited more than milliseconds.

Error codes:
NOTNONNEG milliseconds

95

* ls wait ring milliseconds

Description

This function is implemented by analog ports only. It causes the port to wait for ring voltage to be detected
on the line. On a digital port, use the wait on command to accomplish the equivalent function. The system
must receive n rings rings before the wait is satisfied, if this PBX parameter has been specified for this
port.

If milliseconds isn’t given, then wait forever.

Return values:
Empty string. Success.
TIMEOUT Waited more than milliseconds.

Error codes:
NOTNONNEG milliseconds
OFFHOOK port

* ls unit

Description

Return unit number of LS device. Devices of the same type have different unit numbers, but devices of
different types may have the same unit number. This command won’t return the BOARDERROR errorCode like
the other commands will because it doesn’t make calls to the device driver for the board.

Return values:
Unit number.

* ls port

Description

Return port number of LS device. Every network device in the system has a unique port number; i.e., port
numbers are not the same even for different device types. This command won’t return the BOARDERROR
errorCode like the other commands will because it doesn’t make calls to the device driver for the board.

Return values:
Unit number.

* ls set screen text [-box box] [-status text]

96

Description

This function sets the text on the screen for the associated port. You can set either field or both at once.
This routine won’t return an BOARDERROR errorCode because it doesn’t call the device driver functions.

Return values:
Empty string.

* ls flashhook

Description

Do a flashhook. In some environments, with some analog boards, this function actually does an Earth Recall
function on the board (set during driver installation for some voice boards). This function is not supported
on E1 boards. On T1 devices, the A and B bits are dropped for the duration of the flashtm parameter, or
500ms if that parameter is not specified in the Configuration Database.

Return values:
Empty string.

* ls get dnis

Description

This function works only on GlobalCall network handles.

It returns the Dialed Number Identification String as returned by the GlobalCall driver for the associated
port. If no DNIS information is available, then an empty string is returned.

* ls get ani

Description

This function works only on GlobalCall network handles.

It returns the Automatic Number Identification string as returned by the GlobalCall driver for the associated
port. If no ANI information is available, then an empty string is returned.

97

6.5 VP Commands

VP devices can perform long-term operations like playing a recording. Because of this, their operations may
be interrupted by the detection of an exceptional condition, such as detection of certain incoming tones like
a Fax CNG tone or TDD initiation tone, which indicate that special call processing is in order. We may also
detect that the other party has hung up. Hangup detection is complex because there are so many ways that
phone switches may indicate it to us:

1. On an analog port, loop current may be dropped. We look for this condition if the Configuration
Parameter hangup supervision is set to true for the port in the Configuration Database.

2. On digital ports, the port device will get a digital indication almost immediately if the other party
hangs up.

3. The VP device, while playing or recording, may detect a tone or cadence which indicates that the caller
has hung up, called a reorder tone. Or it may detect other special tones such as a Fax CNG tone.

4. The VP device may detect one or more DTMF digits which indicate hangup. Whenever digits are
received, the VP device checks them against the setting of dt hangup in the Configuration Database
for the port to which the VP device has most recently been dsp attach’d (remember that potentially
the same VP device can be used with different network ports which are connected to different telephone
switches which might send different hangup sequences).

In the first two cases, the network device will signal the VP device which was most recently dsp attach’d to
it, that it has detected hangup. In the latter two cases, the VP device itself does the detection. Either way,
the VP device will then terminate whatever function it was performing and throw a HANGUP exception. If
a Fax CNG tone is detected, a VP device will throw a FAX INITIATION exception.

Here are the VP commands:

* vp unit

Description

Return unit number of VP device. Devices of the same type have different unit numbers, but devices of
different types may have the same unit number. VP devices don’t have port numbers. They don’t stick out
of the back of a machine.

Return values:
Unit number.

* vp pause

Description

Pause playing or recording of the current audio. You can resume playing or recording with the resume
command later. This command should only be executed after you have started an asynchronous operation.
You can also skip backward and forward while paused.

98

Return values:
Empty string. Success.
NOOPINPROGRESS No operation is currently in progress.

* vp resume

Description

Resume playing or recording. This command should only be executed after you have stopped an asynchronous
operation.

Return values:
Empty string.

Error codes:
NOOPINPROGRESS

* vp stop

Description

Stop playing or recording on the specified device. This command differs from the pause command in that you
cannot resume. This command should only be executed after you have started an asynchronous operation.

Return values:
Empty string. Success.
NOOPINPROGRESS No operation is currently in progress.

* vp skip backward|forward

Description

Skip forward or backward in the audio that is playing by “skipby” seconds. “skipby” defaults to five seconds
or the value of the PLAY SKIP box setting and can be set with the -skipby option on the play command
line. This command should only be executed after you have started an asynchronous play operation. If you
are currently paused, you will skip forward or backward and play will resume.

Return values:
Empty string. Success.
NOOPINPROGRESS No operation is currently in progress. This is not an exception because

you want to a avoid a race condition. When you execute this command,
play may have finished. This should not be an error.

99

Error codes:
errorCode Description
NOMEANING You tried to skip during a record operation.

* vp result [-timeout milliseconds]

Description

Returns the result of an asynchronous operation, such as a play, record, or get digits operation. Normally,
it waits forever for the result. If the -timeout command is given, only wait for the specified amount of time.

Return values:
Anything Return result is operation dependent.
TIMEOUT Waiting for result timed out.
STOPPED A stop command was issued for the thread.

Error codes:
errorCode Description
NOTNONNEG milliseconds
HANGUP
FAX INITIATION
FAX ANSWER
TONE toneid The tone corresponding to toneid was heard. The mapping between

toneids and tones is hardcoded in the system.

* vp play [-async] [-clear] [-maxpause milliseconds] [-times n] [-delay milliseconds] [-pause
pause key [resume key]] [-volume up key down key] [-speed fast key slow key] [-skip backward key
forward key] [-skipby seconds] [-term key string] [-fromend] [-noretain] [mmo func]. . .

Description

Plays a set of audio MMOs on the specified VP device. The MMO internal procedures names should be
given (by dereferencing the MMO variables). The options are as follows:

-async Play asynchronously. That is, return immediately.
-clear Clear the DTMF buffer before playing. The DTMF buffer stores the

digits the user typed in. This option is normally only used if you are
playing back an error and want to discard what the user typed in.

-maxpause milliseconds Maximum time that play may be paused. That is, if you pause the play
and milliseconds expires, the play starts back up again automatically.
The default is the setting tmo pause in the Configuration Database. If
this value isn’t set, you can pause as long as you would like.

100

-timesn Repeats the playback for n times. The default is to play the MMOs once.
-delay milliseconds When playback is repeated using -times, then playback will pause

milliseconds between each repetition. The default is zero.
-pause pause key [resume key] Pause if the user presses pause key . Resume if the user presses

resume key . If resume key isn’t given, the pause key is a toggle.
-volume down key up key Adjust the audio volume if the user hits the specified keys. The space

between the keys should not be given. It is simply here to separate the
words down key and up key . Use a two character string.

-speed slow key fast key Adjust the audio playback speed with the keys given. The two DTMF
digits should actually be given back to back. For example: -speed 70
would assign 7 as the slow-down key and 0 as the speed-up key.

-skip backward key forward key Skip forward or backward by skipby seconds. skipby is set with the
-skipby option. skipby defaults to 5 seconds or the value of the
PLAY SKIP box setting. As with -volume and -speed, the space be-
tween the keys is not actually specified in the command line; it is shown
here only to separate the two words in the command description.

-skipby seconds Set the number of seconds to skip forward or backward by.
-term key string Terminate playing when one of the keys in key string is pressed. The

default is all keys except for the skip, speed or volume keys. To not
terminate on any keys, give the empty string.

-fromend Start playing from the end. Playing is started skipby seconds from the
end.

-noretain Do not retain the key that terminated play in the DTMF buffer. If this
option is not given, the key that terminated play is left in the DTMF
buffer and will be processed by the next Tcl command that inspects the
DTMF buffer.

Return values:
Empty string. Play finished or -async was given and there was not an error.
key A key was pressed.
STOPPED A stop command was issued.

Error codes:
NOTNONNEG seconds
CMDNOTEXIST func
CMDNOTHANDLE func
HWRONGTYPE func
HANGUP
FAX INITIATION
FAX ANSWER
TONE toneid

* vp play hold [-async] [-clear] [-delay seconds] [-times number] [-term key string] [-noretain]

Description

Plays hold music. This command differs than the play command in that you can have the play loop over
and over again and you can specify a delay between plays. The file(s) which are played are fixed; they are
listed in the Configuration Database in the hold music parameter.

101

The options listed mean the same thing as the play command with the exception of the following:

102

Return values:
Empty string. Play finished or -async was given and there was no error.
key key was pressed.
STOPPED A stop command was issued.

Error codes:
NOTNONNEG seconds|number
HANGUP
FAX INITIATION
FAX ANSWER
TONE toneid

* vp play prompt [-async] [-clear] [-term key string] [-noretain] prompt set [prompt]. . .

Description

Play the prompts. Prompts are prerecorded phrases in a file which is opened by the load prompt set
command described below. The specific file to play the prompt from is specified by prompt set . prompt set
is the returned value from load prompt set. Each prompt has a number. You give the sequence of the
prompts to play on the command line. The meaning of the options is the same as the play command.

Return values:
Empty string. Play finished or -async was given and there was no error.
key key was pressed.
STOPPED A stop command was issued.

Error codes:
NOTNONNEG prompt
PROMPTNOTEXIST prompt
FAX INITIATION
FAX ANSWER
TONE toneid
HANGUP
LANGNOTSET

* vp record [-async] [-rate normal|high|wave16] [-mintime seconds] [-maxtime seconds] [-term key string]
[-clear] [-nobeep] [-append] [-hangup] [-noretain] [-notrim] [-silence seconds] [-initsilence seconds]
mmo func

Description

Record audio to the indicated mmo func. The options are the same as to the play command with the
exception of

103

-rate normal|high|wave16 Record at a normal or high rate if normal or high is given. The
actual rate is taken from the rate normal and rate high settings
in the Configuration Database. MMOs in the wave16 format are
used by speech recognition, and they can be included in Internet
e-mail messages with the send smtp mail command. If you are
appending, this option is ignored.

-mintime seconds If the recording is less than seconds, ignore the recording. The
default is the parameter minmsg in the Configuration Database or
0 if that parameter is not set.

-maxtime seconds If the recording is longer than seconds, then terminate the recording
at seconds length and stop recording. The recording is saved at that
length. Default: infinite.

-nobeep Don’t sound a beep to start recording.
-append Append to the audio file rather than replacing it.
-hangup Don’t raise an exception on hangup. Simply return “HANGUP.” This

is useful for recordings which should be saved even if the caller
hangs up.

-silence seconds Terminate if seconds of silence is heard. This value overrides the
parameter tmo silence in the Configuration Database for silence
termination. If tmo silence is not set, the default is 5 seconds.

-initsilence seconds Sets the initial silence to allow before termination. If given, then
seconds seconds of initial silence is allowed. If sound is heard within
this time, after -silence seconds recording will terminate. Useful
for allowing a long lead time for someone to say something, but
after they’ve said something, you wish to terminate quickly.

-noretain Do not retain the digit that stopped recording in the DTMF buffer.
-notrim Do not trim silence off the end of the recording when using

-silence. Speech recognition does not work if you trim the si-
lence off the end.

-term key string Terminate recording when one of the keys is pressed. The default
is only the # key to help avoid talkoff.

Return values:
Empty string. User gave -async and there are no digits in the DTMF buffer.
key key was pressed.
STOPPED A stop command was issued.
HANGUP The user hung up. Only returned if -hangup is given.
MINTIME The recording was ignored because it was too short.
MAXTIME The maximum recording time was reached.
MAXSILENCE The maximum amount of silence was heard.

Error codes:
NOTNONNEG seconds
CMDNOTEXIST func
CMDNOTHANDLE func
HANGUP
HREADONLY func
FAX INITIATION
FAX ANSWER
TONE toneid

104

* vp pcpm [-rings number] [-async] [-after]

Description

Perform “programmed call progress monitoring”; that is, listen for certain types of tones and return the
result found. Example tones are busy signal, the fax answer tone, etc. -async works the same as the in the
play command.

-rings says to return NOANSWER after number of rings. If -rings isn’t given, then use the value of the
remote rna parameter in the Configuration Database. If this isn’t set, the default is four.

The -after option specifies that when an answer is detected by hearing voice (this depends on the setting of
the Configuration Parameter use pvc), then wait until the voice stops before returning ANSWER. Otherwise,
ANSWER is returned as soon as the voice is detected.

Return values:
Empty string. You gave the -async parameter.
BUSY A busy tone was detected. You usually hear this when the phone is off

the hook.
INTERCEPT Operator intercept was detected or call blocking.
ANSWER Answer was detected.
FAX ANSWER A fax answer tone was heard.
NOANSWER Phone rang but no answer.
NORINGBACK No ringback was detected.
TONE toneid

Error codes:
errorCode Description
NOTNONNEG rings
HANGUP
FAX INITIATION This normally would not happen. Normally you call out and wait for the

other side to answer using this call. When the other side answers, you
hear a fax answer tone. You should never hear a fax initiation tone when
the other side answers.

* vp beep [-freq1 frequency] [-freq2 frequency] [-duration milliseconds] [-term string]
[-dialtone][-busy][-ringback][-call waiting] [-reorder][-override][-stutter dialtone]
[-recall dialtone][-clear][-noretain]

Description

Make a beep sound on the VP device. You can set the first and second frequencies with -freq1 and -freq2
You can set how long you want the beep to occur with the -duration option. The default is freq1 of 500,
freq2 of 0, and duration of 100.

As with play, the -term flag indicates the list of digits which should terminate the function (the default is
all digits), noretain indicates that terminating digits should be discarded from the digit buffer, and -clear
indicates that any digits in the buffer should be cleared before beginning the function.

105

The options -dialtone, -busy, etc., cause a corresponding standard tone to be played. The use of these
flags overrides the -freq1 and -freq2 flags.

Return values:
Empty string.

Error codes:
NOTNONNEG frequency |milliseconds
HANGUP
FAX INITIATION
FAX ANSWER
TONE toneid

* vp load prompt set prompt set name

Description

Loads a prompt file into memory as specified by prompt set name. The directory location and extension
should not be specified, just the name. This will return a value to be used by future calls to play prompt
to play a specific prompt within this prompt set. This function is similar to the now extinct language
command. The idea is that now multiple prompt sets can be loaded at the same time for each language.
Therefore, this function does not set the current language, nor does it source the prompt set’s tcl file. It is
now designed so that the prompt set’s tcl file calls this function.

Still, a list of available languages is returned by the function list languages, described on page 111.

Return values:
prompt set

Error codes:
LANGNOTEXIST prompt set name

* vp dialtone [-waittime]

Description

Wait for one second of continuous non-silence, presumed to be a dialtone. If waittime is specified, then the
function will wait that long to detect a dialtone; the minimum value of 2000 milliseconds is enforced silently.
If no value is specified, then the function will wait the minimum time (two seconds).

Return values:
1 A dial tone was detected.
0 No dial tone was detected.

106

Error codes:
HANGUP
FAX INITIATION
FAX ANSWER
TONE toneid

* vp set digit type mf or dtmf

Description

This function changes the type of digits that the driver is to listen for. It does not flush any digits which
may already be in the hardware or software digit buffer.

Return values:
Empty string.

* vp get digits [-clear] [-async] [-maxtime milliseconds] [-initsilence milliseconds]
[-interdigitsilence milliseconds] [-maxdigits number] [-retain] [-keep] [-notrace] [-term key string]

Description

Listen for digits on a VP device. Some of the options are the same as in the play command. The ones that
aren’t are

-maxtime milliseconds Listen for no more than milliseconds whether there is silence or not.
This is the maximum total time for the operation. Default: 0
(unlimited time).

-initsilence milliseconds milliseconds is the maximum initial silence before giving up.
Default: 2000 (2 seconds).

-interdigitsilence milliseconds If more than milliseconds occurs between a user typing a digit,
assume the user is done typing digits. Default: 2000 (2 seconds).

-maxdigits number Listen for a maximum number of digits. If you want to listen for a
single digit, give 1.

-retain Return the digits heard, but don’t delete them from the DTMF
buffer. Normally the digits are deleted from the DTMF buffer.

-keep Keep the terminating digit. Normally, any digit that is in key string
is discarded and not returned (or put in the DTMF buffer).

-notrace Suppress tracing the result of this function, for security reasons.
-term key string Terminate on the string given. The default is no key.

Return values:
Empty string. -async was given or the operation timed out and no digits were heard.
Digits heard.

Error codes:
FAX ANSWER

107

errorCode
HANGUP
FAX INITIATION
TONE toneid

* vp dial [-mf | -pulse | -dtmf] [string]. . .

Description

This function dials the string given. If multiple strings are given, they are concatenated together without
intervening whitespace. The options tell how to dial. The default is -dtmf.

Return values:
Empty string.

Error codes:
INVALIDVALUE string

* vp load tones tone set filename

Description

Load the tones from the specified tone set filename into the vp device. Some boards, such as Dialogic have
consolidated tone sets where each VP device understands all the tones, and which are configured using
the device driver. For these devices, this function is a no-op. Other boards, such as Rhetorex, may only
understand a certain tone set for each VP device which needs to be configured at run-time. It is for the
latter class of boards that this function is reserved.

Return values:
Empty string.

Error codes:
FILENOTFOUND tone set filename

* vp get mmo mmo var

Description

mmo var is a writable mmo that will receive the last recorded sound that was recorded through the
recognize function.

108

Return values:
Empty string on success. NOTFOUND if there is no recording to retrieve RHETSTD VOX OPEN if it failed to open
the mmo file RHETSTD RECORD if no bytes were written to the mmo

Error codes:
MMONOTWRITABLE mmo var

* vp init fax

Description

This function works only on a GlobalCall-based VP handles.

If the underlying board supports DSP-based faxing, and if a fax resource is available, then this function
returns 1. Otherwise, it returns 0. Once this function has returned 1 for a given VP handle, then that VP
device can execute the send fax or receive fax commands which are described on page 113.

6.6 Port Messages

A person who is talking on the phone using up a port is usually affected by the actions that they themselves
do through talking and dtmf digits. However there is another action and that is from a client logged in the
mailbox that is on the receiving end of the call. The port can advertize that it will listen for actions sent by
the client and act on them. This concept is similar to the Call Queue, but the Call Queue handles a list of
calls that are not yet talking to the callee. Port Messages are actions from the client to the port once the
caller is talking to the callee. What is similar to Call Queue is the type of actions: TRANSFER BOX, HANGUP,
HOLD, and VOICEMAIL. The following commands are used to manipulate Port Messages.

* enqueue port msg net var mailbox var

Description

This function will create a enrollment variable, var , that will allow the port to listen for commands from the
client. The client must be logged into the same mailbox . And for security purposes the net var of the port
itself must be passed in. Once this function completes, use the wait command passing in the var , along
with other variables to wait on, to listen for an action from the client. The following are results from the
wait of this var :

TRANSFER BOX box [grt [grtBox]] Transfer the call to the indicated box . Optionally a greeting to play is specified. The mailbox of the greeting is the current mailbox unless grtBox is specified.
HOLD [grt [grtBox]] Place the call on hold. Optionally a greeting to play is specified. The mailbox of the greeting is the current mailbox unless grtBox is specified.
VOICEMAIL box [grt [grtBox]] Send the call to voice mail for the indicated box. Optionally a greeting to play is specified. The mailbox of the greeting is the current mailbox unless grtBox is specified.
HANGUP Disconnect the call.

109

Return values:
Empty string.

Error codes:
MULTQATTACH mailbox
BOXNOTEXIST mailbox

list enqueued ports

Description

This function is used to list the port numbers of the ports listening for commands from the current logged
in mailbox.

Return values:
A list of port numbers.

send port msg port hangup|transfer|voicemail|hold [-grt grt num] [-box transfer to]

Description

This function is used to send a command message to the specified port . The possible commands are
hangup|transfer|voicemail|hold. If box or voicemail then box must be specified to designate where
to. The grt may be specified to play a greeting to the caller before the action is taken, usually to tell the
caller what is going on.

Return values:
Empty string.

Error codes:
MSGNOTFORW port

6.7 Miscellaneous Commands

get port status [port]

Description

Returns the status of port port . If port is not specified, then information about all ports is returned, as an
a-list of port numbers followed by the status a-list for that port.

110

Return values:
The return value is an a-list with the following keys:

state on-hook or off-hook
box box logged into port if someone is logged in.
calls taken Number of calls taken on port.
route info Route information for port.
last call time Time last call was taken on port in GMT.

Error codes:
NOTNONNEG port
PORTNOTEXIST port

get ports in use

Description

Returns a Tcl list of the ports currently off-hook.

reset port [port]. . .

Description

Resets the ports given. If the port is not doing anything, such as playing some audio, this command is a
no-op. You need the RESET PORT privilege to execute this command, and it is available only when the
Dialogic DLL has been loaded with the system.

Return values:
Empty string.

Error codes:
NOTNONNEG port
PORTNOTEXIST port
PERMDENIED

* list languages

Description

Returns a Tcl list of available languages to the system.

Return values:
language list.

111

* name to digits name. . .

Description

This function takes one or more names and returns a corresponding list of keypad encodings of those names,
using the standard American keypad mapping of letters to digits.

Return values:
digits list.

112

Chapter 7

Fax Commands

Amanda Portal supports Dialogic’s GammaLink fax resource boards via the gamma plug-in module. These
boards are the CP/4-SC, CP-6/SC, and CP-12/SC, which provide 4, 6, and 12 fax resources, respectively.
Boards can be combined to provide up to 60 fax resources in one system.

As with LS and VP devices, you must first acquire a fax resource from the resource manager via grab res.
Once you have this resource, you must connect it (full-duplex) to a telephone network resource, such as an
LS or T1 device. You should have already established the telephone connection to the remote fax device,
either by detecting a CNG tone (FAX INITIATION) or by dialing out and using PCPM to detect a fax
answer tone (FAX ANSWER). Once this has been accomplished, you may release the VP device which was
used to do the dial and PCPM operations and make the full-duplex connection between the fax resource and
the network resource.

The fax resource devices, fx , provide the following member functions:

* fx unit

Description

Returns the unit number of the fax device.

Return values:
The unit number.

* fx send fax [-cover text|text mmo func] [text |mmo func]. . .

Description

113

Sends a fax on the given fax device. If -cover is given, use the given text for a cover page. You can send
text, textual MMOs, or fax (TIFF/F format) MMOs from the fax device. When sending a fax, the “csid”
(the phone number the fax is considered sent from) is retrieved from the fax driver. This number is printed
on the recipient’s page as required by law. You can override the fax driver value by setting the fax id value
in the Configuration Database.

Return values:
Empty string.

Error codes:
CMDNOTEXIST func
CMDNOTHANDLE func
HWRONGTYPE func
HANGUP
FAX INITIATION
FAX ANSWER
TONE toneid

* fx receive fax mmo func

Description

Receives a fax on the specified fax device. mmo func should be an MMO previously allocated with
create mmo.

Return values:
NOFAXRECEIVED Receiving a fax failed. Perhaps the other side hung up before sending

the fax or an error occurred during the transmission.
csid The calling station id (csid) is returned on success. Normally this is the

phone number of the station sending the fax.

Error codes:
CMDNOTEXIST func
CMDNOTHANDLE func
HWRONGTYPE func
HREADONLY func
FAX INITIATION
FAX ANSWER

In addition, see the queue fax command described on page 200.

114

Chapter 8

Internet E-Mail

Amanda Portal implements POP3 client and server code and E-SMTP client and server code. The client
code in each case is accessible at the Tcl level, while the server code runs automatically. All four features
are enabled by loading the POP DLL. These features can be used as follows:

POP3 client This facility is useful for implementing a way to play back waiting e-mail, which remains
stored on the POP3 server, to a user. Text to speech can be used to read mail which is in ASCII, while
of course voice enclosures can be played directly.

SMTP client This feature allows you to create applications in which users originate Internet e-mail mes-
sages which contain voice components which they record via the telephone. It can also be used in a
Notify template to transfer all of a user’s messages to an SMTP/POP server so that the user receives
all forms of messages in one place. The Notify template could control whether the messages were then
deleted from Amanda Portal or were kept in both places.

POP3 server Another method of accessing Amanda Portal messages via a standard e-mail client is to tell
the client to access Amanda Portal as a POP3 server. Amanda Portal will automatically translate
all messages stored in the user’s mailbox into standard MIME-format messages, so the POP client is
unaware that they were originally voice and fax mail messages.

SMTP server The purpose of the SMTP server is mainly for when a user sends Internet mail to an outside
recipient. If that recipient then tries to reply to the message, the SMTP server code exists so that
Amanda Portal can receive the reply and store it in the user’s mailbox. Currently, we recognize MIME
and VPIM version 1.0 messages containing voice (in various formats) and fax (TIFF-F) enclosures as
well as plain text.

POP servers assign message numbers to each message. You can delete messages by these message numbers.
When you delete a message, the message isn’t actually deleted on the POP server until the POP quit
command is executed. Once a message is deleted, you cannot refer to it anymore and commands that
operate on that message number won’t work.

Here are the commands related to sending and receiving Internet e-mail:

send smtp mail [-host host] [-subject subject MMO] [-format msg format] [-mmos MMO list] [-from
from] [-urgent] [-private] recipient . . .

115

Description

Send e-mail to the indicated recipients If -host isn’t specified, then the mail is posted through the host
specified by the smtp host parameter in the Configuration Database. You can give a subject line with
-subject, whose MMO argument must contain plain ASCII text to conform to RFC-822. The default is not
to set a subject. You can specify the contents of your message with zero or more MMOs. The msg format
argument specifies the category of MIME message that you want to create and the format of the audio
attachments, if any. The available choices are wave16 and vpim. If -format is not given, then a standard
MIME message containing audiobasic sound files will be generated.

The From: field of the generated message will normally default to mailbox@hostname. The mailbox portion
can be overriden by the smtp from configuration setting, and similarly the hostname can be overriden by the
smtp hostname configuration parameter. However, all of this is superceded if the -from argument is used.

Return values:
Empty string.
HOSTNOTEXIST host
CONNREFUSED host
USERNOTEXIST recipient

Error codes:
CMDNOTEXIST func
CMDNOTHANDLE func
HWRONGTYPE func
PROTOCOLERROR

* connect to pop server user password host var

Description

Connect to POP server host as user with password and return a handle in var . You can then use var ’s
member functions to get and delete messages.

Return values:
Empty string.
HOSTNOTEXIST host
CONNREFUSED host
LOGINFAILED user password

Once the variable is set by connect to pop server, the handle’s member functions are as follows:

* hfunc stat

Description

116

Returns two quantities: the number of undeleted messages on the server and the total number of bytes they
represent.

Return values:
An a-list is returned. It will contain two keys. The first key undeleted count contains the number of
undeleted messages on the server. The second value undeleted bytes contains the number of bytes consumed
by the undeleted messages.

Error codes:
CONNBROKEN

* hfunc list [msg num]

Description

Returns a list of the message numbers and their size in bytes. If msg num is given, only the message number
and size for the message given are returned.

Return values:
An ordered a-list is returned. The first part of each “2-tuple” is the message number and the second part is
the size of that message in bytes.

Error codes:
NOTNONNEG msg num
MSGNOTEXIST msg num
CONNBROKEN

* hfunc uniq id list [msg num]

Description

Returns a unique id list for all the non-deleted messages or a unique id list for the message given by msg num.
These unique ids are persistent and should be the same even across two different connections. This is not
true for message numbers.

Return values:
An ordered a-list is returned. first part of each “2-tuple” is the message number. The second part if the
unique id for the message.

Error codes:
NOTNONNEG msg num
MSGNOTEXIST msg num
CONNBROKEN

117

* hfunc get msg msg num

Description

Returns the message given by msg num.

Return values:
The text of the message is returned.

Error codes:
NOTNONNEG msg num
MSGNOTEXIST msg num
CONNBROKEN

* hfunc get msg top msg num n

Description

Returns the top n lines of a message. All the message headers are returned followed by n body lines.

Return values:
The headers and first n body lines are returned.

Error codes:
NOTNONNEG msg num|n
MSGNOTEXIST msg num
CONNBROKEN

* hfunc delete msg msg num

Description

Delete the message indicated by msg num. As mentioned earlier, the message is not actually deleted by the
pop server until a quit command has been issued; the undelete msgs member command may be used to
revive deleted messages until then.

Return values:
Empty string.

Error codes:
NOTNONNEG msg num

118

errorCode
MSGNOTEXIST msg num
CONNBROKEN

* hfunc undelete msgs

Description

Mark deleted messages as undeleted on the POP server.

Return values:
Empty string.

Error codes:
CONNBROKEN

* hfunc quit

Description

Remove all messages marked for deletion and close TCP connection. Simply unseting the hfunc variable
will drop the connection to the server without “expunging” any deleted messages there, in accordance with
the latest POP3 RFC. Therefore, clients should issue the quit command first if they want to insure that
the deleted messages are actually deleted.

Return values:
Empty string.

Error codes:
CONNBROKEN

There is one more function that becomes available when the pop.dll module is loaded:

* parse mail msg text msg var

Description

Parse the text given as an e-mail message and fill in msg var . msg var has the same structure as a message
returned by get next msg (see page 72), with the addition of one field: preferred from. This field is set to
the human name found in the From field of the message, or to an empty string if no display name is present
there.

119

If the mail message contains audio MIME parts, they will be extracted as audio MMOs. If the message
contains textual MIME parts, they will be extracted as textual MMOs.

Return values:
Empty string. Success.
PARSEERROR Couldn’t parse the text.

120

Chapter 9

Serial Devices

The serial ports on a computer are a limited resource that is controlled by the resource manager much like
the limited VP and LS devices. Amanda Portal can use serial ports, for instance, to integrate with certain
types of phone switches (see chapter 14).

Like VP and LS devices, the resource manager creates a “handle” with member functions for serial devices.
To make a serial port available as a resource, you must create a global Configuration Database parameter
“comn” with a value equal to a string of settings similar to the DOS “mode” command. That is

9600,n,8,1

or

baud=9600 parity=N data=8 stop=1

will both work. When the system starts up, it opens any such comn devices and initializes them according to
these settings. Normally, you will not have to change the baud rate, parity, etc., settings at runtime, though
there are member functions listed below which can do so.

Here are the member functions associated with serial ports:

hfunc baud [rate]

Description

Sets the rate to rate or returns the current rate.

Error codes:
NOTNONNEG rate

121

errorCode
INVALIDVALUE rate

hfunc parity [value]

Description

Sets the parity to value, which must be one of odd, even, mark, space, or none, or returns the current
setting.

Error codes:
INVALIDVALUE value

hfunc binary [boolean]

Description

Sets whether the port ignores null characters or returns the current setting. When reading strings with
the read function, this parameter should be set to “true.” The gets command eliminates any null bytes
regardless of the setting of this parameter. Default: false (ignore null characters).

Error codes:
NOTBOOLEAN boolean

hfunc flow out [value]

Description

Sets the output flow control to value, which must be one of none, xon, cts, or dsr, or returns the current
setting.

Error codes:
INVALIDVALUE value

hfunc flow in [value]

Description

Sets the input flow control to value, which must be one of none, xon, rts, rts handshake, or rts toggle,
or returns the current setting.

122

Error codes:
INVALIDVALUE value

hfunc stop bits [bits]

Description

Sets the number of stop bits to bits, which must be one of 1, 1.5, or 2, or returns the current setting.

Error codes:
INVALIDVALUE bits

hfunc data bits [bits]

Description

Sets the number of data bits to bits, which must be from 4 to 8, or returns the current setting.

Error codes:
NOTNONNEG bits
INVALIDVALUE bits

hfunc gets [-timeout milliseconds]

Description

Read newline terminated text from the port. The terminating carriage-return/line-feed combination is not
returned and null characters are ignored. If -timeout is given, time out after that many milliseconds;
otherwise, wait forever.

Return values:
TIMEOUT Timed out.
value Value retrieved.

Error codes:
NOTNUMBER milliseconds

hfunc getc [-timeout milliseconds]

Description

123

Return a single character from the input stream. Default timeout is infinite.

Return values:
TIMEOUT
Empty string. Null character read.
character Non-null character read.

Error codes:
NOTNONNEG milliseconds

hfunc write string

Description

Write the string to the serial port.

Return values:
Empty string.

hfunc read max

Description

Read a string of max characters from the serial port.

Return values:
The string is returned in ASCII hex. That is, a string of length max ∗ 2 is returned. The return value is in
hex so you can decipher null characters.

Error codes:
NOTNONNEG max

124

Chapter 10

Miscellaneous Databases

10.1 List Mapping Database

The list mapping database is a general persistent store for mappings from keys of the form “(box ,key)” to
a list of string values. The meaning of the key values is left up to the Tcl code. The main purpose of this
database is to support mailing lists in Amanda Portal, where key would be something like “List 3” and the
string values would be a list of box numbers. There are no privileges needed to use this store except for the
box ancestor relationship restrictions that permeate Amanda Portal.

There is a special case in the list mapping database though. If key is copy to, then you must have the
COPY TO privilege to change the mapping. This list is used internally to determine whether messages for
boxes should be copied to other boxes on receipt. In addition to the COPY TO privilege, the regular ancestor
relationship restrictions in Amanda Portal apply, so you cannot modify the copy to of a non-descendant
even if you have the privilege.

Here is a list of the list mapping functions:

add lmapping [-box box] key [value]. . .

Description

Add a set of values to a list mapping (lmapping). This adds new values to the list corresponding to the
index “(box ,key.)” It does not delete any previous values already in the list. Any duplicate values are silently
ignored.

Return values:
Empty string.

Error codes:
errorCode Description
NOTNONNEG box

125

errorCode Description
BOXNOTEXIST box
PERMDENIED box
NOTNONNEG value Only received if using the copy to key. Values for this key must be box

numbers.
INVALIDVALUE value

delete lmapping [-box box] key [value]. . .

Description

Delete a set of values from a list mapping. This only deletes the values given and leaves the other values in the
list. If you want to delete all the values in the list (essentially deleting the mapping), see the set lmapping
call.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
INVALIDVALUE value
VALUENOTEXIST value

* get lmapping [-box box] key

Description

This gets the value of the list mapping at the specified index.

Return values:
A Tcl list is returned with the list value. If there is no such index, an empty Tcl list is returned. Therefore,
there is no difference between the list mapping not existing and being empty. They are one and the same.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
INVALIDVALUE value
BREQNLOGIN

* get lmapping attendance [-box owner mailbox] member

Description

126

This gets all the lists that this member belongs to. If owner mailbox is specified then just the lists of that
mailbox is searched.

Return values:
A Tcl alist is returned. The first part is the owner mailbox . The second part is a Tcl list of list keys that
the member is within. An empty result is return if member does not belong to any list.

Error codes:
INVALIDVALUE value

set lmapping [-box box] key [value]. . .

Description

This sets the value of the list mapping to the indicated values. Old previous values are deleted. This function
also doubles as the list mapping deletion function, since setting the list to empty and deleting the list are
equivalent.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED box
INVALIDVALUE value

* get lmapping keys [-box box]

Description

Get all the keys for the list mapping for the specified box or the current box if logged in.

Return values:
The keys for all the lmappings as a Tcl list.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
INVALIDVALUE value
BREQNLOGIN

Another class of commands deals with persistent values. These values may be set, enumerated, or incree-
mented/decremented atomically. The name of each value is a free-form string, as is the value, though of
course if the value is to be incremented, then it must be an integer.

127

* get global [name...]

Description

This function returns an a-list of the global variables, or keys, and their values. If no names are specified,
then all defined global variables are returned, and otherwise, only the requested ones are returned.

Error codes:
errorCode Description
INVALIDKEY The specified key is not currently defined.

* increment global [-by value] name...

Description

This function increments the value of one or more of the permanent global keys. If more than one key is
specified, then all are incremented together atomically. If a key is specified which does not exist, then it is
treated as if it did exist with the value 0.

The option -by can be used to specify the integer value by which the variables are to be incremented. It
defaults to 1.

Error codes:
errorCode Description
INVALIDKEY The specified key is not currently defined.
NOTINTEGER The value of the specified variables is not an integer.

* set global name value...

Description

This function can be used to set the value of one or more permanent global keys. If more than one key is
specified, then all the keys are set together atomically. Any previous value associated with any specified key
is lost.

delete global name...

Description

This function can be used to delete one or more keys from the permanent global variables list.

128

This function can be called only by interpreters executing with the GLOBAL MONITOR privilege.

Error codes:
errorCode Description
INVALIDKEY The specified key is not currently defined.

10.2 Trie Mapping Database

When you call into a phone system, you may not know a person’s extension. Instead, you may only know a
person’s name. Therefore, we need a way of mapping from a person’s name to the set of box numbers with
that name. The only input device the user has at this point is his phone, so we need a way of mapping from
a set of digits entered by the user to a set of box numbers (hopefully one).

When you first call in, you will hear a menu entry that tells you something like, “If you don’t know the
person’s extension, type in the first three digits of their last name.” When you do this, the system looks
up the digits typed on the keypad in the “411 Directory” and maps those digits to the box numbers of the
people with that name. Usually only one name will match and you will get that person’s box (which is then
used to find the person’s extension).

“Tries” are data structures in computer science. When given a set of strings, “tries” find the shortest string
match that uniquely identifies a string.

Tries solve the mapping problem from a fragment of the user’s name to his extension. The user is prompted
to type in the letters of the person’s last name and the trie tree is traversed looking for matches. If a single
match is found, then the value is looked up and returned. For example, if the value is the user’s extension,
then this value is spoken back to the user. If multiple matches are found, all the names found are read back
to the user.

Since the user’s only input is often a phone, two entries are actually installed in a trie tree whenever a
new entry is installed: one entry is installed for the alphanumeric text itself and another entry is installed
for the numbers on the keypad that correspond to the letters in the input key. When you query for the
values associated with a key, you can query based on the alphanumeric or telephone numeric value. The
“separation” between the alphanumeric and numeric entries is known by the system though, as we will see
later.

There can be many trie databases, each separate from one another. To modify any trie database, you
need the CHANGE TMAPPING privilege. To create and destroy any trie database, you need the CRE-
ATE TMAPPING privilege. One trie database is special though: the “411” trie database. This database
has special semantics known to the system. With this database, the values must be box numbers, the boxes
must exist and you can only change values for your box number or descendent box numbers. Also, when a
box is deleted, any values are deleted from the 411 trie database automatically.

Here are the trie functions:

create tmapping map name

Description

129

Creates a new trie mapping with the name map name. Initially the map has no keys. You must have the
CREATE TMAPPING privilege to execute this call.

Return values:
Empty string.

Error codes:
MAPEXISTS map name
PERMDENIED

destroy tmapping map name

Description

Destroy a trie mapping database. All the entries and the map itself are destroyed. You must have the
CREATE TMAPPING privilege to execute this call. Only the superbox can destroy the 411 trie mapping
database.

Return values:
Empty string.

Error codes:
MAPNOTEXIST map name
PERMDENIED

add tmapping map name [value] key . . .

Description

Add a new value and the list of keyss to the database if the key doesn’t exist in the database already;
otherwise, append the values to the list associated with the key already in the database. key must be
alphanumeric. If key contains letters, then two “keys” are actually entered into the database: one with the
alphanumeric name and one with only the numeric name corresponding to the alphanumeric name on the
telephone keypad. These two keys are known as “internal keys.” If key contains digits only, then only one
“internal key” is entered into the database.

If the map name is “411,” then the values must be box numbers and the box numbers must correspond to
either your box or a descendent box. These entries will automatically be reclaimed on box deletion.

You must have the CHANGE TMAPPING privilege to execute this call.

Return values:
Empty string.

130

Error codes:
errorCode Description
INVALIDKEY key Key isn’t alphanumeric. 411 map only.
INVALIDVALUE value Received when you try to insert a non-numeric value into the 411 map.
PERMDENIED
MAPNOTEXIST map name
BOXNOTEXIST box 411 trie mapping database only.

delete tmapping map name value key . . .

Description

Delete the entry containing the associated key and value. If key maps into two “internal keys,” then the value
is removed from both lists corresponding to the “internal keys.” When the internal list corresponding to
an “internal key” becomes empty, the “internal key” itself is deleted. You need the CHANGE TMAPPING
privilege for this call.

Return values:
Empty string.

Error codes:
errorCode Description
PERMDENIED
INVALIDKEY key Key isn’t alphanumeric.
KEYNOTEXIST Key does not exist.
VALUENOTEXIST Value does not exist on the key given.
MAPNOTEXIST map name
INVALIDVALUE value

delete tmapping by value map name value

Description

This function searches the lists of all the “internal key’s”s values and removes any entries containing value.
If the internal list becomes empty, the “internal key” is deleted also. This function is useful for deleting all
keys associated with a box, if the value is a box. You need the CHANGE TMAPPING privilege for this
call.

Return values:
Empty string.

Error codes:
PERMDENIED
MAPNOTEXIST map name
INVALIDVALUE value

131

* query tmapping [-alphanumeric] map name key fragment

Description

Query the trie mapping database and try to find a match. The alphanumeric and numeric portions of the
tree are known to the system. Normally this function only searches the numeric portion of the tree. If you
want search the alphanumeric portion of the tree, use the -alphanumeric option.

Return values:
An a-list is returned where each index is a key that matched and the value is a list of values for that key.
If the a-list contains more than one entry, then the key fragment was ambiguous and it matched multiple
keys. If the list for an index contains more than one entry, then there are multiple values for that key. (For
example, there may be multiple boxes with the name “Bob.”) If the a-list returned contains no entries, then
nothing matched.

Error codes:
INVALIDKEY key fragment
MAPNOTEXIST map name
INVALIDVALUE value

* get tmapping keys map name value

Description

Gets all the keys containing value somewhere in the key’s list. Both the alphanumeric and numeric keys are
returned.

Return values:
The keys are returned as a Tcl list.

Error codes:
MAPNOTEXIST map name
INVALIDVALUE value

* list tmapping databases

Description

This functions returns a list of all the trie mapping databases in the system.

Return values:
A Tcl list of all the trie mapping databases in the system.

132

Chapter 11

The Configuration Database

The Configuration Database persistently stores configuration information in four distinct categories:

global Parameters that are global to the system.

port Parameters that are specific to a port on a board.

extension Parameters that are specific to an extension in the system.

pbx Parameters that are specific to a certain type of PBX in the system.

The last three types of parameters require some type of id to identify the port, extension or PBX in question.
Global parameters don’t require an id . Non-global parameters come in two forms: a “short form” which
is a 1-tuple (e.g., n rings) and a “long form” which is a 2-tuple (e.g., “n rings 2” or “n rings *”). The
long form has a special “wildcard” form specified with a ‘*’ which means all ports, extensions or PBXes (the
“n rings *” form in the previous sentence). Non-wildcard forms are considered more specific than wildcard
forms and take precedence over them.

The parameters in these categories are pretty much fixed when the system is running. We’ll see some other
parameters in the next section that vary as the system is runs (such as the message waiting light on/off state).
The parameters in this section require the CONFIGURATION privilege to change while the parameters in
the next section (such as the message waiting light) do not require you to have the CONFIGURATION
privilege.

133

Each of the categories of parameters are separate except for the port and pbx databases. If a key does not
exist in the port database, the pbx database is checked for the parameter value. To determine which pbx
settings to check for, the special setting pbx is checked in the port database to determine the id of the pbx
database entry to check. For example, suppose we have the following entries:

PBX database
tmo dtwait Panasonic 300
tmo dtwait Partner II 500

Port database
tmo dtwait 3 400
pbx 4 Panasonic
pbx * Partner II

Port 3 will have a tmo dtwait of 400 milliseconds. Port 4 will have a tmo dtwait of 300 milliseconds (because
it is on a Panasonic switch) and all other ports will have a tmo dtwait of 500 milliseconds and are on a
Partner II switch.

Here are the Configuration Database functions:

* get param [-id id] global|port|extension|pbx [key]. . .

Description

This function gets the values of all the parameters with the keys given. Keys should be given in short form.
The -id option may not be given if the type is global and must be given if the type is not global. This is
the main function for looking up a single value. When looking up port values, the pbx database is searched
as described above.

Return values:
An a-list containing the values is returned. The keys are always returned in short form and you cannot tell
by the return value whether a wildcard or non-wildcard key matched. That is, if you give the command

get param -id "Panasonic KX-T308/616" pbx foo param

you may get back the a-list “foo param bar” and you won’t know whether there is an
“foo param "Panasonic KX-T308/616"” or “foo param *” key in the database. Also notice that the
id need not be a number. For PBXes, the id is a string. If the key does not exist, the entry won’t be set in
the returned a-list.

* get param by long global|port|extension|pbx [key]. . .

Description

134

This function takes and returns parameters using the long form rather than the short form as in the previous
function. That is, you can pass in “n rings 19” and “n rings *” and get back two values if there are two
different values for these keys in the database. If you give no keys, you will get back nothing. To get all the
keys, nest a call to get param keys like

array set foo [eval get param by long port [get param keys port]]

The pbx database is not searched if the port category is used. This function is useful for getting all the
values in a certain category.

Return values:
An a-list is returned with the keys in long form. This allows you to iterate over all the keys in the database.

Error codes:
KEYNOTEXIST key

* get param keys global|port|extension|pbx|help

Description

This function returns all the long key names for all the parameters of a certain type. The pbx database is
not searched if the port category is used.

Return values:
A regular Tcl list with the keys in long form are returned.

set param -table global|-table port|-table extension|-table pbx [key value]. . .

Description

This function allows you to set parameters. Parameters keys must be specified in long form for non-global
parameter keys. You need the CONFIGURATION privilege to execute this call. You can add new unknown
parameters to the system but the interpretation of these new parameters is left up to your Tcl code.

Return values:
Empty string.

Error codes:
PERMDENIED

delete param global|port|extension|pbx [key]. . .

135

Description

This function deletes a set of parameters from the system. All keys should be given in long form. You must
have the CONFIGURATION privilege to execute this call.

Return values:
Empty string.

Error codes:
KEYNOTEXIST key
PERMDENIED

Each parameter name has help text associated with it. The help text describes what the key means and is
displayed on the screen to the user when he is looking at a certain key in the Configuration Database. The
help text is not divided up into four individual databases like the regular Configuration Database. If you
have two keys with the same name in the global and port databases for example, they must have the same
help text. The help text manipulation functions are as follows:

* get param help text [key]. . .

Description

Gets the help text for the specified keys.

Return values:
An a-list is returned with the key and help text associated with the key. If a key doesn’t exist, that key value
pair is not returned.

* get param help keys

Description

Returns all the help key names.

Return values:
A Tcl list of the key names is returned.

set param help text [key value]. . .

Description

Sets the help text for the specified keys. You need the CONFIGURATION privilege to use this function.

136

Return values:
Empty string.

Error codes:
PERMDENIED

For a list of all the parameters recognized by the system, see “The Amanda Portal Administration Guide.”

137

Chapter 12

Triggers

There are three kinds of triggers in Amanda Portal: those that fire when a certain time is reached, those
that fire when a certain condition is met, and those that fire when some data changes. These are known
as autoschedules, notify records, and dtriggers (data triggers). Autoschedules are basically used for time
related events like causing any phone calls to go to your voice mail after 5PM. Notify records are used, for
example, to schedule jobs on your behalf when you receive a message. Dtriggers are used for data change
events like notifying an Amanda client when some data in Amanda Portal changes.

12.1 Autoschedules

Autoschedule records are stored in a special database known to the system. They basically list, on a per-
mailbox basis, what action is to be taken (Tcl code to be executed) and when that code should be executed.
The code to execute may simply be the name of a Tcl proc, and often this procedure is defined via the
“unknown” mechanism—that is, it is automatically loaded into the Tcl interpreter when you first attempt
to use it and it’s not already defined. When the code is executed, it runs in its own interpreter logged into
the box to which the autoschedule record belongs.

The autoschedule database contains, on a per-mailbox basis, one record for each automatically scheduled
command. Each record is assigned a schedule number by the user. Schedule records are created and updated
by the schedule set command. All the schedule records for the current box, or for a descendant box, can
be obtained via the schedule list command, and they can be deleted via the schedule delete command.
The complete settings for a particular autoschedule can be obtained using the schedule get command.

schedule set [-box] sched num field value. . .

Description

138

This command can be used to create or modify autoschedule records for the current mailbox or for another
box by specifying -box . The field/value pairs consist of one or more of the following fields in the database:

INITTIME This field specifies the first time that the autoschedule record should be executed. The time is
specified as a coordinated universal time value. Normally, the INITTIME will specify a time in the
future, but that is not strictly necessary.

EXEYEAR After the initial execution, autoschedules may repeat on a regular basis. The EXEYEAR, EXEMONTH,
etc., fields specify that it is to repeat at an interval of every so many minutes, days, hours, months,
and/or years. These values can be combined so that a schedule is repeated every one month and one
day, for example. The default for each of these values is zero, so that if only an initial time is specified,
then the schedule will run once at that time.

EXEMONTH See EXEYEAR.

EXEDAY See EXEYEAR.

EXEHOUR See EXEYEAR.

EXEMINUTE See EXEYEAR.

METHODON When an autoschedule record’s time to execute comes, the METHODON value specifies what Tcl
command is supposed to be executed. Often this command will come from the persistent store of
pre-defined commands. But it will only execute if has the highest PRIORITY at this time. The value
specified for this parameter cannot be an empty string. When creating a new schedule, this value is
required.

DURYEAR Once the METHODON command has been executed, and if the DURYEAR, DURMONTH, DURDAY, DURHOUR,
and/or DURMINUTE fields are non-zero, then the schedule is considered to be still in force. This feature
is used in combination with the METHODOFF field to specify an action which is to occur some time after
the METHODON action, usually to undo the METHODON action. The duration time must be earlier than
the time of the next execution of the method, unless this schedule is only to execute once.

DURMONTH See DURYEAR.

DURDAY See DURYEAR.

DURHOUR See DURYEAR.

DURMINUTE See DURYEAR.

METHODOFF See DURYEAR.

PRIORITY If an autoschedule record is considered to be executing, then it will suppress the execution of any
other autoschedule records of lower priority during that time period. The priority value is an arbitrary
non-negative integer. This feature is usually used to create “holiday” schedules which will override any
normal autoschedules which exist for the mailbox.

PROTECTION Allows a parent to create a schedule record for a child and to prevent that child from being able
to change or delete the record, even if the child normally has the privilege to change its autoschedule
records.

SUN...SAT Autoschedule records may be allowed to run only on certain days of the week. The SUN through
SAT fields can be set to boolean values (true or false) to indicate whether the schedule is allowed
to run on those days. When a schedule “attempts” to execute and finds that it’s not a day that it’s
allowed to run on, it automatically moves forward by one day until it hits the next day that it is allowed
to execute on.

139

Error codes:
PERMDENIED box
NOTBOOLEAN field value
FIELDNOTEXIST field name
INVALIDVALUE value
INVALID DURATION sched

* schedule get [-box] sched num [array name]

Description

Retrieves the indicated schedule for the current or indicated mailbox number (must be a decendant). Returns
the information in an associative array if a variable name is indicated, else as an a-list of parameter and
value pairs as the value of the function.

Error codes:
PERMDENIED
INVALIDKEY sched num
INVALIDVALUE value

schedule delete [-box] sched num

Description

Deletes the indicated schedule.

Error codes:
PERMDENIED
INVALIDKEY sched num
INVALIDVALUE value

* schedule list [-box] [var]

Description

Retrieves a list of all schedules for the current or indicated user id. Returns the list as the value of the
function unless var is specified, in which case that variable’s value is set to the list and nothing is returned.

Error codes:
INVALIDVALUE value

140

schedule copy FromBox ToBox [-no notify]

Description

Copies all the schedules from one box to another box. This will ignore existing schedules in the ToBox.
The FromBox can be any valid mailbox number, while the ToBox must be the logged in box or a child of
the logged in box. Specify -no notify to suppress notifying of the new schedules; this is useful for faster
processing when creating ToBox. If ToBox specifies the currently logged-in mailbox, then that box must
have its schedule lock attribute off to do any copying—that is, it must have the privilege to set its own
schedules.

Error codes:
PERMDENIED
INVALIDVALUE value

12.2 Notifications and the Job Queue

Notify records are fired off whenever some predefined event happens, usually activity with your messages
(receiving a new one, listening to all new ones, etc.). They can be used, for instance, to control a message
waiting light on your phone, page a user when he gets messages, or to warn the system administrator about
the disk space getting low so the he or she can assign more disk space to MMOs.

The notification subsystem consists of three different databases. The first, called notification records, de-
scribes, on a per-mailbox basis, the conditions under which the user wishes some command to be executed
to accomplish some type of notification. For example, the user may wish to be paged whenever he receives
voice mail which has been marked urgent.

Once the conditions of a notification record have been met, the system will automatically submit a job
to the job queue. For historical reasons, the job queue is known as the notify instance database, since it
holds “instances” of notification records which have “fired.” However, in practice the notification instance
records can created directly. For instance, an outbound calling application can submit job requests directly
into this queue for processing, so it is also called the outbound job queue, or simply the job queue. The
job queue automatically manages system resources to accomplish all of the requested work in an optimal
fashion. For instance, if five hundred outbound calling jobs are submitted simultaneously, and there are only
five outbound ports available, then the notify instance subsystem will create five threads of control which
will execute the jobs one by one until all have been accomplished.

The second important aspect of the job queue is that it can repeat a job more than once on an automatic
basis. Frequently, you will want a job to be repeated because it “fails.” For instance, if its purpose is
to call someone to notify them by voice of a waiting message, and it hits a busy signal, then the job
would be considered to have failed to complete, and you’d want the job to be repeated after some interval
until it succeeds. You can therefore specify the repeat interval, and the maximum number of successful or
unsuccessful repetitions that should be performed before the job is deleted from the job queue.

141

Finally, the job queue can also manage the outbound calling operations so that they are executed only within
restricted time periods. You can specify this by the day of the week, the time of the day, and/or the date.
When a job would otherwise be executed but it is restricted from doing so by the day, date, and/or time,
then it is automatically rescheduled to run at the first opportunity in the future when all the conditions for
execution will be met. For instance, if a job is set to run only on weekdays at 11AM and to repeat once a
day, then after its execution on Friday, the next execution will automatically skip forward to Monday since
it is restricted from executing on Saturday and Sunday.

The third database is called the notify template database. Each job in the job queue must reference a notify
template name which specifies what the job is supposed to do when it runs. These templates are simply Tcl
procedures which all have a standardized proc name and argument list.

The commands which are used to access these three databases are as follows:

12.2.1 The Notify Record Database

nfr add [-box] type list guard template variable successes failures days from to after every [port group]

Description

This function defines a new notify record for the current mailbox or for box, with the indicated field values.
A user may create/delete his own and his children’s notify records only if the mailbox has the CTRIGGER
(“conditional trigger”) privilege. This function does not check for duplicate records. The type list is a tcl
list of any combination of the following system known values or a type of another name:

normal A normal notification record is fired whenever a new message is received by the mailbox, regardless
of the urgency of the received message.

urgent An urgent notification record is fired only when an urgent message is received by the mailbox.

pickup A pickup notification record is fired when the number of new messages in the mailbox transitions
from one to zero. This will normally be when the user listens to those messages and they are marked
“heard,” but it can also happen if all the unheard messages are deleted.

relay page An relay page record is fired when a relay page message is received by the mailbox.

The function nfr apply can be used to fire off any of the types not known to the system.

The guard is a Tcl boolean expression. If an empty string is specified, the guard defaults to the constant
true. When the notify record would otherwise fire, the guard is evaluated and if false, then the firing is
suppressed. This can be used, for example, to page someone only when the number of new messages exceeds
some threshold.

The variable field specifies an argument which will be passed to the notify template. In practice, this value
is often a phone number which the template is to dial, but it can be any value which is meaningful to the
template.

The remaining parameters are all passed verbatim to the notify instance database when the notify record is
fired. See the description below of the corresponding arguments to the notify schedule command.

142

The notify instance is also tied to the notify record which started it by the message’s number and by the
notify record’s id. When the message which caused a normal or urgent notify to fire is marked deleted or
heard, then any remaining outstanding notify instances for that message will be deleted automatically by
searching the notify instance database for the corresponding notify record id.

Return values:
The id of the newly-created record.

Error codes:
BOXNOTEXIST box
PERMDENIED box
KEYNOTEXIST template

nfr del -[box] id. . .

Description

Deletes notify record(s) for the current mailbox or for the indicated box by id. The ids are returned by the
nfr add and nfr list commands. If a specified id is invalid, then an appropriate error message is returned
and processing stops (ie, any id ’s after that one are not processed).

Return values:
Empty string.

Error codes:
BOXNOTEXIST box
PERMDENIED box
IDNOTEXIST id

nfr list [-box]

Description

Returns a list of all notify records defined for the current mailbox or the indicated box. The first element of
each pair in the list is the notify record id, the second is a sub-a-list of notify record values.

Return values:
Tcl a-list of notify record ids and record value a-lists.

Error codes:
INVALIDVALUE value

nfr apply type variable

143

Description

Checks all the notify records of the current mailbox for a record of type. If there are any, then they are fired
off being passed the variable.

Return values:
Empty string.

12.2.2 The Notify Instance (Job Queue) Database

notify schedule [-box box] template variable successes failures days from to after every msg num nfr recno type
[port group]

Description

144

This command schedules a job for automatic processing, which is typically an outbound call. It is also used
internally by the notification record subsystem described above. The arguments have the following meanings:

box The notify will be placed in the specified box. Must have the NOTIFY ANY BOX privilege.

template The template name specifies which notify template (see section 12.2.3) contains the Tcl code to be
executed by this job.

variable The variable field is a free-form argument which is passed to the notify template as part of its
argument. It is copied from the notify record in the case of a notify; otherwise, it can be any value
which has meaning to the notify template’s code.

successes This specifies the maximum number of times that the template should be executed successfuly. If
this maximum is reached, the job is deleted. A value of zero means there is no limit.

failures This specifies the maximum number of times that the template is allowed to fail. If this maximum
is reached, the job is deleted. A value of zero means there is no limit.

days This value specifies the days of the week, Sunday through Saturday, when the job is allowed to execute.
It can be expressed either as a decimal binary number (127 would mean all days) or as a string of Ts
and Fs. The default is TTTTTTT.

from This value specifies the earliest time of each allowed day that the job can be executed. It can be
expressed in one of two forms: an integer number of seconds since midnight or in HH:MM format using
a 24-hour clock.

to This value specifies, in the same format as from, the last time in the day when the job is allowed to
execute each day.

after This integer value specifies the number of minutes which must pass from the time the job is submitted
before it is first executed.

every This integer value specifies the number of minutes which separate each successful or failed execution.
That is, the job is repeated every every minutes, except for the day of week and time of day restrictions.
If a job would otherwise run but it is restricted from doing so, it is rescheduled automatically for the
next time when it is allowed to run.

msg num If this job was being submitted automatically by a normal or urgent notify record, then the number
of the corresponding message will be filled in here. When that message is subsequently marked deleted
or heard, any outstanding notify instances for it will be deleted automatically. For non-notify jobs,
use -1 so as not to conflict with any actual message number. Note that the msg num value is set as a
global variable called msg num in the interpreter which is executing the template.

nfr recno If this job was being submitted automatically by a notify record, then this value will “point back”
to the notify record which was fired. For non-notify jobs, use -1.

type If this job was being submitted automatically by a notify record, then this value will be the type of
notification that was being executed (normal, urgent, etc.). It is checked when notify instance records
are automatically deleted when messages are picked up/deleted to insure that only the correct records
are deleted. Otherwise, it is unused and it can be given any other value, including the empty string.

port group This optional parameter specifies the port group which will be used by the notify template. If left
blank, then when the time comes to execute this job, a separate thread of execution is used. Otherwise,
the notify instance subsystem optimizes the number of threads based on the number of ports in each
identified port group.

Return values:
Empty string.

145

Error codes:
NOTNONNEG successes
NOTNONNEG failures
NOTNONNEG after
NOTNONNEG every
NOTINTEGER msg num
NOTINTEGER nfr recno

* notify list [box]

Description

Notify instances are permanent until they have been stopped by their maximum number of successes or
failures, or they are deleted by the notify delete function or by a message pickup (or the deletion of the
owning mailbox). The notify list command shows all outstanding jobs for the current box, or for box if
it’s specified.

Return values:
The return value is a possibly-empty Tcl list of data about each outstanding job. The job-specific data will be
the ID number of the job, the time it will next execute (as Coordinated Universal Time), the template it will
execute, the “variable” argument to be passed to that template, the number of successful executions so far,
the maximum number permitted, the number of failed executions so far and its maximum permitted value,
a boolean value specifying whether the job is currently executing, a boolean value specifying that the record
was deleted while it was executing (so it is to be destroyed when its execution finishes), and the notify record
number and type information which were supplied to the notify schedule command.

Error codes:
INVALIDVALUE value

notify delete [-box box] id. . .

Description

The notify delete command can be used to delete one or more notify instances by their ID numbers (as
returned by the notify list command). Normally, it operates only on IDs of notify instances belonging to
the logged-in box, but other boxes’ instances may be deleted by specifying -box, as long as the logged-in
box is an ancestor of box or the logged-in box has the NOTIFY ANY BOX privilege.

Return values:
Emtpy string.

146

Error codes:
IDNOTEXIST id
PERMDENIED box

12.2.3 The Notify Template Database

template set name body

Description

The template set command allows a user to define or redefine notify templates. There is no set limit on
the number of templates, except that template names are constrained to be no more than 16 characters,
case insensitive. Since template names are really filenames, the character set allowed is the same as that
for filenames in Win32. If the name specified identifies a template which already exists, that template is
redefined. Otherwise, a new template is created. The body is the body of the notify procedure.

When a template is executed by the notify instance subsystem, it is passed a single argument. That argument
will be the “variable” value which was specified to notify schedule. When a notify instance is created by
a notify record, the ID of the message corresponding to msg num is appended to the variable field of the
notify record; in this case, the list will contain two items, or possibly more if the “variable” field of the notify
record was itself a list. The formal parameter which receives this single argument is called notify args.

In addition to the argument, several variables are set globally in the interpreter when the notify proc is
executed:

msg num will contain the msg num value that was passed to notify schedule. This is used indirectly to
implement the %R token.

variable will contain the value of the variable argument to notify schedule. This is used to implement
the %V token.

last failure will be set to a Tcl boolean value. If true, then if the notify fails this time, it will not be
rescheduled to execute again. If false, then an error return will cause the instance to be requeued. This
information may be of use to the notify template so that it can clean up state (as in the MMO lookup
table) if it is not going to execute again.

The notify template can also modify the value of last failure. If it is set to true and the template
returns an error, then the job will not be requeued again regardless of the number of failures so far.

last success will be set to a Tcl boolean value. If true, then if the notify succeeds this time, it will not
be rescheduled to execute again. If false, then a normal return will cause the instance to be requeued.
This information may be of use to the notify template so that it can clean up state (as in the MMO
lookup table) if it is not going to execute again.

The notify template can also modify the value of last success. If it is set to true and the template
returns normally, then the job will not be requeued again regardless of the number of successes so far.

The template body procedure should return an error, via the error command, if its execution is considered
to have failed. Any normal return will be considered to be a successful execution. Not that the tokens
command returns true if it completes the token execution and otherwise false; these return values may need
to be translated to normal/error returns in the template body if it uses the tokens command.

147

This command is defined only if the logged-in user has the CTRIGGER CODE privilege.

Return values:
Empty string.

* template list

Description

This command can be used to enumerate the existing notify templates.

Return values:
A Tcl list of all defined template names.

* template get template name

Description

The template get command loads template name into the calling interpreter. This results in defining a
function called notify with one argument, as described above.

Return values:
Empty string, but upon success it will have created or changed the notify proc in the interpreter.

Error codes:
INVALIDKEY template name

template body template name

Description

The template body command returns the body of template name. This command is defined only if the
logged-in user has the CTRIGGER CODE privilege.

Return values:
The body element of the template.

148

Error codes:
INVALIDKEY template name

12.3 Data Triggers

Amanda clients connect to the Amanda Portal server and allow you to send and receive voice mail through
your computer rather than through your telephone. These clients also monitor different kinds of status
information in the server. Whenever some data changes on the server, these clients need to be updated with
the changes. These changes are performed through “monitors.”

In Amanda Portal, there is code attached to the database modification functions that allow triggers to be
set whenever data in the database is modified. These triggers normally send updates to the clients when the
data changes.1 To get this information, clients must register an “interest” in the data or they won’t get the
updates. This limits the amount of information that must be sent down to the client on a database change.

When a client connects, the client talks to a Tcl interpreter on the server just like a telnet session would,
except that the server is actually talking to a client program and not a human. The client logs in and
executes commands just as a human would.

Like the server, the client has a Tcl interpreter built into it and the server sends updates to the client as Tcl
scripts. The updates are sent on a different port than the client sends requests to the server on so as not to
confuse return results from client to server requests with updates from the server to the client. Figure 12.1
illustrates this.

This example shows a client asking for changes to box settings to be relayed to the client on port 5000. The
client listens on port 5000 and the server connects to it. This dtrigger is assigned id “id1” which the client
can later use to reference this dtrigger. Later, the client receives an update for a box setting on port 5000.
Next, the client requests information about lmapping and autoschedule record changes to be sent on port
3000. Lastly, the client decides to no longer monitor box setting updates and gives the server the dtrigger
id to delete. The server notices that this is the last dtrigger on that port and closes the port. When a client
disconnects, the server simply deletes all the dtriggers that client was using.

In practice, the client doesn’t ask for information to be sent back on multiple ports. One will suffice. Also,
when you ask for information, you normally ask for information about a specific box or set of boxes, not all
the boxes in the system.

Here is the call the client executes in the server to register interest in data changes. How the client sends
this command to the server is not specified.

The dtrigger and monitor commands provided by the system exist as several different levels. The Amanda
core provides three functions: monitor add, monitor list, and monitor delete. The Internet DLL
provides the functions add dtrigger and delete dtrigger in interpreters which are created for non-
interactive (client program) connections only. These two functions are front-ends for the monitor add and
monitor delete functions of the core.

1Currently, these changes are sent down the TCP/IP connection to the client; however, these triggers are more general than
this. They actually call a callback in the Internet DLL that sends the data down the wire. Different DLLs could have different
callbacks and do different things.

149

Client Server

-

--

-

-

�

�

?

call
result

time

box changed
(port 5000)

client
disconnects

Send me info about box
setting changes on port
5000. (Port 5000
opened.)

(asynchronously)

Send me info about
lmapping changes on
port 3000. (Port 3000
opened.)

Send me info about
autoschedule record
changes on port 3000.
(Existing port used.)

Stop monitoring
dtrigger id “id1.” (Last
dtrigger.⇒Port 5000
closed.)

dtrigger id “id1”

Server notices
disconnect. Removes all
dtriggers to client.

Figure 12.1: Example use of dtriggers.

150

Another command, invoke dtrigger is called when the trigger is actually fired. It performs the actual work
of contacting the client and delivering the information about the event which happened. Two other functions
are used only for monitoring the system (observing port changes, capturing trace information, etc.). The rea-
son they are separate is that they must be at a very low level in the system to avoid “feedback loops” such as
tracing a trace event’s processing. These functions are add trigger request and delete trigger request.

Finally, the Internet module also provides two additional functions for non-interactive (client) connections
only: internet play and internet record. These two functions are substitutes for the play and record
VP functions. Instead of playing/recording through a telephone interface, they establish TCP connections
to the client at a predetermined port number, transfer some header information regarding the format of the
file to be transferred, and then download or upload an MMO’s content.

Here are the details of each of these functions:

monitor add type sync group id method cookie [ObjectName] [-permanent]

Description

This function is used to create a new monitor: that is, a registration of interest by the client in some
particular type of event. If successful, the monitor id of the newly created monitor will be returned.

The type argument must be one of the following strings: shutdown, lmapping, tmapping,
message, box settings, box creation, ttrigger, ctrigger, ctrigger proc, mmo lookup, call queue,
call queue view, persistent proc, or privilege.

When a notification to the client occurrs for the first time, it causes a TCP connection to be established to
the client. Thereafter, for efficiency, the connection stays around until that monitor is deleted (or the client
disconnects or logs out). We want to make sure that the client cannot be spoofed by a hacker, so it chooses
a random value called a cookie which will be known only to it and the server. When a connection is made
from the server to the client, the server must first send on that connection whatever cookie value the client
had picked. If the client receives a connection but doesn’t get the right cookie value from it, then it knows
to reject that connection.

The sync group id argument is an arbitrary integer value that can be used by the client to group different
categories of monitors. All monitors with the same sync group id will use the same TCP connection to the
client for performing client updates.

The method argument is the Tcl command which should be run at the time that the monitored event happens.
Normally this will be a form of the invoke dtrigger command. This argument is normally formulated by
the add dtrigger command, since clients usually don’t call the monitor add funcition directly.

When the user logs out or calls monitor delete then this notification is removed except if the -permanent
flag was specified. If the permanent flag was specified then the notification will stay for the life of the process.
This flag only works for the top level mailbox and does not apply to the messages and privileges notification
triggers.

Return values:
id

151

Error codes:
PERMDENIED ObjectName
HWRONGTYPE type
NOTINTEGER sync group id

monitor list

Description

Enumerates all the monitors that have been created by not deleted by this interpreter.

Return values:
Returns a Tcl list of lists. Each of the sublists is a triple of the id, ObjectName, and type, of the monitor.

monitor delete id

Description

This function deletes a monitor by its id. The specified monitor must exist and have been created by this
interpreter.

Return values:
A Tcl boolean value (0 or 1).

Error codes:
NOTNONNEG id
IDNOTEXIST id

add trigger request port cookie type

Description

This function adds a low-level monitor which will not cause further tracing or monitoring (so it is non-
invasive, and it won’t cause any infinite loops or deadlocks) within the system. It is used only for writing
system monitoring programs.

The port argument is a TCP port number on the client to which the data should be sent. The cookie is a
security cookie just like that in the monitor add command described above.

The type argument must be one of the following: port, user, trace, general, resource, or t1. You may
have at most one outstanding trigger request for each type.

152

Return values:
Empty string.

Error codes:
NOTNONNEG port

delete trigger request type

Description

Deletes a previously-established low-level data trigger of type type. If no trigger of that type exists, no
indication is given to the caller.

Return values:
Empty string.

add dtrigger type port cookie [box]

Description

153

Tell the server to start sending changes related to type and box back to the client on port port . If port is not
currently opened, it is opened up first. This command is only valid (and in fact only injected) in interpreters
over a TCP/IP connection. You needn’t give the IP address to send the data to because it can be figured
out by inspecting the IP address the request came in on. To prevent trojan programs from sending data
back on the port requested when the server calls back, a cookie is sent by the client. This cookie is returned
by the server in all data transfers. If the client notices the cookies don’t match, it closes the port because it
isn’t talking to the correct program. This security is rudimentary but sufficient for now. type can be one of
the following:

accept call: An incoming call is being presented to a call queue agent.

box settings: Changes related to box settings.

box creation: Boxes either being created or deleted.

ttrigger: The autoschedule records database being updated.

ctrigger: The ctrigger rule database being updated.

ctrigger proc: The ctrigger proc database being updated.

lmapping: The lmapping database being updated.

tmapping: The tmapping database being updated.

persistent proc: The persistent procedure database being updated.

call queue: The call queue being modified.

call queue view: The call queue updating active calls or active agents. Requires the view privilege on the
queue.

message: Messages being added to, read or expunged in a box.

privilege: The privilege database being changed for a box.

mmo lookup: An entry being changed in the MMO lookup table for a box.

shutdown: The server being shutdown.

All of the above types except box creation, ctrigger proc, tmapping, persistent proc and shutdown
types require a box argument specifying the box to monitor.

Return values:
A dtrigger id that can be used to delete the dtrigger later.

Error codes:
errorCode Description
NOTNONNEG port |box
BOXNOTEXIST box
PORTPRIVILEGED port
INVALIDTYPE type
MISSINGPARAMETER box
PERMDENIED Normally you can monitor the status of any box except with the message

type. With this type, you may only monitor your own box.

154

errorCode Description

delete dtrigger dtrigger id

Description

Deletes the dtrigger identified by dtrigger id . The information being sent by this dtrigger is no longer sent
to the client. If this is the last dtrigger on the port, the port is closed.

Return values:
Empty string.

Error codes:
IDNOTEXIST dtrigger id

invoke dtrigger

Description

When the server sends data back to the client, it sends back a command like

type cookie dtrigger id [box] args. . .

The type name is the same as the type name given in the add dtrigger command. That is, the client has
a function with the same name as the type. This function updates the client as appropriate. The cookie is
sent back so the client can verify that it is actually the server that is sending it data. The box argument is
only given for types that are box specific. The rest of the args are type specific. They functions/data are
defined as

box settings cookie dtrigger id box set deleteability mutability [key value]. . .

Setting key on box box has been changed to value. Each key has the deleteability and mutability given.

box settings cookie dtrigger id box delete [key]. . .

155

Setting key has been deleted on box .

box creation cookie dtrigger id add|delete parent box [child box]. . .

The child boxes given have been either created or deleted with relation to parent box .

ttrigger cookie dtrigger id box add ttrigger id [key value]. . .

A new ttrigger for the specified box has been added. ttrigger id is the id of the new ttrigger added.

ttrigger cookie dtrigger id box delete [ttrigger id]. . .

The ttrigger ids given have been deleted from the system.

ctrigger cookie dtrigger id box add ctrigger id [key value]. . .

A new ctrigger for the specified box has been added to the system. The key/value pairs are the same as
those given to add ctrigger.

ctrigger cookie dtrigger id box delete [ctrigger id]. . .

The ctrigger ids given have been deleted from the system.

ctrigger proc cookie dtrigger id add|delete [proc]. . .

The specified procs have been added to or deleted from the ctrigger proc database.

lmapping cookie dtrigger id box add|delete key [value]. . .

156

Each of the values have been added or deleted from the key for the specified box.

lmapping cookie dtrigger id box set key value list

The lmapping key has been set to the values in value list .

tmapping cookie dtrigger id add|delete map name [key value]. . .

The set of values for the key given have been added to or deleted from the database.

persistent proc cookie dtrigger id add|delete [proc]. . .

The procs given have been added to or deleted from the persistent procedure database.

persistent proc cookie dtrigger id rename old proc new proc

old proc has been renamed to new proc in the persistent method database. If new proc is the empty string,
the proc has been deleted.

message cookie dtrigger id box add [key value]. . .

A new message has been added to box . The key/value pairs are the same as the array indices that are
filled in by get next msg (see page 72) call except that the MMOs are not returned and the subject is not
returned (which is also an MMO).

message cookie dtrigger id box add fcc [key value]. . .

A new message has been added as with add , except this is a filed carbon copy. The client may not wish to
inform the user of new messages in this case.

157

message cookie dtrigger id box set msg number [key value]. . .

The message specified by msg number has changed. It’s new attributes are given by the key/value pairs.
msg number is the internal message number returned by get next msg. You can only monitor your own box
with the message type.

message cookie dtrigger id box expunge [msg number]. . .

The messages specified by msg number have been expunged.

privilege cookie dtrigger id box add [priv value]. . .

Privileges have been added with the values given.

privilege cookie dtrigger id box delete [priv]. . .

Privileges have been deleted.

mmo lookup cookie dtrigger id box add [key a-list]. . .

The keys given in the MMO database have been added or modified. a-list is an a-list containing the keys
description and private as in the function lookup mmo attrs (see page 82). You will only get updates
on private MMOs for your box only.

mmo lookup cookie dtrigger id box delete [key]. . .

The keys given has been deleted from the MMO Lookup Table for box .

shutdown cookie dtrigger id

158

The system is shutting down. The system may take a while to shut down or may be shut down immediately.
This call doesn’t differentiate between the two.

call queue view cookie dtrigger id queue add call id [key value]. . .

A new call, identified by id , has entered the queue. The call’s attribute’s are described by the key/value
pairs. The key/value pairs have the same values as that given by the call info command (see page 188).

call queue view cookie dtrigger id queue set call id [key value]. . .

A call’s attributes, identified by id , has changed as described by the key/value pairs. The key/value pairs
have the same values as that given by the call info command (see page 188).

call queue cookie dtrigger id queue delete call id

A call’s has been deleted, or in other words removed from the queue, identified by id .

call queue priv cookie dtrigger id queue set accept id call callid status newstatus

This is a notification of a call, callid , being assigned to an agent that has the option to accept or reject the
call. New status of the agent is also updated.

call queue priv cookie dtrigger id queue set transfer id call callid status newstatus

This is a notification of a call, callid , being immediatly transfered to an agent. New status of the agent is
also updated.

call queue cookie dtrigger id queue create queue box [key value]. . .

A new queue has been created for box . The key/value pairs have the same values as that given by the
queue info command (see page 181).

159

call queue cookie dtrigger id queue set queue box [key value]. . .

A queue attributes has been changed. The key/value pairs have the same values as that given by the
queue info command (see page 181).

call queue cookie dtrigger id queue expunge queue box

The queue has been removed.

call queue view cookie dtrigger id queue create agentBox box [key value]. . .

A new agent has been created for the queue. The key/value pairs have the same values as that given by the
agent info command (see page 182).

call queue view cookie dtrigger id queue set agentBox box [key value]. . .

A agent’s attributes has changed. The key/value pairs have the same values as that given by the agent info
command (see page 182).

call queue view cookie dtrigger id queue expunge agentBox box

The agent has been removed from the queue. If box is -1 then all the agents have been removed from the
queue, usually because the queue is being expunged also.

call queue view cookie dtrigger id queue add agent agentId [key value]. . .

An agent has entered the queue. The key/value pairs have the same values as that given by the agent info
command (see page 182

call queue priv cookie dtrigger id queue set agent agentId status newstatus

160

A agent’s status has changed.

call queue view cookie dtrigger id queue delete agent agentId mailbox box

The agent identified by agentId has left the queue.

call queue stats cookie dtrigger id queue set callStats [key value]. . .

Real-time statistics update for the queue.

161

Chapter 13

Persistent Procedures

The system maintains an area on disk where you can store persistent Tcl procedures. Anybody with the
EDIT PMETHOD privilege (which will normally be limited to administrators) can use the store proc
command to store or modify a procedure in this persistent pool. Anybody can access and source the
procedures in this persistent pool. You cannot store a procedure with the same name as another persistent
procedure—that would redefine that produre to have the new arg list and body.

When you call a function in your Tcl script and that function isn’t already defined as a command or a proc,
the persistent procedure pool is searched for a procedure with a corresponding name, and if it is found, it
is loaded into the interpreter and the command continues execution as if it had always been defined. Of
course, once so referenced, the proc is now defined in the interpreter in case it is used again.

The persistent procedure pool mainly exists for the CALLER CODE, RNA CODE, etc., settings on a box (see
page 57). These settings consist of Tcl code to execute when a user calls in, when a user’s extension is busy,
etc. These fields are limited in length though, so they often simply contain calls to a persistent procedure.
In addition, by factoring out the behavior from the setting on a box, we centralize the code into one place,
making modification easier. If one or more functions are to made generally available, then they can be
defined in a single file and that file can be added to the tcl source files configuration parameter so that
those procs are defined in every interpreter. The persistent procedure pool’s purpose is to hold procs that
are seldom used, or are used by only one or a few mailboxes or under special circumstances, where it would
be inefficient to define them in every interpreter that is created just on the off chance that it will be used.

The functions related to the persistent procedure pool are

store proc proc name args body

Description

Stores the procedure in the persistent procedure pool. You need the EDIT PMETHOD privilege to execute
this function.

Return values:
Empty string.

162

Error codes:
PERMDENIED
PROCNAMETOOLONG limit proc name

* proc info body|args|procs [procedure]

Description

Depending on the argument list, return different information. If body is specified, return the body of the
procedure. If args is specified, return the argument list of the procedure. If procs is specified, return the
name of all the procedures in the persistent procedure database.

The procedure argument is required if body or args is given. If procs is given, then procedure is optional
and if not given, all the procedure names in the persistent procedure pool are returned. If it is given, then
regular expressions determine which procedure names are returned, just like the “info procs” command.

The body argument can only be used if a logged-in user has the EDIT PMETHOD privilege.

Return values:
Return value is described above.

Error codes:
PROCNOTEXIST proc
PERMDENIED

rename proc old name new name

Description

Renames a persistent procedure. If new name is the empty list, the persistent procedure is deleted. You
need the EDIT PMETHOD privilege to execute this command.

Return values:
Empty string.

Error codes:
PROCNOTEXIST proc name
PROCNAMETOOLONG limit proc name
PERMDENIED

163

Chapter 14

Integration

Integration and the need for it were discussed in Chapter 3. To simplify parsing integration information that
comes back from the various phone switches, tAA came up with the concept of “patterns.” Patterns are
strings of characters—some characters with special meaning—that are matched with the information that
came back from the phone switch. If a pattern matches, the information is extracted from phone switch
data according to the pattern. This is very similar to the scanf strings in C.

Let’s look at an example. Some switches give back information in prefix notation. That is, the data comes
back like

reason arg. . .

For example, for a busy extension, the data may come back as

#A12

The “#A” says that the extension is busy and the “12” says that the extension that was busy is extension
12. We could create the pattern

#Abb

where “bb” has special meaning, in this case the extension that was busy. To handle a three digit extension,
we can have another pattern like

#Abbb

We can create a number of these patterns and have a function that takes a list of patterns and the integration
data and parses it out and returns the result. Since each switch may return the integration information
differently, different sets of patterns are stored for different switches in the Configuration Database. Here is
the definition of the command which performs the integration pattern parsing:

164

parse integration data integration data pattern list

Description

This function parses the integration data according to the pattern list supplied and returns the information
found. The pattern matching algorithm is described below, along with detailed information about the format
of the patterns.

Return values:
NOMATCH The integration data didn’t match any patterns.
BUSY This call came to Amanda because and extension was busy.
NOANSWER This call came to Amanda because an extension didn’t answer within a

set number of rings.
RNA A call to an extension was ring-no-answer, based on the number of rings

programming in the phone switch for that extension. If the call was from
another extension and the switch supports it, CallingMailbox may also
be supplied.

TRUNK The call is an outside call. The trunk number will be stored in the
variable TrunkId in the interpreter.

LOGIN The call is a direct call from a station, which will be identified in the
CalledMailbox variable. Normally the system will invite the caller to
log into that box by asking only for a password.

RECORD The call is an immediate record situation, with the mailbox identified in
the CalledMailbox variable in the interpreter.

HANGUP This was a hangup indication. Amanda usually ignores such calls.
ANSWER This call type indicates that the switch detected an answer at a station.

Amanda usually ignores such calls.
CALLER ID This is a call whose integration information specified only the Caller ID,

and nothing else (such as an extension which was being called). Usually
this will be a direct outside call. The Caller ID information will be stored
in the CallerId variable in the interpreter.

Error codes:
NOTLIST pattern list

The actual integration patterns will usually be defined in the Configuration Database in the PBX settings
under the integration key. In integration patterns, the following letters (case sensitive) have special
meanings to the parse integration data command:

165

All the DTMF digits 0–9, * and #, and A-D (represented as upper case letters) are literals. Where they
occur in the pattern, the corresponding letter in the integration data must match. Finally, any other letters
(conventionally, written as “x”) are treated as wild-cards. They match any corresponding letter in the
integration data. A pattern is considered not to match a given integration data string if their lengths are
different. Once a match has been determined, then the positions in the patterns which contain the following
letters will cause data to be extracted from the integration data and stored into variables in the interpreter.
Finally, the presence of an a, b, e, h, i, or r in the matching pattern determines the overall type of call,
which is returned by the parse integration data command described above.

a Answer state. This is usually discarded by Amanda.

b Busy state. Where “bbb” appears in the integration pattern is the extension which was busy. Sets the
CalledMailbox variable in the interpreter.

c “Caller ID”. This can actually be any data which indicates who the caller is. Sets the CallerId variable
in the interpreter.

e Direct call from an extension “eee.” Sets the CalledMailbox variable in the interpreter.

h Hangup. Amanda usually discards such calls.

i Immediate record. The extension “iii” wants to being recording the call that he is currently on, so
Amanda should play the record tone and then start recording a message. Sets the CalledMailbox
variable in the interpreter.

r Ring-no-answer. The extension “rrr” did not answer after some number of rings which is programmed
into the phone switch (this is independent of the RNA field in the voice mailbox settings of Amanda).
Sets the CalledMailbox variable in the interpreter.

s Station information. When Amanda receives a “bbb,” “rrr,” or “eee” call, the switch may also provide
station information for who the caller was. This information will match the “sss” in the integration
pattern. Sets the CallingMailbox variable in the interpreter.

t Trunk information. Amanda may use this information to process calls differently depending on which
trunk group they came into the phone switch on (which will be different from which Amanda port
group the call comes into from the switch).

When parse integration data matches an extension via “bbb,” “rrr,” etc., it must be translated into an
Amanda mailbox number. In many situations, there is a one-to-one correspondence between these values, so
no actual translation will occur. But in other situations, the extension number may not match the mailbox
number. To handle this case, you may make entries in the Configuration Database’s EXTENSION table for
the extensions in question. The mailbox key tells the system to map that extension to the value provided
with the mailbox key. So parse integration data looks in that database and tries to map the extension
to a mailbox number. If no mapping is provided, then it is assumed that the mailbox number is the same
as the extension number and no change is made to the data. Finally, parse integration data will set one
or more variables in the interpreter to the possibly-translated mailbox numbers which matched the “bbb,”
“rrr,” etc., patterns.

14.0.1 Serial Integration Modules

When Amanda Portal is connected to a phone switch which does serial integration, one of several support
modules is loaded via the dlls Configuration Database parameter. These modules are currently SMDI,
NECMCI, and GENERIC. When any of these modules have been loaded with the system, then the two
commands described below become available.

166

Serial integration typically provides a two-way “conversation” between the voice mail system and the phone
switch. The switch sends packets in some pre-defined format to Amanda to provide integration information
about telephone calls that are coming to Amanda (or have just come). The switch, of course, describes the
calls in terms of extension numbers on the switch which are connected to Amanda. So we need mechanisms
to translate extesion numbers to Amanda port numbers and to mailbox numbers.

Secondly, serial integration often provides a way for the voice mail system to send status information to the
phone switch. Most often, this is a way to control a message waiting indicator (MWI) on an extension, or
equivalently, a stutter dialtone, which informs the user that they have unheard Amanda messages.

There may also be other aspects of the communication protocol, such as “heartbeat” checks, flow control
issues, etc. All of these details are handled by the loadable DLL modules for the various protocols, and so
they are invisible at the Tcl level.

* get serial integration data

Description

This function returns the serial integration information for the call Amanda just received. This function can
be called only from interpreters which were created in response to an incoming phone call. When integration
information comes in, it may not come into Amanda in lock step with the call coming to Amanda. Therefore,
Amanda has a window within which the integration information must be received before it is considered
valid. This window is specified with the smdi pretimeout and smdi timeout values in the Configuration
Database. If the serial integration information precedes the call, it is simply queued up and this function
will quickly return it. Otherwise, this function will wait a short time until the information shows up.

Return values:
NOINFO The serial integration information didn’t show up or was outside of the

timeout window.
Serial integration info converted
to ASCII.

message waiting indicator extension setting

Description

This function allows you to control the message waiting indicator status when a serial integration module is
loaded. It is made available to all logged-in interpreters to that it can be executed by a notify job.

You specify the extension number and the setting of the MWI: on or off. This queues up a request to send
out, on the serial connection, the appropriate sequence of characters to accomplish the requested change,
and the message waiting indicator call returns immediately.

This function is defined only when the SMDI or NECMCI modules have been loaded with Amanda.

Return values:
Empty string.

167

Chapter 15

Call Queueing

The features and commands described in this chapter are available only if the CallQueue2 DLL is loaded
with the system.

The identity of a user in Amanda Portal is closely associated with a box. You must log into a box to be
known to the system. Each user (i.e., box owner) may wish to have a queue of people waiting to call him.
He would answer each call in turn and the people in the queue would wait until he is ready for the next call.

We can extend this concept by allowing other people the ability to receive calls destined for the owner of the
box. In this way, we get a generalized queueing mechanism where queues are associated with boxes and we
can allow other people to take calls destined originally for our box. Only one queue can be associated with
each box in this manner though.

Call queueing gets slightly more complicated than this. You can actually use the queueing mechanism to
support “network call screening” and “manage waiting calls.” With “network call screening,” you have a
queue for your box but you are always unavailable. You select which phone calls you wish to take by looking
at them on the screen and selecting the disposition of each call. You may wish to send a salesman’s call to
voice mail but take a call from your boss for example. With “manage waiting calls,” you are actively taking
calls but the calls queue up while you are talking. You can review the calls in the queue on your screen
and decide to either preempt the call you are currently on to take another call in the queue, send one of the
calls in the queue to voice mail or make the people in the queue wait. You can even set up rules on how to
dispose of calls in the queue. You may wish to send certain calls automatically to voice mail based on their
Caller ID information. This logic is not built into the system but rather programmable at the Tcl level.

Another usage of call queueing is to have a “hold queue.” With a “hold queue” the owner of the queue does
not actively monitor the queue. Calls get placed into the queue when the callee is busy on the phone. The
calls get dequeued automatically after the caller at the top of the queue can successfully dial the callee’s
phone with an answer. Again, most of this logic is built into the Tcl level. The purpose of the call queue is
to keep and order of the incoming calls for the callee.

Each box may or may not have a queue associated with it. Obviously, boxes that aren’t created cannot have
queues associated with them. The queue handle or identifier is the box number and we can create queues for
specialized services, such as technical support, by creating a box for technical support and assigning a queue
to it. To create a queue, you use the create queue call. To do this, you will need the CREATE QUEUE
privilege. Once a queue is created, you can enable agents to attach to the queue to receive calls.

168

While we are limited to one queue to a box, a box owner can receive calls from multiple queues. When a
call comes in, it is put in a call queue and an agent picks up the next call from the queue by signaling that
he is ready to receive the next call. When the agent is done with the call, the system must be notified that
the agent is done. If we are an unPBX (i.e., there is no PBX. The computer transfers all the calls), then we
know when the agent hangs up. If we are using a PBX, the agent must indicate to the system that he has
hung up because the PBX doesn’t notify Amanda Portal. The agent may do this by hitting a button on the
screen of the Call Queue Agent application.

Calls can be inserted into a queue even if there are no agents attached to the queue. If there are no agents
attached to a queue, the queue manager will act as a hold queue for the TUI to wait to be transfered to
the mailbox. If there are agents attached to the queue, and the last one exits then the calls will get notified
and will probably go to voice mail. (depending on the Tcl logic).1 But if the call entered allowing no agents
then it will not be notified when the last agent exits the queue.

Each agent that connects to a queue may have a number of “skills,” such as speaking Spanish. Likewise,
each call that comes in may require a number of “skills” of the agent that takes the call. If an agent is to
take a call, they must have at least the skills required by the call. That is, if a call requires skills ‘a’ and ‘b’,
then the agent must at least have the skills ‘a’ and ‘b’ to take the call. The agent may have more. When an
agent is allowed into a queue, the queue manager tells the system which skills the agent possesses.

The rules for inserting calls into the queue and automatically removing calls from the queue are actually
more restrictive because of skills. If a call has a set of skills and no agent is currently assigned to the queue
that has those skills, then the call queue insertion function will fail. Also, if an agent leaves a queue and he
is the last agent to fulfill a certain set of calls’ skills criteria, then all those calls will automatically be sent
to voice mail. (Actually the calls will be notified and Tcl will decide what to do with them.) So the rule
given above about no agents in the queue, or the last agent’s leaving the queue, are actually a special case
of this more general rule.

1When you attach a call to a queue, you only get a variable handle that is used with the wait call to determine when your
call queue status changes. The TUI Tcl code can interpret what to do when an event for this call is signaled.

169

When you add an agent to queue, you can specify additional “privileges” that that agent has. They are not
privileges in the traditional global sense; rather, they are privileges that are specific to the queue model and
are not set through the traditional privilege mechanism. You can specify

1. Whether the agent can “view” the calls and agents in the queue.

2. Whether the agent can reject a call being sent to him from the queue. This is known as the “rejection”
privilege. In this case, the agent will get a popup on the screen asking him if he wishes to accept the
call. He can accept or reject the call. If the agent waits too long to answer, a timeout occurs and the
call goes back on the queue, but doesn’t get transferred to that agent again.

3. Whether an agent can dispose of a call in an agent defined manner. That is, the agent can delete the
call from the queue, send it to voice mail, take it out of order, etc. This “disposition” privilege implies
the first one implicitly, since you couldn’t grab a call from the queue and process it if you can’t view
the queue!

4. Whether an agent can change their state of availablity. If agent does not have this privilege then the
agent is always avaiblable, unless taking a call.

5. Whether the agent is a “supervisor” of the queue. Normally as part of the global security model, in
order to make changes you have to be either the owner or an ancestor with the right privileges. However
with a call queue a supervisor can be set who is not an ancestor of the owner. This privilege allows the
agent to do the same functions as the owner of the call queue. This implies that they have the “view”
privilege, but not the “available” privilege. No calls can automatically be sent to a “supervisor”, but
if they have the “disposition” privilege then the “supervisor” can manually pick calls.

Figure 15.1 shows the behavior.

Call centers have a notion called “wrapup.” When an agent is done with a call, the agent may have to finish
up some paperwork related to the call. This is called the “wrapup” period. Some sites have a limit on the
amount of time an agent can spend in the wrapup period. These sites will automatically send the next call
in the queue to the agent if the agent exceeds the wrapup period timeout. If the “wrapup” period is zero
then there is no “wrapup” period.

When the queueing code needs to transfer a call to an agent, it doesn’t need to try out each agent’s extension
to see if that agent is busy. Instead, when an agent becomes available for the next call, he manually (except
for unPBXes) indicates that he is available for the next call. When an agent connects to a queue, it is not
assumed that that agent is available to take calls. He must indicate his availability first, unless the agent
does not have the availablity privilege, in which case they are automatically available.

When a call is being transfered to an agent, the caller notifies the queue manager the success of the transfer.
The queue manager can specify a timeout of how long the connecting process should be. If the timeout
occurs or the call fails to be transfered then the call is placed back into the queue and the agent is placed
into a temporary avoid list for the caller. The agent is also, placed unavailable, if they have the “available”
privilege. This queue timeout is the MAX CONNECTING SEC.

A caller can exit the queue on their own via several ways. The caller can dial digits to go to another box or
to go to voicemail. Before doing so, the caller can notify the queue manager why they are leaving. This is
mainly for statistical reporting.

Once a caller and an agent is connected, the queue manager can set a minumum amount of time that they
are in the connected state. The agent can not wrapup or change their availability state before this time.
This queue timeout setting is the MIN CONNECT SEC.

170

Wait for
Agent Response

Call Waiting
In Queue

?

?

6�
�

�
�

-

? �
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�� �
�

�
�

��	

-

-

�

Agent voluntarily or invol-
untarily accepts call. Call
removed from queue. Call
variable gets “TRANSFER BOX
box.”

Agent becomes
available.

Agent rejects call (if he
can). Call gets anno-
tated with “do not send”
to agent. If no more
agents can handle →
NO MORE AGENTS.

+

Timeout waiting for
response. Side effect:
the agent is marked
as unavailable. Rest
of logic the same as
agent rejecting call.

Call in queue too long.
QUEUE TIMEOUT returned and call
deleted.Call position change.

Call variable returns
POSITION CHANGED.

Enter call in
queue. Call #
returned.

Agents that could handle call
leave. Call variable returns
NO MORE AGENTS.

Play the specified greeting back to the
caller.

Only if “rejection” privilege.

Only if “rejection” privilege.

TRANSFER BOX to another
person’s box.

Call is trans-
fered to
VOICEMAIL.

Figure 15.1: State Diagram for Call Queueing.

171

The queue manager can send updates to the callers about their position with in queue. There are three
settings to choose from for the QUEUE REPORT POS: never, position, or time. If never is set then the callers
will not get any updates. The callers can still ask for themselves where they are at in the queue. If position
is set then the callers will be notified every time the callers position changes. If time is set then the callers
will be notified when they first enter the queue how long they expect to wait before being connected to an
agent.

The queue manager maintains a set of real time statistics in which it will continuesly notify all the agents of.
One of the statistics is based on the queue setting QUEUE HIGH TIME. This is the number of seconds that a
caller have been waiting that is deemed too long, but is still less than the ultimate queue timeout max wait.
The queue manager will report how many callers have reached this point. . When the TUI code adds a call
to a queue, each thread gets back a handle that is useful with the wait command to determine when an
event on a queue occurs. There are several types of events such as your position in the queue changes, an
agent takes a call, etc. Here are the different events and their return values from the wait command. Refer
to figure 15.1 for more information.

POSITION CHANGED pos
[grt [grtBox]]

The position of the call in the queue changed. The new position is the queue is
returned. The call stays in the queue. Optionally a greeting to play is specified.
The mailbox of the greeting is the queue mailbox unless grtBox is specified.

NO MORE AGENTS [grt
[grtBox]]

There are no agents matching the call’s skill set to handle the call. The call is
removed from the queue. Optionally a greeting to play is specified. The mailbox
of the greeting is the queue mailbox unless grtBox is specified.

QUEUE TIMEOUT [grt
[grtBox]]

The call was in the queue too long. That is, it exceeded the QUEUE TIME which was
specified by the creator of the queue (this may be used to set a policy that callers
who wait longer than some given time are sent to voicemail for a later callback,
for example). The call is removed from the queue. Optionally a greeting to play
is specified. The mailbox of the greeting is the queue mailbox unless grtBox is
specified.

TRANSFER BOX box [grt
[grtBox]]

Transfer the call to the indicated agent. If the agent has the ability to reject the
call, then you will not get this event until the agent has actually decided to accept
the call. See the state diagram. The call is removed from the queue. The event
result does not include the extension to call the agent on. This mapping from box
to the agent’s extension is outside of the domain of the call queueing logic. The
agent may not even be at an extension on the PBX switch. The agent may be
at home. When you get this result from wait, the target agent is automatically
made unavailable. Optionally a greeting to play is specified. The mailbox of the
greeting is the queue mailbox unless grtBox is specified.

PLAY GRT [grt [grtBox]] The call is stays in the queue. Optionally a greeting to play is specified. The
mailbox of the greeting is the queue mailbox unless grtBox is specified.

VOICEMAIL box [grt [grt-
Box]]

Send the call to voice mail for the indicated box. The call is removed from the
queue. Optionally a greeting to play is specified. The mailbox of the greeting is
the queue mailbox unless grtBox is specified.

NOSKILLS AVAIL [grt
[grtBox]]

There are no agents in the queue that possess the skills required to take the call.

The functions for queue manipulation are as follows:

create queue [-queue queue] [extended field]. . .

Description

172

This function create a queue for the user’s box or one of his descendent boxes if the -queue option is
given. queue is a box number. You must have the CREATE QUEUE privilege to create a queue for a box.
extended field is a list of extended fields that will be displayed on the screen when the calls are displayed.
They are user defined.

Return values:
Empty string.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
QUEUE EXISTS queue
INVALID COLUMN column
COLUMN EXISTS column

delete queue [-queue queue]

Description

This function deletes a queue from a box. You may not delete a queue if any agent is attached to it. The
default queue is the current box if -queue is not given. You need the CREATE QUEUE privilege to delete
a queue for a box.

Return values:
Empty string.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
AGENT ATTACHED queue

create queue columns [-queue queue] [key value]. . .

Description

Create additional parameters to be used by the queue. The parameters are not necessarily known to the
queue manager, but they can be utilized in the Tcl level logic. One example of this is setting up comfort
messages that is played every so often to the caller. Once the parameters are created you then can use the
set queue setting to set the values of the new parameters. You need the CREATE QUEUE privilege to
set settings on a queue.

Return values:
Empty string.

173

Error codes:
PERMDENIED queue
INVALID QUEUE queue
INVALID COLUMN column

set queue setting [-queue queue] [key value]. . .

Description

Sets different settings for a queue. You need the CREATE QUEUE privilege to set settings on a queue. The
extended fields of the queue can be set along with the known settings as follows:

max wait seconds If a call sits in the queue longer than seconds, it is automatically
deleted from the queue and QUEUE TIMEOUT is returned by the wait
call. You can pass the string “0” for seconds if you want an infinite
timeout. This is the default.

max calls size If the queue reaches this size, any enqueue call call will fail with
MAX QCALLS. The default is no limit on the size of the queue.

require wrapup boolean Allow a wrapup period after taking a call. The default is false.

Return values:
Empty string.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
INVALIDVALUE key value

get queue setting [-queue queue]

Description

Gets different settings from a queue. The extended fields of the queue are, also, retrieved along with the
known settings. This will return a a-list of the settings as described in set queue setting.

Return values:
a-list.

Error codes:
PERMDENIED queue
INVALID QUEUE queue

enable agent [-queue queue] [agent box]. . .

174

Description

This function adds the users of each agent box to the list of boxes that are allowed to handle calls for the
box currently logged in. You need the CREATE QUEUE privilege to set settings on a queue. It does not
indicate that the agent boxes should start receiving calls for the queue, just that they are allowed to receive
calls if they wish. An agent must then call attach to queue to actually start receiving calls. If -queue is
given, then modify the given queue rather than the current box. You need to call set agent settings to
modify the agent’s per queue privileges.

Return values:
Empty string.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
INVALID AGENT queue
AGENT EXISTS agent
BOXNOTEXIST agent

set agent setting [-queue queue] agent list [key value]. . .

Description

This function sets different settings for a list of agents on a per queue basis. You need the CREATE QUEUE
privilege to set settings on a queue. The settings are

175

wrapup seconds Set the wrapup time in seconds. If set to zero, there is no wrapup time.
The default is infinite amount of wrapup time. If an agent wants to only
receive calls at their discretion, they can either set themselves unavailable
and then make themselves available when they want to receive the next
call or if they have the “disposition” privilege, they can take calls from
the queue even when they are unavailable.

rejection timeout seconds Agents who can reject calls have a limited time to accept or reject them
when the call is sent to them. If they exceed this timeout, the call is put
back on the queue and marked so not to be resent to that agent. The
default for this value is 10 seconds. You can give the string “0” here for
an infinite timeout, but this is not recommended.

view boolean Enable or disable the “view” privilege (see below).
rejection boolean Enable or disable the “rejection” privilege (see below).
disposition boolean Enable or disable the “disposition” privilege (see below).
skills skill list A list of skills that the agent can handle.
available boolean Enable or disable the “available” privilege.
supervisor boolean Enable or disable the supervisory position of the agent to the queue.
There are several privileges each agent can have:

1. The agent can view the calls and agents in the queue (view).

2. The agent can reject a call being sent to him from the queue (rejection). In this case the agent will
get a popup on the screen asking him if he wishes to accept the call. He can then accept or reject every
call as it comes to him. The agent should use the accept call member function to accept or reject a
call.

3. The agent can dispose of a call in a way he sees fit (disposition). This privilege implies the first
privilege implicitly.

4. The agent can change their own state of availability (available). If they do not have this privilege
then the agent is always available unless in a process of a call.

5. The agent be a supervisor of the queue. (supervisor). If they have this privilege then they can act
as the owner of the queue. They are alway unavailable if this privilege is enabled.

By default, all the privileges are disabled. You can enable the privileges with the above settings.

Return values:
Empty string.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
INVALID AGENT queue

enumerate agents [-queue queue]

Description

This function returns a (possibly empty) list of all the agents (mailboxes) which are enabled as agents for
the specified queue. If queue is not specified, then the current mailbox’s queue is assumed. If no agents are
enabled for the queue, then an empty list is returned.

176

Return values:
Possibly empty Tcl list of the agents for the specified queue.

Error codes:
PERMDENIED queue
INVALID QUEUE queue

get agent setting [-queue queue] [agent]. . .

Description

This function returns agents enabled on a queue and the settings for each of those agents.

Return values:
The return value is an a-list of a-list. The first a-list is indexed by the agent mailbox number. The second
a-list is indexed by the settings. The settings are the same as in set agent settings. You don’t need any
privilege to youself as an agent of the queue, but to get the settings of other agents you do need the privilege.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
INVALID AGENT queue

disable agent [-queue queue] [agent]. . .

Description

This function disables the agents from the list of boxes allowed to receive calls from the queue. If any of the
agents are currently talking to a call from the queue, the call is not killed and the variable the agent is using
is still valid and the agent can still receive calls. He will not be disabled until he actually tries to attach
again. This is much like the open file semantics in Unix. If -queue is given, then modify queue rather than
the current box’s queue. If an agent is not currently enabled on a queue and you try to disable him, no error
is given. You need the CREATE QUEUE privilege to disable agents on a queue.

Return values:
Empty string.

Error codes:
PERMDENIED queue
INVALID QUEUE queue
INVALID AGENT queue

177

The following commands fall into two categories: those intended for agents (listed first) and those intended
for callers. Both create a handle in the form of a Tcl variable. For clarity, the agent’s handle on the queue
will be called qhandle, while a caller’s handle will be called chandle.

attach to queue queue qhandle

Description

This function attaches an agent to a queue. You must give the queue. There is no default because you often
will attach to a box that is not your own box. var is a handle to your attachment. It is a variable referencing
a member function much like MMO handles. The calls you can use with this handle are described below.
If you unset the handle, you are removed as an agent for the queue. Initially, when you attach to a queue,
you are listed as unavailable, unless you don’t have the available privilege, in which your state will be
available. You must call the available or wrapup functions before you are considered available to take a
call. You cannot attach to a queue if you are already attached. You will get an error. Any existing var is
silently replaced.

Return values:
agent id.

Error codes:
INVALID AGENT agent
QUEUE MAN EXISTS queue
MULT ATTACH agent
QUEUE DB DELETED queue

enqueue priv queue privilege name

Description

This returns back 1 if the current mailbox has the privilege name within the specified queue. Otherwise, 0
is returned.

Return values:
privilege value.

The member functions for agents on queues are as follows. Each command has a cmds member function so
you can use make local command with it if you wish.

qhandle dispose call id transfer|voicemail|hold|allow timeout [[-mailbox mailbox] — [-agent
agent id]] [-greeting grt [grtbox]]

178

Description

Disposes of a call specified by call id , as the agents sees fit. The agent must have the disposition privilege
to use this command. The agent can either transfer, voicemail, or hold the call to either a mailbox or
agent id . If greeting is specified then grt of either the queue mailbox or if specified the grtbox is played
back to the caller. If the disposition is voicemail then the call is removed from the queue. If the disposition
is transfer to a mailbox then the call is removed from the queue. If the disposition is transfer to a
agent id then the call remains under the management of the queue. If the disposition is hold then mailbox
and agent id options are ignored and the call remains in the queue. If the disposition is allow timeout then
the the grt value specifies if the queue’s setting max wait will take affect or not. This is useful in keeping a
caller in the queue beyond the max wait setting.

Return values:
Empty string.

Error codes:
PERMDENIED agent
INVALIDVALUE grt
INVALIDVALUE call id
INVALIDVALUE agent id
BOXNOTEXIST grtbox
BOXNOTEXIST mailbox
INVALID AGENT agent

qhandle stop

Description

Stops the waiting on the qhandle.

Return values:
Empty string.

qhandle event

Description

Returns the event handle to wait on the qhandle.

Return values:
event.

chandle result [-nowait]

179

Description

Returns the result of the implicit wait operation. When this agent’s status changes, then the result will
become available. If nowait is specified then this will return immediately, otherwise this agent will wait
until a result is sent.

qhandle available [-agent id] boolean

Description

Tells the system that the agent is available or unavailable to take the next call. Requires the available
privilege.

If boolean is true, then the agent is available to take the next call immediately. When true, this function
serves a dual purpose. It notifies the system that the agent is ready to take a call immediately (perhaps
when the agent is done with wrapup before the wrapup timeout) and it notifies the system that the agent is
no longer unavailable.

If boolean is false, then the agent is unavailable. An agent may make himself unavailable for a short period,
such as time to use the bathroom, or a long period of time, such as when an individual is using these features
to effect “network call screening.” An agent could make himself unavailable just by removing himself from
the queue but then the handle would disappear and any calls that only matched that agent would be removed.
These calls currently stay in the queue until the agent makes himself available again.

To specify the agent option, you must have the supervisor privilege. This option allows the supervisor to
set the availability of any of the attached agents.

Return values:
Empty string.

Error codes:
PERMDENIED agent
STATUS ERROR

qhandle wrapup [stat data]

Description

Tells the system that the agent is starting wrapup mode. If the wrapup timer is set to zero, he will get the
next call immediately; otherwise, he will get the next call after the wrapup timer expires. If you want to
be available before the wrapup timer expires, call “qhandle available true.” If stat data is specified then
that infomation is recorded in the statistical database about that call.

Return values:
Empty string.

180

Error codes:
STATUS ERROR

qhandle accept call boolean

Description

Accept or reject a call being sent to you. You must have the “rejection” privilege to use this call. The agent
is notified of a potential incoming call with a the accept call dtrigger described on page 154. After receipt
of the dtrigger, a dialog box is posted on the screen and the agent can accept or reject the incoming call
using this member function. Notice that you needn’t give the call number. The system knows which call it
is trying to send you. An agent can only get sent one call at a time regardless of the number of queues he
is attached to.

When the agent gets sent a call for acceptance or rejection, he is automatically marked for deciding call. If he
rejects the call, he is marked back to the agent’s previous state whether it was available or unavailable,
but the call is annotated with information noting that the call should not be sent back to the same agent
again (see figure 15.1). This is also true if the agent doesn’t respond within the rejection timeout. If the
agent accepts the call, he is marked unavailable and the call is removed from the queue. The “TRANSFER
box” result is returned by wait in this case.

Return values:
Empty string.

Error codes:
errorCode Description
PERMDENIED agent
STATUS ERROR
INVALID AGENT agent
ACCEPT STATUS ERROR

qhandle queue info

Description

This returns information pertaining to the queue. You do not need the “view” privilege to execute this call.

181

Return values:
An a-list with the following key/value pairs:

max wait seconds Queue timeout.
avg wait time seconds Average time a call is waiting in the queue.
wait time per call seconds Average time a call is waiting in the queue per position change

(dequeue rate).
require wrapup boolean Whether or not the queue requires a wrapup of the call.
extended fields extended fields This is a list of extension fields that were given when the queue

was created. If there were no extension fields given, the value is an
empty list.

qhandle agent info

Description

This command returns all the information about the agents in a queue. You need the “view” privilege to
execute this call. If you don’t have the “view” privilege then you will only get information about yourself.

Return values:
The return value is an a-list of a-lists. The first a-list contains the agent id for each agent in the queue. The
value of the array at this index is another a-list that contains the following key/value pairs:

agent id The current queue manager’s id of the agent.
mailbox box The mailbox of the agent.
view boolean Whether the agent has the “view” privilege.
rejection boolean Whether the agent has the “rejection” privilege.
disposition boolean Whether the agent has the “disposition” privilege.
available boolean Whether the agent has the “available” privilege.
supervisor boolean Whether the agent has the “supervisor” privilege.
status status The status of the agent. The status can be deciding, available,

unavailable, in call, wrapup, init in call, or connecting.
See the status member function for the meaning of these states.

skills skills A list of skills the agent possesses.
wrapup seconds The agent’s wrapup time.
rejection timeout seconds For agents with disposition privilege, the amount of time they have

to decide what to do with the call.

Error codes:
errorCode Description
PERMDENIED agent

qhandle position

Description

182

This function returns the agent’s position. As agents are assigned to calls, the positions of the remaining
available agents are decremented until they reach position 0, at which point they are eligible to be assigned
to a call. If an agent is not available to take a call then -1 is returned.

qhandle call info

Description

This command returns all the information about the calls in a queue. You need the “view” privilege to
execute this call.

Return values:
An a-list of a-lists. The first a-list is a list of the call id. The second nested set of a-lists has the same
key/value pairs as the call info command on page 188.

qhandle active call info

Description

This command returns all the information about the call an agent is connected to in a queue. You don’t
need the “view” privilege to execute this call.

Return values:
An a-list of a-lists. The first a-list is a list of the call id. The second nested set of a-lists has the same
key/value pairs as the call info command on page 188.

Error codes:
errorCode Description
INVALID CALL agent

qhandle status

Description

Returns the current status of the agent corresponding to the handle.

Return values:
available Agent is ready to connect to a call.
unavailable Agent is temporarily unavailable to take a call.
in call Agent is currently connected to a call.
wrapup Agent is doing wrapup.
deciding Agent has the “rejection” privilege and has been notified of a new call

but has not yet responded.

183

qhandle stats

Description

Returns the current statistics of the queue, since the queue manager started its session (not since inception.)

Return values:
The return value is an a-lists that contain the following key/value pairs:

attached number The current number of attached agents.
available number The current number of available agents.
busy number The current number of agents busy working on a call.
unavailable number The current number of attached unavailable agents.
lost number The total number of calls that hungup.
reload number The total number of calls that exited the queue by dialing digits.
answered number The total number of calls that have been answered by agents.
waiting number The total number of calls currently waiting in the queue.
high time number The total number of calls currently waiting in the queue for longer

than QUEUE HIGH TIME seconds.
calls total number The total number of calls that have entered the queue.
voicemail number The total number of calls that have gone to voicemail.
hour answered number The total number of calls that have been answered by agents within

the last hour.
hour lost number The total number of calls that hungup within the last hour.
hour reload number The total number of calls that exited the queue by dialing digits

within the last hour.
hour total number The total number of calls that have entered the queue within the

last hour.
hour incoming rate number The rate of calls coming in per hour.
hour answer rate number The rate of calls being answered per hour.
hour voicemail number The total number of calls that have gone to voicemail within the

last hour.

qhandle call report [-by hour/day/daily/week/month] [-from cut] [-to cut]

Description

This function queries the call statistics for the associated queue. It filters the statistics to be only those
which occured in the range of the -from to -to times. If -from is not specified, then the statistics database
will be searched from the first record; if -to is not specified, then records up to the present time will be
included. Calls which have not yet completed are not included in the results.

184

The -by option allows you to specify how the data should be grouped. The default is -by hour. Grouping
the data -by day means by day of week, whereas -by daily means by the day of the month. Weeks are
7-day periods starting on a Sunday. The first and last weeks of a month can, of course, be less than 7 days
long. Weeks are identified by the week number within the containing month.

qhandle agent report [-by hour/day/daily/week/month] [-from cut] [-to cut] [-agent id]

Description

Two different types of agent reports can be obtained from the queue statistics database. In both types, the
-from and -to arguments can be used to specify the range of time over which the report should be run, with
the defaults being to go from the first record in the statistics database up until the most recent.

The first is a report about a specific agent. In this type of report, the data is summarized by time periods
similar to call reports. In this case, the -by argument can be used to specify which periods to summarize
the data over, with the default being by hour.

The second type of agent report covers activities by all agents of the queue. In this case, the -from and -to
arguments may be used, but the -by and agent id arguments are not used. The function returns an a-list
of agent id values with statistical data about each agent as the associated value. The data summarizes that
agent’s activities over the entire period specified by the -from and -to arguments or their default values.

qhandle cid report [-from cut] [-to cut] phone number

Description

This command generates a Caller ID report for the queue. The -from and -to arguments can be used to
specify the range of time over which the report should be run, with the defaults being to go from the first
record in the statistics database up until the most recent.

The phone number argument must be specified, and the database will be searched for all calls from that
phone number during the specified time range. Any calls will be returned as an a-list with the key being the
phone number and the attributes specifying when

To add a call to a queue you use the enqueue call command. The primary thing that a caller does with
the returned handle is to wait on it. Waiting on it returns one of the strings listed on page 172.

* enqueue call [-top] [-even if no agents] [-only if queue] queue var [key value]. . .

Description

185

Enqueue a call on a queue. You must give the queue number. A variable is returned representing the call on
the queue. You can use the wait command to wait on this variable for queue status changes. The variable
returned also has a member function binding like MMO handles. Initially, the call is set for transfer true
(see below). The a-list is a list of attributes about the call. The attributes are as follows:

skills skills Necessary skills needed for this call.
port port The telephone port the call is on.
caller id phone num The telephone number the caller is calling from.
. . . extended field values. . .

Naturally, even logged-out callers can use this command, so it requires no privileges. To delete a call from
a queue, unset the variable that is passed to enqueue call.

The -top option inserts a call at the top of the queue. There is no privilege for doing this, so any call
can insert themselves at the top of the queue. However, this is not a problem because callers cannot enter
Tcl code over the phone—the are restricted to executing pre-existing code. When a call hits the top of the
queue and is sent to the agent, the agent box number the call is sent to is recorded internally. If the agent
doesn’t answer, or for some other reason we need to requeue the call, then we can use the -top option so
that the call isn’t put back at the end of the queue after having waited to reach the top already. When you
use this option, it has the side effect that the agent the call was originally sent to is made unavailable as if
the agent had executed the “qhandle available false” call. Since the agent didn’t answer, it is assumed
he is unavailable but forgot to inform the Amanda system of this fact.

The -even if no agents option allows the call to enter a queue even when there are no agents attached to
the queue. This is useful for a simple holding queue.

The -only if queue option allows the call to enter the queue only if the queue is already in place.

Return values:
Call id for call. The call id is returned.
AGENTNOTAVAIL Agent not available. This can be because there are currently no agents

monitoring the queue or there are no agents with the skill set required
monitoring the queue. This result can also be returned because the in-
dicated queue does not exist. Either way, the call cannot wait in the
requested queue.

QUEUEFULL max calls is set and the queue is full. No more calls can be inserted into
the queue.

NOSKILLS AVAIL The queue does not have agents attached with matching skills.
QUEUE EMPTY The queue does not have agents attached.

Error codes:
errorCode Description
INVALID QUEUE queue
ALREADY ENQUEUE queue
MAX QUEUE ENTERED queue

* agent available queue

Description

186

This tests the queue if there are any agents currently attached.

Return values:
0 if no agents, 1 if agents attached

chandle transferable boolean

Description

Determines whether a call will be transferred to an agent when it reaches the top of the queue. If boolean
is true, the call will be transferred. If boolean is false, it will not be transferred. Setting this to false also
prevents an agent from disposing of the call in any way if the agent has the “disposition” privilege. That is,
the agent can’t take the call, can’t delete it, etc. It is the caller equivalent of an agent’s being available or
not.

The primary purpose of this function is to allow a caller to use IVR or some other audio application while
waiting in the queue. Perhaps they are allowed to listen to menus which answer commonly-asked questions
on the hope that they will answer their own question while still in the queue. While they are doing this, they
are not monitoring their queue variable, so they need to indicate that they are not available to be transferred
to an agent for that time period.

If all agents that can handle a call leave the queue, this call is dispositioned with a NO MORE AGENTS response
no matter what transfer is set to.

Return values:
CALL TRANSFER The call can’t change the transfer state.

chandle position

Description

Returns the position of the call in the queue.

Return values:
The queue position of the call.

chandle queue info

Description

This returns information pertaining to the queue as a whole.

187

Return values:
An a-list with the following key/value pairs:

max wait seconds Queue timeout.
avg wait time seconds Average time a call is waiting in the queue.
wait time per call seconds Average time a call is waiting in the queue per position change

(dequeue rate).
require wrapup boolean Whether or not the queue requires a wrapup of the call.
extended fields extended fields This is a list of extension fields that were given when the queue

was created. If there were no extension fields given, the value is an
empty list.

chandle call info

Description

This command returns all the information about the call in the queue.

Return values:
An a-list. The a-list has the following key/value pairs:

skills skills Necessary skills needed for this call.
caller id phone number Phone number of caller.
call state state state is either enabled, disabled, wait for agent response,

call taken, connecting, or transfer failed. When enabled,
the call is allowed to be transferred to an agent. When disabled,
a transferable false has been executed and the call is not going
to get sent to an agent.

time entered secs Time call entered queue in number of seconds since 1970.
position n The position of the call in the queue.
agent id The agent id assigned to the call
agentBox box The agent mailbox assigned to the call
. . . extendend field values. . .

chandle status

Description

Returns the current status of the call.

Return values:
Status can be one of the following values: enabled, disabled, wait for agent response, connecting,
call taken, or transfer failed

chandle wrap up mode auto on|off

188

Description

Notifies the queue manager the type of TRANSFER METHOD the caller is using to connect to an agent. Certain
types of transfer methods can allow Amanda Portalto automatically detect when a hangup condition occurrs,
thus allowing the queue manager to automatically go into wrapup mode for the agent.

chandle transfer ok

Description

Notifies the queue manager the caller was successfully connected to the agent. Which in turn will change
the status of the agent from connecting to init in call.

chandle transfer failed [reason]

Description

Notifies the queue manager the caller failed to connect to the agent. Which in turn will change the status
of the agent from connecting to unavailable. The call will return to the queue manager for further
assignment. This function can also be called out of context, basically the normally context is when a caller
is connecting to an agent. Out of context is any other time, in which the reason must be used. During these
other times the caller can call this proc to update the status of its state. For example the caller can tell
the queue manager that it dialed digits or is going to voicemail. This way the queue manager can update is
statistics appropiately.

chandle result [-nowait]

Description

Returns the result of the implicit wait operation. When this call’s disposition changes, then the result will
become available. If nowait is specified then this will return immediately, otherwise this call will wait until
a result is sent.

chandle stop

Description

Stops the waiting on the chandle.

189

Return values:
Empty string.

chandle event

Description

Returns the event handle to wait on the chandle.

Return values:
event.

chandle hold time seconds

Description

This function indicates that the agent has put this call on hold for the indicated number of seconds. This
information is recorded in the queue statistics database for the agent (not for the call).

chandle agent redirect

Description

This function indicates that the agent is redirecting this call (transferring it). This information is recorded
in the queue statistics database for the agent (not for the call).

190

Chapter 16

Connecting to External Databases
(ODBC)

Amanda Portal needs the ability to talk to third-party databases to retrieve information. For example,
suppose that technical support tracking information is stored in a third party database. Amanda Portal
may need to query this database to find out information on a user’s support call. This integration is done
through the Open Database Connectivity or ODBC standard. This standard specifies an protocol that
programs can talk to databases with. Databases and programs that understand this standard can be mixed
and matched without recompiling or changing code.

ODBC functions are executed through the use of “handles” and member functions just like MMOs, VP
devices, etc. When you delete the handle, your “connection” with the database goes away.

Normally, each operation is a separate transaction. This eliminates cumbersome begin, commit, fetch
sequences. If you want to bundle up operations into one transaction, begin the transaction with the begin
member function and end it with commit or rollback. You can then use the fetch operation to retrieve
the results.

Because multiple ports and/or network clients may be executing SQL commands simultaneously, it is nec-
essary that any ODBC drivers used be thread-safe. Unfortunately, not all of them are. The distribution of
Amanda Portal includes Microsoft’s installer for Microsoft Data Access, which includes ODBC version 3.51.
All drivers included in that release are thread-safe. If you plan to use a driver other than one of these, you
will need to verify that it is thread-safe before using it with Amanda Portal.

Here are the functions associated with ODBC:

get odbc sources

Description

Returns the different ODBC sources available in the system.

191

Return values:
An a-list where the keys are the database names found. The values of each key are the description of the
driver used for each database.

Error codes:
SQLERROR ...

connect odbc [-user user] [-password password] [-timeout timeout] [-exclusive] data source hvar

Description

Connect to data source using user and password (if needed) and return a handle in hvar . If -exclusive
is given, then create a new connection to the database that will be broken when the variable is deleted;
otherwise, share connections if possible. -timeout is only applicable without -exclusive. If given, then
after all the variables using the connection are gone and timeout minutes occurs, the connection is released.
The default is 5 minutes. If you are sharing the connection and you are not the first one to make the
connection, -timeout is ignored. That is, only the first shared connection, which is the one which establishes
the connection, gets to set the timeout value.

Return values:
Empty string.

Error codes:
LOGINFAILED user password
DSRCNOTEXIST data source

Here are the member functions for the handle returned:

hfunc tables

Description

Returns a list of the tables in the database.

Return values:
An a-list where the key is the name of the table and the value is the type of the table.

hfunc columns table name

Description

Returns information about each column in a table.

192

Return values:
An a-list of a-lists where the key is the name of the column and the value is an a-list with information about the
column. The information returned can include data type, size, significant digits, precision radix,
nullable, and description, depending on the database driver and the type of each column.

hfunc sql [-async] statement

Description

Execute the SQL statement and return the results.

For UPDATE, INSERT, and DELETE statements, the value returned as row count is either the number of rows
affected by the request or -1 if the number of affected rows is not available.

For other statements and functions, the driver may define this value. For example, some data sources may be
able to return the number of rows returned by a SELECT statement or a catalog function before fetching the
rows. Note, however, that many data sources cannot return the number of rows in a result set before fetching
them; for maximum interoperability, applications should not rely on this behavior, but should instead ignore
the row count information and repeatedly call fetch until it returns NODATA.

Normally, the SQL command is executed synchronously, and control will not return to the Tcl interpreter
until it has completed. The -async option causes the query to be run in a separate thread. In this case,
you can use member functions result and stop, and use the hfunc with the wait command, just as with
VP devices.

Return values:
An a-list with two elements, row count and col count. You can use fetch to retrieve the results if the SQL
command was a QUERY.

Error codes:
INVALIDSQL statement

hfunc procedures [-catalog catalog] [-proc proc] [-schema schema]

Description

This function searches the database for the names of any stored procedures. By default, it returns all
such procedures, even if they are procedures that the current database user is not permitted to execute.
The results are returned as a result set, just as with an SQL query, so they can be enumerated using the
fetch next command.

The arguments -catalog, -schema, and -proc, can be used to narrow the search. ODBC defines wildcard
patterns, where % matches zero or more characters and matches a single character. The backslash can be
used to make these two characters literal in the search when needed.

Return values:
An a-list with two elements, row count and col count. You can use fetch to retrieve the results if the SQL
command was a QUERY.

193

hfunc call [-result] procedure name [-ptype param name value or variable]...

Description

The call command allows the user to invoke a stored procedure in the database. Stored procedures may
return a value (as a function) or they may simply perform some operation, possibly returning values via
output parameters (as a procedure). The -result argument, if given, specifies that the stored procedure
will return a value; the returned value will be returned as the return value of the Tcl call. If -result is not
specified, then the call command will return an empty string upon successful completion.

Stored procedures may have one or more parameters, and those parameters may be -in, -out, or -inout.
Each parameter has a name. If an “in” parameter has a default value, and you wish to use that default
value, then you may omit specifying that particular parameter altogether.

For each -in parameter, you must specify the parameter name and the value which is to be passed into that
parameter.

For each -out parameter, you must specify a Tcl variable name into which the returned value should be
stored.

For each -inout parameter, you must specify a Tcl variable name into which the returned value will be
stored. This variable must already have a value which will be passed into the stored procedure when it is
invoked.

Return values:
Whatever value is returned by the stored procedure, if it is a function, else an empty string in the case of
true procedures.

hfunc begin

Description

Begin a new transaction. The transaction will not be finished until a commit or rollback is given later.

Return values:
Empty string.

hfunc commit

Description

Commit a transaction previously started with begin.

Return values:
Empty string.

194

hfunc rollback

Description

Rollback a transaction previously started with begin.

Return values:
Empty string.

hfunc fetch dir

Description

Fetch a row and return it. dir can be next, prev or an integer specifying the absolute row in the resultset.
Some databases only support next.

Return values:
An a-list with the indices being the column names or the single string NODATA when there is no more data.

hfunc fetch info

Description

Returns information about the result set that will be returned by the fetch command.

Return values:
An a-list of a-lists. The first a-list is ordered and the key is the name of the column. The value is an a-list
with the following keys: size, data type, nullable and significant digits.

hfunc get isolation

Description

Returns information about the transaction isolation levels available on this database connection in the form
of an a-list. The keys of the a-list are default, whose value is the default isolation level, and capabilities,
which is a list of possible levels. The levels are read uncommitted, read committed, repeatable read, and
serializable.

195

hfunc set isolation level

Description

This function sets the transaction isolation level for this database connection to one of the four possible
levels, read uncommitted, read committed, repeatable read, and serializable.

196

Chapter 17

Miscellaneous

Here are some miscellaneous functions that don’t seem to fit anywhere else.

trace out [n]

Description

This function returns approximately the last n lines from the trace file, if the system is currently writing to
a trace file. If there are fewer than n lines in the file, or if the file has “wrapped around,” then trace out
may return fewer than n lines. If the file is empty or is not being written to, trace out returns the empty
string.

The logged-in mailbox must have the MONITOR privilege.

* whoami

Description

This function returns the mailbox number that the interpreter is currently logged in as. If not logged in,
then the empty string is returned.

shutdown [now]

Description

197

This command is defined only for mailboxes with the SHUTDOWN privilege. If run without the now
argument, a normal shutdown is begun, which takes up to tmo shutdown seconds (a parameter from the
Configuration Database, usually set to 60 seconds).

The command shutdown now will cause a very quick shutdown (equivalent to pressing “Exit Now” on the
shutdown dialog; at most 5 seconds is allowed for the shutdown to complete).

Return values:
Empty string.

* puts [-nonewline] string

Description

This function is useful only in a telnet connection, usually for debugging purposes. It sends its argument
string directly to the telnet client. Normally, the system will send a Return Linefeed pair after string, but
this behavior can be suppressed by using the -nonewline option.

* random limit |seed [seedval]

Description

Generate a pseudorandom integer greater than or equal to zero and less than limit .

If seed is specified, then the function resets the random number generator to a starting point derived from
the seedval . Often, the value of [clock seconds] is used for this purpose. By default, the seed is initialized
to zero, so that consistent sequences of “random” numbers will be generated. Using such a constant seed
value can be important in generating reproducible sequences for test purposes.

Return values:
Pseudo-random number in the desired range.

Error codes:
NOTNONNEG limit
NOTINTEGER seedval

* sleep milliseconds

Description

Sleep for milliseconds, or until a shutdown is initiated, and then return.

198

Return values:
Empty string.

Error codes:
NOTNONNEG milliseconds

* spawn script

Description

Start a new thread and run the script in the new thread. The new thread runs as the person logged in if the
person is logged in.

Return values:
Thread id of new thread.

* enable debugger boolean

Description

Turns on or off the Tcl debugger within the current interpreter. It makes the debug window pop up. It
must be called at the top of the call stack and TclDebug.dll must be loaded (use the dlls setting in the
Configuration Database).

Return values:
Empty string.

Error codes:
NOTBOOLEAN boolean

get free disk space

Description

Returns the (integer) percent free disk space across all MMO paths.

* is today time [days]

Description

199

This function determines whether a time, expressed as Coordinated Universal Time, is yesterday, today,
tomorrow, etc. If days is not specified, then it is assumed to be 0, and the function tests whether time falls
on the same date as “today.”

If days is specified, then it tests whether the given date, plus the specified number of days, would be today.
Thus, to test if a date is “yesterday,” one would use a value of -1 for days.

* queue fax [-cover cover text] [-notify computer name] phone num [mmo. . .]

Description

This command allows you to queue a fax to be sent to a phone number. Each mmo must be either a fax
MMO or an ASCII text MMO. Only logged in users can give the -host argument. If this argument is given,
a popup response is sent back to the host when the fax is finished being sent. The popup response tells
the user if the fax was sent successfully or unsuccessfully. If the fax send fails, it is tried fax max retries
(from the Configuration Database; default value of 5) times before failing. The interval between retries is
fax requeue interval.

This command uses the notify job scheduler. Therefore, if it is executed by a non-logged-in user, then the job
is submitted to the queue to execute as the future delivery mailbox, so this configuration database parameter
must be defined, and this mailbox must exist, for anonymous users to be able to submit fax requests. The
command is defined for anonymous users only on interpreters started to process inbound telephone calls.
The job template used is called FaxOut. This template must exist for the job to be processed correctly. The
MMOs are stored temporarily in the MMO Lookup Database so that they will persist until the fax has been
sent; the FaxOut template is responsible for removing them.

Return values:
Empty string.

Error codes:
CMDNOTEXIST mmo
CMDNOTHANDLE mmo
HWRONGTYPE mmo
MMONOTFORW mmo

17.1 The tokens Command

The tokens command executes a subset of the programming tokens defined in the Amanda@Work.Group
product. Amanda@Work.Group uses tokens as a short way of representing some behavior, such as hanging
up the phone dialing some extension. Some of the tokens in Amanda@Work.Group cannot be implemented
in Amanda Portal because they would violate security. For example, in Amanda Portal you can read from
and write from the disk arbitrarily. Under Amanda@Work.Group this was acceptable using tokens because
only the system adminstrator could set up tokens. Under Amanda Portal anybody can set up tokens and
this would be a big security breach.

200

tokens token string . . .

Description

Execute the token string.

Return values:
Returns 1 or 0 on success or failure. It may also raise an exception if it chains to another box.

The different tokens that are handled by Amanda Portal are as follows:

- Pause for 1/2 second.
@ Stops processing of token string.
+(variable[,value]) Add or subtract a nubmer from the value stored in a variable. variable

should be one of the port or global variables.
=(variable,value[,start,end]) Command that gives the variable the specified value. Use start and

end to assign only part of a string to the variable.
0–9, *, #, A–D Play the DTMF tone that corresponds to the specified digit.
%A Expanded to the value of the fax dl init configuration setting.
%B1, %B2, %B3, %B4, %B5, %B6 Expanded to the serial number of the corresponding voice board.
%C Expanded to the port number of the current caller.
%D Expanded to the percentage of free disk space.
%E Expanded to the contents of the current box’s EXTENSION field (i.e.,

the EXTENSION box setting).
%F(field [,mailbox]) Expand the name field (using the User Name field in the MMO Lookup

Table) or the comment field (using the COMMENT box setting) depending
on the value of field . If field is 1 or 2, expand the name field. (I know
this is weird but it is the way Amanda@Work.Group works.) If field is
3, expand the comment field.

F Perform a hookflash.
%G0, %G1, %G2, %G3, %G4, %G5, %G6,
%G7, %G8, %G9

The 10 global variables.

G(mailbox) Causes a chain to the specified box. In Amanda Portal, it simply raises
an exception with the error code CHAIN mailbox . The TUI then catches
this code and takes the appropriate action.

%H Expands to the value of the CallerId variable which contains the caller
id.

H Hang up.
H(mailbox) Go to the specified mailbox if a hangup condition is detected.
%I(field,msg no) Expand the specified field from the specified message. field can be D

for the date, T for the time and F for the “from” field.
I(value,operator,value,mailbox) Control processing based on a condition. If the specified values and

operator create a condition that is true, continue processing at the
specified mailbox (i.e., create a CHAIN exception). If the condition is
false, the next token after the command is executed.

201

J(box,phone no[,tokens]) Receive a fax file and sends it to the specified box . The phone no and
tokens arguments are ignored.

K<(x [,value]) Command that shifts the values of the %S variables to the left or right.
x is a number from 0 to 20. When positive, shift left. When negative,
shift right. value is the data to fill in the variables left empty by the
shift.

KB(frequency,millseconds) Beep. Play frequency for milliseconds.
KC(mailbox,variable) Compare security code for mailbox with the contents of the variable.

Returns 0 or 1 for a match.
KI(target,source,variable) Search source string to see if it contains target . Fill in variable with 0

if not found in source; otherwise, fill variable with the position within
source string at which target starts.

KR(box) Record a message and send it to box .
L(language) Set the language to language.
%M Expands to the number of messages for the current box.
M(greeting,repetition,delay) For repeat times, play greeting , wait up to delay tenths of a second for

an input digit and then execute the MENUn CODE.
%N Expands to the number of new messages for the current mailbox.
O(time) Go on-hook for the specified amount of time. Depending on the value

used, you can cause a hookflash or hang-up. time is in tenths of a
second.

%P Expands to the previous mailbox.
P(date,D) Say the specified number as a date. The number should be MMDDYY

or MMDDYYYY (e.g., 06261994) for June 26th, 1994.
P(amount,currency) Say the amount as a currency. currency can be $ for dollars and cents,

F for francs and centimes and P for pesos and centavos.
P(number,N) Say the absolute value of a number.
P(time,T) Say the specified number as a time of day. time should be in HHMM

format.
P(A,string) Say the characters of the specified string. For a space, say “space.”
P(D) Say the percentage of free disk space.
P(greeting [,mailbox]) Say the greeting for the specified mailbox.
P(M) Say the number of messages for the current mailbox.
P(Mn) Play the message with the specified message number. Only audio mes-

sages can be played this way.
P(N[,mailbox]) Play the name and extension for the current mailbox or the specified

mailbox.
P(DTMF) Say a number as DTMF digits (e.g., say 4–1–1 instead of four hundred

eleven).
P(prompt no,V) Play a prompt in the current language.
P(R) Say the DTMF digits entered by a caller requesting relay paging noti-

fication. These digits are stored in the relay phone field of a message.
P(U[,mailbox]) Play name and extension recording of the specified or current mailbox.
P(V) Say the digits in the variable field of a ctrigger record.
Q({greeting [#mailbox][,E]}) Ask the caller a series of questions and store all the caller’s responses

as a message in the current mailbox. Each answer will be a separate
MMO. The E option gives the caller the opportunity to edit (review,
rerecord, append or cancel) the previous group of answers.

202

%R Expands to the DTMF digits entered by the caller requesting relay
paging notification. It is the value of the relay phone message field.

R(greeting [#mailbox],
variable[,timeout])

Play the greeting from the current or specified mailbox and store the
caller’s DTMF entry as a number in the specified variable. The timeout
is a number from 0 to 99 that represents the time in tenths of a second
to wait for a DTMF entry after playing the greeting. The default is 1.2
seconds.

%S0 through %S19 Port specific variables where you can store and retrieve information.
S(port,[string],[variable],
[termination],[length],[timeout])

Send and receive a string over a serial port. Terminate when the termi-
nation string is received, the maximum # of characters is received or
a timeout occurs. C-type escape sequences are recognized. variable is
the port specific or global variable to store the response. If not given,
no response is stored. termination is a termination string. length is the
maximum number of characters to receive. timeout is the maximum
time in seconds that Amanda should wait for the first character and
also between characters for the character to be received on the serial
port.

%T Expands to the number of seconds that the current call has been active.
%U Expands to current mailbox number.
%V Expands to the variable field of a ctrigger record.
%W Expands to the day of the week as an integer. Number 1 is Sunday.
W(n[,event][,mailbox]) Wait for an event. If only the first argument is given, just wait that

amount of time (in tenths of a second). The event argument can be P
or V to wait for an answer (P used to be for pager and V was for voice)
or T for dial tone. In the P or V case, n is the number of rings to wait
for. In the T case, n is the number of seconds to wait for dial tone. If
mailbox is given, chain to the given mailbox if the event does not occur.

%X Expands to the codes needed to get the transfer dial tone. This is the
setting of the dl dtwait configuration parameter.

%Y Expands to the current date in American format: MMDDYYYY.
%Z Expands to the current time in 24-hour format: HHMM.

17.2 Time Functions

A number of functions exist for querying and manipulating time values:

* clock seconds

Description

Return the total number of seconds since 1970.

Return values:
The number of seconds.

* clock format clock value [-format string] [-gmt boolean]

203

Description

Converts an integer time value returned by clock seconds or clock scan to human-readable form. If the
-format option is present, the next argument is a string that describes how the date and time are to be
formatted. Field descriptors consist of a % followed by a field descriptor value. All other characters are
copied to the result. Valid field descriptors are:

%% Insert a %.
%a Abbreviated weekday name (Mon, Tue, etc).
%A Full weekday name (Monday, Tuesday, etc).
%b Abbreviated month name (Jan, Feb, etc).
%B Full month name.
%c Locale specific date and time.
%d Day of month (01–31).
%H Hour in 24-hour format (00–23).
%I Hour in 12-hour format (00–12).
%j Day of year (001–366).
%m Month number (01–12).
%M Minute (00–59).
%p AM/PM indicator.
%S Seconds (00–59).
%U Week of year (01–52), Sunday is the first day of the week.
%w Weekday number (Sunday=0).
%W Week of year (01–52), Monday is first day of the week.
%x Locale specific date format.
%X Locale specific time format.
%y Year without century (00–99).
%Y Year with century (e.g., 1990).
%Z Time zone name.
If the -format argument is not specified, the format string “%a %b %d %H:%M:%S %Z %Y” is used. If the -gmt
argument is present, the next argument must be a boolean value which if true, specifies that the time will be
formatted as GMT. If false, then the local timezone will be used as defined by the operating environment.

Return values:
See above for return value.

Error codes:
NOTNONNEG clock value
NOTBOOLEAN boolean

* clock scan date string [-base clock val] [-gmt boolean]

Description

Convert date string to an integer clock value (see clock seconds). This command can parse and convert
virtually any standard date/or time string, which can include standard time zone mnemonics. If only a time
is specified, the current date is assumed. If the string does not contain a time zone mnemonic, the local time
zone is assumed, unless the -gmt argument is true, in which case the clock value is calculated assuming that
the specified time is relative to GMT.

204

If the -base flag is specified, the next argument should contain an integer clock value. Only the date
represented by this integer is used, not the time. This is useful for determining the time on a specific day or
doing other date-relative conversions.

The date string consists of zero or more specifications of the following form:

time A time of day, which is of the form “hh[:mm[:ss]] [meridian] [zone]” or “hhmm [meridian] [zone.]” If
no meridian is specified, hh is interpreted on a 24-hour clock.

date A specific month or day with optional year. The acceptable formats are “mm/dd [/yy],” “monthname
dd [,yy],” “dd monthname [yy]” and “day , dd monthname yy.” The default year is the current year.
If the year is less than 100, we treat the years 00-68 as 2000–2068 and the years 69–99 as 1969–1999.

relative time A specification relative to the current time. The format is number unit . Acceptable units
are year, fortnight, month, week, day, hour, minute (or min), and second (or sec). The unit can
be specified as a singular or plural, as in 3 weeks. These modifiers may also be specified: tomorrow,
yesterday, today, now, last, this, next, ago.

The actual date is calculated according to the following steps. First, any absolute date and/or time is
processed and converted. Using that time as the base, day-of-week specifications are added. Next, relative
specifications are used. If a date or day is specified, and no absolute or relative time is given, midnight
is used. Finally, a correction is applied so that the correct hour of the day is produced after allowing for
daylight savings time differences and the correct date is given when going from the end of a long month to
a short month.

Return values:
Time in # of seconds since 1970.

Error codes:
NOTNONNEG clock value
NOTBOOLEAN boolean
INVALIDVALUE date string

* uptime

Description

Returns the number of seconds since Amanda Portal was brought up.

Return values:
The number of seconds.

* is yesterday cut

Description

205

Given a Coordinated Universal Time value (the number of seconds since January 1st, 1970, GMT), return
true (1) if that time occurred sometime during the previous day, and otherwise return false (0).

Error codes:
NOTNONNEG cut

* is today cut

Description

Given a Coordinated Universal Time value (the number of seconds since January 1st, 1970, GMT), return
true (1) if that time occurred sometime during the current day, and otherwise return false (0).

Error codes:
NOTNONNEG cut

17.3 Terminating Threads

Threads are divided up into categories and there are functions for inspecting and terminating threads in the
system. They are as follows:

get thread info [-me] [-category category]

Description

Return information on each thread running in the system. If category is given, only return information on
the threads in each category. Category can be monitor, notify, template, AutoScheduler, spawn, phone,
network, sound card, startup, and pop. If -me is specified, then only information about the current thread
is returned.

Return values:
An a-list of a-lists is returned. The first a-list has an index for each thread. The index is the thread id. The
value at each index is another a-list with the indices box, category and host. host is only given if the user
is connected through the network.

Error codes:
INVALIDCATEGORY category

kill user thread [box]. . .

206

Description

Kills all threads for the box(es) given. You need the KILL privilege to execute this call and you must be an
(improper) ancestor of the box.

Return values:
Empty string.

Error codes:
NOTNONNEG box
BOXNOTEXIST box
PERMDENIED

kill thread [thread id]. . .

Description

Kills the threads with the given thread ids. You need the KILL privilege to execute this command and the
threads need to be running as descendents of your box.

Return values:
Empty string.

Error codes:
THREADNOTEXIST thread id
PERMDENIED

17.4 Logging

There are a couple of functions for logging information to files or the console. They are as follows:

* wlog [arg]. . .

Description

Write a log message to the Amanda log file.

* wtrace [arg]. . .

Description

207

Write a trace message to the Amanda trace file.

17.5 Speech Processing

The following command is loaded only if you load the Speech Recognition DLL (AmaSapi5).

compile grammar mmo grammar

Description

Compiles grammar . If an error occurs, return an error indication in the usual way. Otherwise, store the
compiled grammar into the specified mmo for future use in Speech Recognition. Grammars are used in
speech recognition with the VP recognize command.

Return values:
Empty string.

Error codes:
PERMDENIED
GRAMMARCOMPILEERR grammar

The following member functions for voice processing resources become enabled:

* create sr engine var

Description

The create sr function can be used to create a speech recognition engine which can be used with the
recognize function, described below, to perform speech recognition functions. The engine is released when
the engine var becomes unset.

* recognize record flags [-beep boolean] [-sr stream engine] [-threshold low value] [-threshold high
value] [-start rules] grammar mmo

Description

208

Recognize speech against the grammar. The grammar identified by grammar mmo must have been previously
compiled with compile grammar. The return value will be the same as for the record member function if
the operation is interrupted in some way (timed out, stopped, caller pressed a digit, etc.). Otherwise, it
returns an a-list of information detailing what phrase was recognized (by command number), the confidence
level of the recognition (from -100 to +100), and any strings embedded in the grammar itself (for which care
should be taken that they will appear to be an a-list).

The -beep argument is a convenient equivalent of the standard -nobeep flag to the record function. It
takes any Tcl boolean value as its argument.

The -sr stream argument can be used to tell the recognize function to use a pre-existing speech recognition
engine, specified as engine. If this argument is not used, then an engine is automatically allocated and de-
allocated by the recognize function. The use of a pre-existing engine can decrease the time between when the
recognize function is called and when it begins recognition since an engine does not have to be allocated
(and potentially, created, which can be time-consuming). Engines can be allocated using the create sr
function described above.

The -start argument can be used to specify which grammar rule the recognition is applied to. If this
argument is not specified then all active rules are applied.

The -threshold low and threshold high are used to control the success rate of the recognition. The values
can be between 0 and 100. The default is 50 and 75 respectively. The actual value recieve on a particular
recognition is returned in the confidence value.

* speak play options [-gender male/female/neutral] [-speaker name] [-language langcode] [-sublanguage
sublangcode] phrase. . .

Description

Perform text to speech on the phrase(s) specified. Most play options are supported: -nodtmf, -clear,
-volume, -speed, -term, -noretain, -bargein, and -maxpause.

The -gender option specifies a desire for the type of voice to be employed. The default is a neutral voice
(meaning that you don’t care), but male or female can be specified. There is no guarantee that the requested
gender will be available, as this depends on the available TTS engine(s) which are installed on the system.

The -speaker option allows you to specify a specific engine by speaker “Name”. The manufacturers of
different text to speech engines give each variation of their engine(s) a name, such as Paul or Mary. If you
specify the speaker name, it must match exactly with the engine’s name (case sensitive).

The -language option allows you to specify a specific engine by the language it supports. The default
value for this parameter is 9, defined by Microsoft as the code for English. This is the only language code
supported by the Microsoft sapi TTS Engines.

The -sublanguage option allows you to specify a dialect of the primary language selected with -language.
The default is 1, US English. Microsoft defines many other values, specific to each language. For instance,
UK English is 2, Australian English is 3, Canadian English is 4, New Zealand English is 5, and Irish English
is 6. Similar sublanguage constants are defined for all other language codes which are supported by the
-language argument. The sapi TTS engines provided by Microsoft support only US English.

209

The return values and errors are the same as for the play member function.

You can also set the configuration parameter sr wait. This parameter in milliseconds will wait this long
for buffers to be read in. If no buffers have been read in in this amount of time then this function will stop
recognizing and return a result.

The engine var returned by create sr has the following two member functions:

* sr handle

Description

This is an internal command used by the voice processors to get a direct handle on the object. The return
value is the address of the object. This function should not be called.

* sr grammar rule property var list

Description

This allows modifications to dynamic rules of the grammar. rule is the dynamic rule to modify. property is
the property name (PROPNAME attribute) of the elements to add. var list is a list of elements to add. For
example this can be used to add the names of the mailboxes into the grammar at run time.

* sr set profile profile attrib

Description

This set the current profile for the recognition engine to use. In general a profile represents a specific user of
the system. So, when a user logs in then the appropiate profile can be retrieved for that user for optimum
performance. profile is the name of the profile to make current. attrib is an a-list of attribute values that
define this profile for this particular type of recognition engine. For example, attributes can be GENDER (with
values of Neutral, Male, or Female); AGE (with values of Child, Teen, Adult); or ADAPTATION (with values
of 0 or 1).

210

17.6 Web Client Access

The optional WebClient module allows access to Web servers at the Tcl level. This can be used to retrieve
information and/or to post information (“Submit” it) to a Web site. The first command is merely a helper
command which can be used to set up a query for a post operation, while the second one can be used to
perform a get, post, or head operation. These commands are based on the similar commands which are
in the http package included with Tcl 8.x.

http formatquery key value. . .

Description

This function formats a series of one or more key/value pairs into the format required for posting a query
to a web site. The resulting string can be used with the -query argument to the http geturl function.

http geturl url [-headers key value list] [-query q] [-timeout ms] [-type mimetype] [-validate boolean]
[-secure] [-user username] [-password pass] [-useragent string] [-proxyhost host] [-proxyport port]
[-accept mimetypes]

Description

The http geturl function allows access to a Web server. Its options are:

The -headers option is used to add extra headers to the HTTP request. The key value list argument
must be a list with an even number of elements that alternate between keys and values. The keys become
header field names. Newlines are stripped from the values so the header cannot be corrupted. For example,
if keyvaluelist is Pragma no-cache then the following header is included in the HTTP request: Pragma:
no-cache

The -query option causes http geturl to do a POST of the query q.

The -type option allows you to specify the mime-type which will be used during a post operation. The
default is application/x-www-form-urlencoded.

The -validate option allows you to specify that a head request should be posted.

The -useragent argument allows you to specify the value value of the User-Agent header in the HTTP
request. The default is Amanda.

The -proxyhost argument allows you to specify a proxy host through which the query should be posted.
The default is to use the address given in the specified url.

The -proxyport argument allows you to specify a non-default port number to be used, either for proxy or
non-proxy queries. The default is to use port 80.

The -secure option causes the connection to the web server to be made to port 443 instead of port 80, and
the data passed between the client and server is encrypted via SSL.

211

The -user and -password options can be used when the server requires authentication of the client.

If neither -validate true nor -query are specified, then an http get operation is performed.

http parse xml xml

Description

This function parses an XML string into the equivalent Tcl a-list format, which is returned as its value.

17.7 TCP Client Connections

Amanda provides commands such as http geturl or POP commands for accessing specific types of servers.
Sometimes, however, it is necessary for Amanda to connect to another computer in a specialized way. The
TCP Client Connection feature allows you to do this.

create tcp server port handle

Description

The create tcp function allows you to create a TCP connection. To be able to call it, you must be logged
in or the current interpreter must be a “channel interpreter” which is running in response to an incoming
telephone call. If create tcp fails, it returns the failure reason and TCL OK. On success, it returns an
empty string (no error message).

Once you have successfully connected to a server, the handle variable can be used to send and/or receive on
the socket. Its subcommands are:

* handle send string

Description

This sends string to the server at the far end.

* handle receive [--async] [--max max] [--immediate] [--timeout tmo]

Description

212

This command causes the system to do a |recv()— operation on the handle. There are several options to
the receive function.

If the receive is performed asynchronously, then the command will return immediately. Subsequently, you
may use the stop and result functions to access the results of the receive.

The -max option sets the maximum number of characters to wait for. Once that many have been received,
then the receive function ends. The -immediate option, which may be combined with -max and/or -timeout,
says that once one packet of data has been received, then the receive operation should return instead of
waiting any further. The -timeout option specifies the maximum number of milliseconds that the system
will wait without receiving anything on the socket, before returning whatever has been received to that
point.

* handle stop

Description

This function causes a previously-issued asynchronous receive command to be stopped, if it is still running.

* handle result

Description

This function returns the results of a previous-issued asynchronous receive function. If the function is still
running, then it will block until the function finishes, and then return the results.

17.8 VoIP Appliance Access

The following commands are used to communicate with the VoIP Appliance (Indavo) are within the
ILinkMan.dll. The commands implemented by this module are Indavo-specific, but they exemplify the
type of support modules which can be easily added to the system to support any VoIP edge device.

The Indavo is a special PBX that uses the Internet as the voice communication path. The Indavo can be
configured through the following commands:

* connect indavo ip handle var

213

Description

Open a connection to an indavo box. The ip is the TCP/IP address of the Indavo box. The handle var is
the variable that represents the connection object and has the commands that follow this command.

Return values:
Empty string.

Error codes:
ALREADY CONNECTED
FAIL LOAD PARAM
ILINK FAIL CONNECT
ILINK VERSION OLD
ILINK CORRUPT

* handle var save

Description

Saves all the settings to the Indavo box. This might return an INDAVO RESET error. This means that the
settings were saved, but the indavo is being reset and in doing so the connection is lost. If no reset was done
then an empty string is returned. Note that the indavo box sends a reset recommendation when certain fields
are set, mainly the ones in set config and set ring group. If the Indavo box sends that recommendation, then
it is reset and the socket is close.

Return values:
Empty string.

Error codes:
FAIL LOAD PARAM
FAIL SAVE PARAM
ILINK FAIL CONNECT
ILINK CORRUPT
ILINK RESET

* handle var set ring group group [field value]. . .

Description

This sets the field of a ring group. A ring group is a group of extension ports. The group is 1 based, ranging
from 1 to 6. The ext list field must be a tcl list of 12 boolean elements. Must call save after all the
set xxxx have been called. fields can be any of the following: phone, rna, busy, and ext list.

Return values:
Empty string.

214

Error codes:
ILINK INVALID GROUP
ILINK GROUP RANGE
FAIL GET PARAM

* handle var get ring group group [field]. . .

Description

This gets the field of a ring group. A ring group is a group of extension ports. The group is 1 based, ranging
from 1 to 6. If no fields are specified then all fields are returned. fields can be any of the following: phone,
rna, busy, and ext list.

Return values:
An a-list of the fields and their values.

Error codes:
ILINK INVALID GROUP
ILINK GROUP RANGE
FAIL GET PARAM

* handle var set port port [field value]. . .

Description

This sets the field of an extension port. The port is 1 based, ranging from 1 to 12. Must call save after all
the set xxxx have been called. fields can be any of the following: phone, name, rings, rna, busy, fwd phone,
and call waiting.

Return values:
Empty string.

Error codes:
ILINK INVALID PORT
ILINK PORT RANGE
FAIL GET PARAM

* handle var get port port [field]. . .

Description

This gets the field of an extension port. The port is 1 based, ranging from 1 to 12. If no fields are specified
then all fields are returned. fields can be any of the following: phone, name, rings, rna, busy, fwd phone,
and call waiting.

215

Return values:
An a-list of the fields and their values.

Error codes:
ILINK INVALID PORT
ILINK PORT RANGE
FAIL GET PARAM

* handle var delete port port

Description

This clears out an extension port. The port is 1 based, ranging from 1 to 12. This is just a special form of
set port that sets everything to 0 or empty. Must call save after all the set xxxx have been called.

Return values:
Empty string.

Error codes:
ILINK INVALID PORT
ILINK PORT RANGE
FAIL GET PARAM

* handle var set config [field value]. . .

Description

This sets the basic configuration settings of the indavo box. Must call save after all the set xxxx have been
called. fields can be any of the following: 911 redirect, 411 redirect, voicemail redirect, base ext,
base group, operator ext, jitter, and comfort noise.

Return values:
Empty string.

Error codes:
FAIL SET PARAM

* handle var get config [field]. . .

Description

216

This gets the basic configuration settings of the indavo box. If no fields are specified then all fields are
returned. fields can be any of the following: 911 redirect, 411 redirect, voicemail redirect, base ext,
base group, operator ext, jitter, and comfort noise.

Return values:
An a-list of the fields and their values.

Error codes:
FAIL GET PARAM

17.9 COM/OLE

Some modules require COM to be activated. Currently AmaSAPI5 is the only such module. In the future
there may be others. COM needs to be initialized and uninitialized in a consistent manor within a particular
connection instance to Amanda (thread). The following function within the core of Amanda will control
that.

* enable com multithreaded

Description

This function will enable COM for this particular connection (thread). Consult the particular module’s
documentation on what the value of multthreaded should be. This boolean value specifies if COM should be
initialized to be used with several threads, or only this thread (apartment). For example, AmaSapi5, it can
be 0 for apartment. This function can not be called mutliple times specifing a different multithreaded value.

Error codes:
CONNREFUSED

217

Appendix A

Error Codes and Messages

When an exception occurs, the error code and error message are initimately tied together. With the exception
of USAGE and BOARDERROR error codes, the error message will always be the same. The parameters in each
error code may vary though, even for the same error code. You need to look at the documentation for the
API function to see the exact value returned.

Here are the error codes and associated error messages:

AGENTATTACHED Cannot delete queue when agent is attached.
AGENTNOTAVAIL Agent not available.
AGNOTENABLED Agent not enabled on queue.
BADLISTLEN Bad list length.
BADOPTION Bad option.
BOARDERROR A board error occurred.
BOARDNOTEXIST Board does not exist.
BOXEXISTS Box exists.
BOXHASCHILD Cannot delete a box with children.
BOXHASMSGS The destination box has messages.
BOXLOGGEDIN Cannot delete a box that is logged in.
BOXMANDATORY You must give the box argument when not logged in.
BOXNOTEXIST Box does not exist.
BREQNLOGIN You must be logged in or specify -box.
CALLNOTOUTSTAND There is no outstanding call to accept.
CMDNOTEXIST Tcl command does not exist.
CMDNOTHANDLE Tcl command is not a handle.
CONFNOTEXIST Configuration value doesn’t exist.
CONNBROKEN Connection broken.
CONNREFUSED Connection refused.
CONVFAILED Conversion failed.
CTIMENOTSET Call time not set.
DSRCNOTEXIST Data source does not exist.
FAX ANSWER A fax answer tone was heard during PCPM.
FAX INITIATION A fax initiation tone was heard.
FIELDNOTEXIST Field does not exist.
FILENOTFOUND File not found.

218

FILEOPENFAIL File open failure.
FORWNOTSTORE Cannot store non-forwardable MMOs.
FUNCNAMETOOLONG Function name too long.
GBOXLIMIT Maximum number of child mailboxes reached.
GRAMMARCOMPILEERR Grammar compile error.
GRAMMARNOTEXIST Grammar does not exist.
HANGUP A hangup was detected.
HOSTNOTEXIST Host does not exist.
HREADONLY Handle is read-only.
HWADDRFETCH Cannot fetch hardware address of machine.
HWRONGTYPE Handle is the wrong type.
IDNOTEXIST Id does not exist.
INDEXMISSING The index is missing.
INVALIDCATEGORY Invalid category.
INVALIDCONFVALUE Invalid configuration value.
INVALIDCONFVALUE Invalid folder number.
INVALIDHOSTNAME Invalid host name.
INVALIDKEY Invalid key.
INVALIDPASSWORD Invalid password.
INVALIDRESTYPE Invalid resource type.
INVALIDSQL Invalid SQL statement.
INVALIDTIME Invalid time.
INVALIDTYPE Invalid type.
INVALIDVALUE Invalid value.
INVRECIPIENT Invalid recipient.
KEYMANDATORY Key is mandatory.
KEYNOTEXIST Key does not exist.
KILLED Interpreter was killed.
LANGNOTEXIST Language does not exist.
LOGINFAILED Login failed.
MALFORMEDFILE Malformed file.
MAPEXISTS Map exists.
MAPNOTEXIST Map does not exist.
MAXHANDLES The maximum number of handles has been reached.
MAXLANGUAGES Maximum # of languages exceeded.
MAXMMOS Maximum MMO count exceeded.
MEMALLOC Memory allocation failure.
MISSINGPARAMETER Missing parameter.
MMODISKFULL Disk space for MMOs is filled up.
MMONOTFORW MMO not forwardable.
MMONOTWRITABLE MMO not writable.
MSGNOTEXIST Message does not exist.
MSGNOTFORW Message is not forwardable.
MULTQATTACH Cannot attach to a queue multiple times.
NEVERASYNCCMD You never ran an asynchronous command.
NOCURMSG No current message.
NOLANGSEL No language selected.
NOMEANING The operation has no meaning.

219

NONAUDIOMMO Not an audio MMO.
NONFAXMMO Not a fax MMO.
NONTEXTMMO Not a textual MMO.
NOOPINPROGRESS No operation in progress.
NOQUERY No active query.
NOTHREAD No thread running.
NOTALIST Not an a-list.
NOTATTOPFRAME Not at the top Tcl frame.
NOTBOOLEAN Not a boolean.
NOTINTEGER Not an integer.
NOTLIST Not a list.
NOTMMO Not an MMO.
NOTNONNEG Not a non-negative integer.
NOTNONNEG Not a positive integer.
NOTRANSFERSET Cannot transfer a call marked as non-transferrable.
OFFHOOK Port is off hook.
OPINPROGRESS Operation already in progress.
OUTOFRANGE Out of range.
PERMDENIED Permission denied.
PORTCONFLICT Cannot give two variables the same port number.
PORTNOTEXIST Port does not exist.
PORTPRIVILEGED Cannot open privileged port.
PRIVNOTEXIST Privilege does not exist.
PROCINUSE Procedure is in use.
PROCNAMETOOLONG Procedure name is too long.
PROCNOTEXIST Procedure does not exist.
PROMPTNOTEXIST Prompt does not exist.
QEXISTS Queue already exists.
QUEUENOTEXIST Invalid queue.
QUEUEFULL The queue is full.
RESALLOC2BIG Not enough resources of the type given in the system.
SYSBOXFULL Maximum number of system boxes reached.
THREADNOTEXIST Thread does not exist.
TONE A tone was heard.
UNKNOWNERROR Unknown error.
UNKNOWNTYPE Type is unknown.
UNSUPPORTED Operation is unsupported.
USAGE Bad usage.
VALUENOTEXIST Value does not exist.
WRITEERROR Write error.
WRONGAUDIOFORMAT Wrong audio format.

220

Index

a-list, 13
accept call, 181
active call info, 183
add dtrigger, 153
add lmapping, 125
add tmapping, 130
add trigger request, 152
agent available, 186
agent info, 182
agent redirect, 190
agent report, 185
announcements, 84
append, 12
append fax, 67
append to, 68
array, 13
arrays, 11
attach to queue, 178
audio length, 65
autoschedule records, 138
available, 180

backslash substitution, 9
baud, 121
beep, 105
begin, 194
binary, 122
break, 22

call, 194
call info, 183, 188
call report, 184
catch, 27
chandle agent redirect, 190
chandle call info, 188
chandle event, 190
chandle hold time, 190
chandle position, 187
chandle queue info, 187
chandle result, 179, 189
chandle status, 188
chandle stop, 189
chandle transfer failed, 189
chandle transfer ok, 189
chandle transferable, 187

chandle wrap up mode auto, 188
change folder, 71
check recipients, 77
cid report, 185
clock, 203, 204
columns, 192
COM, 217
command substitution, 11
commit, 194
compile grammar, 208
connect, 94
connect indavo, 213
connect odbc, 192
connect to pop server, 116
continue, 22
convert to, 66
copy to, 67
create box, 50
create mmo, 69
create queue, 172
create queue columns, 173
create sr, 208
create tcp, 212
create tmapping, 129

data bits, 123
date, 66, 67
delete box, 51
delete box setting, 55
delete dtrigger, 155
delete global, 128
delete lmapping, 126
delete mmo, 83
delete msg, 118
delete param, 135
delete port, 216
delete privilege, 43
delete queue, 173
delete tmapping, 131
delete tmapping by value, 131
delete trigger request, 153
destroy tmapping, 130
dial, 108
dialtone, 106
disable agent, 177

221

disconnect, 94
dispose, 178
dsp attach, 94
dup mmo, 69

enable agent, 174
enable com, 217
enable debugger, 199
enqueue call, 185
enqueue port msg, 109
enqueue priv, 178
enumerate agents, 176
eval, 18
event, 179, 190
exceptions, 26
expr, 10
expressions, 13
expunge, 75

fetch, 195
fetch info, 195
finish call time, 61
flashhook, 97
flow in, 122
flow out, 122
for, 21
foreach, 22
format, 65
forward msg, 79
forwardable, 64
fx receive fax, 114
fx send fax, 113
fx unit, 113

get agent setting, 177
get ani, 97
get announcement, 86
get board serial number, 92
get box children, 52
get box setting, 56
get box setting attrs, 54
get box setting keys, 56
get box stats, 76
get config, 216
get current folder, 71
get digits, 107
get dnis, 97
get folder stats, 75
get free disk space, 199
get global, 128
get isolation, 195
get lmapping, 126
get lmapping attendance, 126
get lmapping keys, 127
get mmo, 108

get msg, 118
get msg top, 118
get next msg, 71
get odbc sources, 191
get param, 134
get param by long, 134
get param help keys, 136
get param help text, 136
get param keys, 135
get port, 215
get port status, 110
get ports in use, 111
get prev msg, 73
get privilege keys, 44
get privilege value, 43
get published mmo, 88
get queue setting, 174
get resource stats, 37
get ring group, 215
get root, 53
get serial integration data, 167
get text, 68
get thread info, 206
get tmapping keys, 132
getc, 123
gets, 123
global, 24
goto msg, 76
grab, 38
grab res, 38
grammar, 210

handle, 210
handle receive, 212
handle result, 213
handle send, 212
handle stop, 213
handle var delete port, 216
handle var get config, 216
handle var get port, 215
handle var get ring group, 215
handle var save, 214
handle var set config, 216
handle var set port, 215
handle var set ring group, 214
has next prev, 75
has privilege, 42
hfunc baud, 121
hfunc begin, 194
hfunc binary, 122
hfunc call, 194
hfunc columns, 192
hfunc commit, 194
hfunc data bits, 123

222

hfunc delete msg, 118
hfunc fetch, 195
hfunc fetch info, 195
hfunc flow in, 122
hfunc flow out, 122
hfunc get isolation, 195
hfunc get msg, 118
hfunc get msg top, 118
hfunc getc, 123
hfunc gets, 123
hfunc list, 117
hfunc parity, 122
hfunc procedures, 193
hfunc quit, 119
hfunc read, 124
hfunc rollback, 195
hfunc set isolation, 196
hfunc sql, 193
hfunc stat, 116
hfunc stop bits, 123
hfunc tables, 192
hfunc undelete msgs, 119
hfunc uniq id list, 117
hfunc write, 124
hold time, 190
http formatquery, 211
http geturl, 211
http parse xml, 212

id, 67
if, 19
incr, 12
increment global, 128
Indavo Functions, 213
info, 28
init fax, 109
invoke dtrigger, 155
is announcement heard, 87
is box, 50
is today, 199, 206
is yesterday, 205

job queue, 144

kill thread, 207
kill user thread, 206

lappend, 17
length, 65
lindex, 15
linsert, 18
list, 117
list enqueued ports, 110
list languages, 111
list published mmos, 89

list resource types, 36
list tmapping databases, 132
lists, 9
llength, 16
load prompt set, 106
load tones, 108
Logging Events, 207
login, 44
logout, 45
lookup mmo, 81
lookup mmo attr, 82
lookup mmo keys, 83
lrange, 18
lreplace, 18
ls connect, 94
ls disconnect, 94
ls dsp attach, 94
ls flashhook, 97
ls get ani, 97
ls get dnis, 97
ls port, 96
ls seize, 93
ls set hook, 93
ls set screen text, 96
ls unit, 96
ls wait off, 95
ls wait on, 95
ls wait ring, 96
lsort, 16

make local, 92
message waiting indicator, 167
mmo func append fax, 67
mmo func append to, 68
mmo func audio length, 65
mmo func convert to, 66
mmo func copy to, 67
mmo func date, 66, 67
mmo func format, 65
mmo func forwardable, 64
mmo func get text, 68
mmo func id, 67
mmo func length, 65
mmo func path, 67
mmo func read only, 64
mmo func ref count, 64
mmo func set text, 68
mmo func type, 64
monitor add, 151
monitor delete, 152
monitor list, 152
move msg, 74
move msgs to box, 79

name to digits, 112

223

next box, 51
nfr add, 142
nfr apply, 143
nfr del, 143
nfr list, 143
notify instances, 144
Notify Records, 142
notify templates, 147
notify delete, 146
notify list, 146
notify schedule, 144

outbound list announcement, 87
owner create announcement, 84
owner delete announcement, 85
owner edit announcement, 85
owner list announcement, 86

parity, 122
parse integration data, 165
parse mail msg, 119
path, 67
pause, 98
pcpm, 104
play, 100
play hold, 101
play prompt, 103
port, 96
position, 182, 187
previous box, 52
print mmo, 69
proc, 23
proc info, 163
procedures, 193
procs, 22
publish mmo, 88
published mmos, 88
puts, 198

qhandle accept call, 181
qhandle active call info, 183
qhandle agent info, 182
qhandle agent report, 185
qhandle available, 180
qhandle call info, 183
qhandle call report, 184
qhandle cid report, 185
qhandle dispose, 178
qhandle event, 179
qhandle position, 182
qhandle queue info, 181
qhandle stats, 184
qhandle status, 183
qhandle stop, 179
qhandle wrapup, 180

query tmapping, 132
queue fax, 200
queue info, 181, 187
quit, 119

random, 198
read, 124
read only, 64
receive, 212
receive fax, 114
recip heard announcement, 87
recip list announcement, 87
recognize, 208
record, 103
ref count, 64
rename proc, 163
reparent box, 51
reset box stats, 61
reset port, 111
resources with group, 37
result, 100, 179, 189, 213
resume, 99
return, 23
rollback, 195

save, 214
schedule copy, 141
schedule delete, 140
schedule get, 140
schedule list, 140
schedule set, 138
seize, 93
send, 212
send fax, 113
send msg, 78
send port msg, 110
send smtp mail, 115
set, 7
set agent setting, 175
set box encrypted password, 53
set box password, 53
set box setting, 55
set config, 216
set digit type, 107
set global, 128
set hook, 93
set internal box setting, 61
set isolation, 196
set lmapping, 127
set message box, 76
set msg attr, 74
set param, 135
set param help text, 136
set port, 215

224

set privilege value, 42
set profile, 210
set queue setting, 174
set ring group, 214
set screen text, 96
set text, 68
shutdown, 197
skills, 169
skip, 99
sleep, 198
spawn, 199
speak, 209
Speech Processing Functions, 208
split, 17
sql, 193
sr grammar, 210
sr handle, 210
sr set profile, 210
stat, 116
stats, 184
status, 183, 188
stop, 99, 179, 189, 213
stop bits, 123
store mmo, 83
store proc, 162
switch, 20

tables, 192
template body, 148
template get, 148
template list, 148
template set, 147
Thread Control, 206
Time Functions, 203
tokens, 201
trace out, 197
transfer failed, 189
transfer ok, 189
transferable, 187
type, 64

undelete msgs, 119
uniq id list, 117
unit, 96, 98, 113
unset, 12
uptime, 205
upvar, 25

variable substitution, 8
verify sac, 45
VoIP Appliance Functions, 213
vp beep, 105
vp dial, 108
vp dialtone, 106
vp get digits, 107

vp get mmo, 108
vp init fax, 109
vp load prompt set, 106
vp load tones, 108
vp pause, 98
vp pcpm, 104
vp play, 100
vp play hold, 101
vp play prompt, 103
vp record, 103
vp result, 100
vp resume, 99
vp set digit type, 107
vp skip, 99
vp stop, 99
vp unit, 98

wait, 34
wait off, 95
wait on, 95
wait ring, 96
Web Client Functions, 211
while, 21
whoami, 197
wlog, 207
wrap up mode auto, 188
wrapup, 180
write, 124
wtrace, 207

225

